1
|
Day RM, Rittase WB, Slaven JE, Lee SH, Brehm GV, Bradfield DT, Muir JM, Wise SY, Fatanmi OO, Singh VK. Iron Deposition in the Bone Marrow and Spleen of Nonhuman Primates with Acute Radiation Syndrome. Radiat Res 2023; 200:593-600. [PMID: 37967581 PMCID: PMC10754359 DOI: 10.1667/rade-23-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
The risk of exposure to high levels of ionizing radiation from nuclear weapons or radiological accidents is an increasing world concern. Partial- or total-body exposure to high doses of radiation is potentially lethal through the induction of acute radiation syndrome (ARS). Hematopoietic cells are sensitive to radiation exposure; white blood cells primarily undergo apoptosis while red blood cells (RBCs) undergo hemolysis. Several laboratories demonstrated that the rapid hemolysis of RBCs results in the release of acellular iron into the blood. We recently demonstrated using a murine model of ARS after total-body irradiation (TBI) and the loss of RBCs, iron accumulated in the bone marrow and spleen, notably between 4-21 days postirradiation. Here, we investigated iron accumulation in the bone marrow and spleens from TBI nonhuman primates (NHPs) using histological stains. We observed trends in increased intracellular and extracellular brown pigmentation in the bone marrow after various doses of radiation, especially after 4-15 days postirradiation, but these differences did not reach significance. We observed a significant increase in Prussian blue-staining intracellular iron deposition in the spleen 13-15 days after 5.8-8.5 Gy of TBI. We observed trends of increased iron in the spleen after 30-60 days postirradiation, with varying doses of radiation, but these differences did not reach significance. The NHP model of ARS confirms our earlier findings in the murine model, showing iron deposition in the bone marrow and spleen after TBI.
Collapse
Affiliation(s)
- Regina M. Day
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - W. Bradley Rittase
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - John E. Slaven
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Grace V. Brehm
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Dmitry T. Bradfield
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
2
|
Rittase WB, Slaven JE, Suzuki YJ, Muir JM, Lee SH, Rusnak M, Brehm GV, Bradfield DT, Symes AJ, Day RM. Iron Deposition and Ferroptosis in the Spleen in a Murine Model of Acute Radiation Syndrome. Int J Mol Sci 2022; 23:ijms231911029. [PMID: 36232330 PMCID: PMC9570444 DOI: 10.3390/ijms231911029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7–14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.
Collapse
Affiliation(s)
- W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yuichiro J. Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sang-Ho Lee
- Department of Laboratory Animal Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Grace V. Brehm
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
3
|
Zhang X, Li X, Zheng C, Yang C, Zhang R, Wang A, Feng J, Hu X, Chang S, Zhang H. Ferroptosis, a new form of cell death defined after radiation exposure. Int J Radiat Biol 2022; 98:1201-1209. [PMID: 34982648 DOI: 10.1080/09553002.2022.2020358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Ferroptosis is an iron-dependent form of regulated cell death, driven by excessive lipid peroxidation and/or inactivation/depletion of protective molecules against lipid peroxidation. Ionizing radiation can induce ferroptosis in both normal tissues and tumor cells. Here, we reviewed the findings of ionizing radiation-induced ferroptosis. CONCLUSIONS Ionizing radiation induces an increase in hydroxyl radicals, free iron, and lipid metabolic enzymes, which subsequently synergistically initiate a high level of lipid peroxidation, making ionizing radiation an exogenous inducer of ferroptosis. In addition, ferroptosis may be the primary form of cell death in the bone marrow under hematopoietic acute radiation syndrome. Ionizing radiation can also induce changes in iron metabolism, which may be a target for regulating ferroptosis. Finally, ionizing radiation-induced ferroptosis initiates from the cytoplasm and ends on the membrane, and is independent of DNA damage.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China.,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, PR China
| | - Xin Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Chunyan Zheng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Chunzhi Yang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Rui Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, PR China
| | - Ailian Wang
- Department of Ophthalmology, First Affiliated Hospital, Bengbu Medical College, Bengbu, PR China
| | - Jundong Feng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China
| | - Xiaodan Hu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Shuquan Chang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China
| | - Haiqian Zhang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China.,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, PR China
| |
Collapse
|
4
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Miller SJ, Chittajallu S, Sampson C, Fisher A, Unthank JL, Orschell CM. A Potential Role for Excess Tissue Iron in Development of Cardiovascular Delayed Effects of Acute Radiation Exposure. HEALTH PHYSICS 2020; 119:659-665. [PMID: 32868705 PMCID: PMC7541425 DOI: 10.1097/hp.0000000000001314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Murine hematopoietic-acute radiation syndrome (H-ARS) survivors of total body radiation (TBI) have a significant loss of heart vessel endothelial cells, along with increased tissue iron, as early as 4 mo post-TBI. The goal of the current study was to determine the possible role for excess tissue iron in the loss of coronary artery endothelial cells. Experiments used the H-ARS mouse model with gamma radiation exposure of 853 cGy (LD50/30) and time points from 1 to 12 wk post-TBI. Serum iron was elevated at 1 wk post-TBI, peaked at 2 wk post-TBI, and returned to non-irradiated control values by 4 wk post-TBI. A similar trend was seen for transferrin saturation, and both results correlated inversely with red blood cell number. Perls' Prussian Blue staining, used to detect iron deposition in heart tissue sections, showed myocardial iron was present as early as 2 wk following irradiation. Pretreatment of mice with the iron chelator deferiprone decreased tissue iron but not serum iron at 2 wk. Coronary artery endothelial cell density was significantly decreased as early as 2 wk vs. non-irradiated controls (P<0.05), and the reduced density persisted to 12 wk after irradiation. Deferiprone treatment of irradiated mice prevented the decrease in endothelial cell density at 2 and 4 wk post-TBI compared to irradiated, non-treated mice (P<0.03). Taken together, the results suggest excess tissue iron contributes to endothelial cell loss early following TBI and may be a significant event impacting the development of delayed effects of acute radiation exposure.
Collapse
Affiliation(s)
- Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Supriya Chittajallu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Carol Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| |
Collapse
|
6
|
Rittase WB, Muir JM, Slaven JE, Bouten RM, Bylicky MA, Wilkins WL, Day RM. Deposition of Iron in the Bone Marrow of a Murine Model of Hematopoietic Acute Radiation Syndrome. Exp Hematol 2020; 84:54-66. [PMID: 32240658 DOI: 10.1016/j.exphem.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60Co irradiation, 0.6 Gy/min (LD70-90/30). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14-21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an ∼10-fold increase in bone marrow iron at 14-21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin αMβ2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury.
Collapse
Affiliation(s)
- W Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Jeannie M Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - John E Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Roxane M Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Michelle A Bylicky
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD
| | - W Louis Wilkins
- Department of Laboratory Animal Research, Uniformed Services University of Health Sciences, Bethesda, MD
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD.
| |
Collapse
|
7
|
Attia AMM, Aboulthana WM, Hassan GM, Aboelezz E. Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:131-144. [PMID: 31734721 DOI: 10.1007/s00411-019-00821-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min-1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this "MetHb + SHb + HbCO"-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.
Collapse
Affiliation(s)
- A M M Attia
- Genetic Engineering and Biotechnology Division, Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - W M Aboulthana
- Genetic Engineering and Biotechnology Division, Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - G M Hassan
- Division of Thermometry and Ionizing Radiation Metrology, Department of Ionizing Radiation Metrology, National Institute of Standards, Giza, Egypt.
| | - E Aboelezz
- Division of Thermometry and Ionizing Radiation Metrology, Department of Ionizing Radiation Metrology, National Institute of Standards, Giza, Egypt
| |
Collapse
|
8
|
Yoshiyama M, Okamoto Y, Izumi S, Iizuka D. Graphite Furnace Atomic Absorption Spectrometric Evaluation of Iron Excretion in Mouse Urine Caused by Whole-Body Gamma Irradiation. Biol Trace Elem Res 2019; 191:149-158. [PMID: 30506323 DOI: 10.1007/s12011-018-1589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
A procedure for the determination of iron in mice urine using graphite furnace atomic absorption spectrometry was developed. The mice urinary samples contain many organic compounds in the matrix, whose concentrations are approximately 20%, and the value is 30-fold higher compared to those found in human urine. Moreover, only 0.2 mL or less of urine was obtained as a sample volume per urination event. It was difficult to decompose the organic materials in the samples by wet digestion using mineral acids and oxidising agents, because of the tiny volumes. In this experiment, raw urinary samples were placed directly into the graphite tube furnace for analysis. The organic contents were simply ashed during the preheating stages. To facilitate ashing in the furnace, air was invaded from the surroundings by interrupting the stream of argon gas. Atomic absorption was measured at 248.3270 nm (wavelength for atomic absorption), with the background monitored at 247.0658 nm (wavelength for background correction). The optimised instrument operating conditions precluded the use of chemical modification technique. The analytical procedures used are quite simple, i.e. an aliquot of raw urine sample was injected directly into the graphite tube furnace and was followed by a suitable heating programme with no chemical modifier. Therefore, this method is useful for scientists who are not familiar with delicate chemical experiments. The proposed analytical method was applied as a kind of biomarker by determining iron concentrations in urinary samples of mice, which were irradiated with 4 Gy of gamma irradiation to their whole body. The time dependence of the iron concentration was determined, and the iron concentrations increased within 1 day of irradiation exposure, then decreased to ordinal values after several days.
Collapse
Affiliation(s)
- Makoto Yoshiyama
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashihiroshima, 739-8526, Japan
| | - Yasuaki Okamoto
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashihiroshima, 739-8526, Japan.
| | - Shunsuke Izumi
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashihiroshima, 739-8526, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
9
|
Unthank JL, Ortiz M, Trivedi H, Pelus LM, Sampson CH, Sellamuthu R, Fisher A, Chua HL, Plett A, Orschell CM, Cohen EP, Miller SJ. Cardiac and Renal Delayed Effects of Acute Radiation Exposure: Organ Differences in Vasculopathy, Inflammation, Senescence and Oxidative Balance. Radiat Res 2019; 191:383-397. [PMID: 30901530 DOI: 10.1667/rr15130.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI). The goal of this study was to determine temporal relationships in the development of vasculopathy and the progression of renal and cardiovascular delayed effects of acute radiation exposure (DEARE) at TBI doses less than 9 Gy and to elucidate the potential roles of senescence, inflammation and oxidative stress. Our results show significant loss of endothelial cells in coronary arteries by 4 months post-TBI (8.53 or 8.72 Gy of gamma radiation). This loss precedes renal dysfunction and interstitial fibrosis and progresses to abnormalities in the arterial media and adventitia and loss of coronary arterioles. Major differences in radiation-induced pathobiology exist between the heart and kidney in terms of vasculopathy progression and also in indices of inflammation, senescence and oxidative imbalance. The results of this work suggest a need for different medical countermeasures for multiple targets in different organs and at various times after acute radiation injury to prevent the progression of DEARE.
Collapse
Affiliation(s)
- Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miguel Ortiz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hina Trivedi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol H Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christie M Orschell
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eric P Cohen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
10
|
Zhang J, Zheng L, Wang Z, Pei H, Hu W, Nie J, Shang P, Li B, Hei TK, Zhou G. Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms. Bone 2019; 120:50-60. [PMID: 30304704 DOI: 10.1016/j.bone.2018.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/21/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
Radiation therapy leads to increased risk of late-onset fragility and bone fracture due to the loss of bone mass. On the other hand, iron overloading causes osteoporosis by enhancing bone resorption. It has been shown that total body irradiation increases iron level, but whether the systemic bone loss is related to the changes in iron level and hepcidin regulation following bone irradiation remains unknown. To investigate the potential link between them, we first created an animal model of radiation-induced systemic bone loss by targeting the mid-shaft femur with a single 2 Gy dose of X-rays. We found that mid-shaft femur focal irradiation led to structural deterioration in the distal region of the trabecular bone with increased osteoclasts surface and expressions of bone resorption markers in both irradiated and contralateral femurs relative to non-irradiated controls. Following irradiation, reduced hepcidin activity of the liver contributed to elevated iron levels in the serum and liver. By injecting hepcidin or deferoxamine (an iron chelator) to reduce iron level, deterioration of trabecular bone microarchitecture in irradiated mice was abrogated. The ability of iron chelation to inhibit radiation-induced osteoclast differentiation was observed in vitro as well. We further showed that ionizing radiation (IR) directly stimulated osteoclast differentiation and bone resorption in bone marrow cells isolated not from contralateral femurs but from directly irradiated femurs. These results suggest that increased iron levels after focal radiation is at least one of the main reasons for systemic bone loss. Furthermore, bone loss in directly irradiated bones is not only due to the elevated iron level, but also from increased osteoclast differentiation. In contrast, the bone loss in the contralateral femurs is mainly due to the elevated iron level induced by IR alone. These novel findings provide proof-of-principle evidence for the use of iron chelation or hepcidin as therapeutic treatments for IR-induced osteoporosis.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tom K Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China; Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, USA.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China.
| |
Collapse
|
11
|
Zhang J, Qiu X, Xi K, Hu W, Pei H, Nie J, Wang Z, Ding J, Shang P, Li B, Zhou G. Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings. Connect Tissue Res 2018; 59:509-522. [PMID: 29448860 DOI: 10.1080/03008207.2018.1439482] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiation therapy is one of the routine treatment modalities for cancer patients. Ionizing radiation (IR) can induce bone loss, and consequently increases the risk of fractures with delayed and nonunion of the bone in the cancer patients who receive radiotherapy. The orchestrated bone remodeling can be disrupted due to the affected behaviors of bone cells, including bone mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts. BMSCs and osteoblasts are relatively radioresistant compared with osteoclasts and its progenitors. Owing to different radiosensitivities of bone cells, unbalanced bone remodeling caused by IR is closely associated with the dose absorbed. For doses less than 2 Gy, osteoclastogenesis and adipogenesis by BMSCs are enhanced, while there are limited effects on osteoblasts. High doses (>10 Gy) induce disrupted architecture of bone, which is usually related to decreased osteogenic potential. In this review, studies elucidating the biological effects of IR on bone cells (BMSCs, osteoblasts and osteoclasts) are summarized. Several potential preventions and therapies are also proposed.
Collapse
Affiliation(s)
- Jian Zhang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Xinyu Qiu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Kedi Xi
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Wentao Hu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Hailong Pei
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Jing Nie
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Ziyang Wang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Jiahan Ding
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Peng Shang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China.,c Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China.,d Research & Development Institute in Shenzhen , Northwestern Polytechnical University, Fictitious College Garden , Shenzhen , China
| | - Bingyan Li
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China
| | - Guangming Zhou
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| |
Collapse
|
12
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|
13
|
Zhang XH, Hu XD, Zhao SY, Xie LH, Miao YJ, Li Q, Min R, Liu PD, Zhang HQ. Methemoglobin-Based Biological Dose Assessment for Human Blood. HEALTH PHYSICS 2016; 111:30-36. [PMID: 27218292 DOI: 10.1097/hp.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methemoglobin is an oxidative form of hemoglobin in erythrocytes. The authors' aim was to develop a new biological dosimeter based on a methemoglobin assay. Methemoglobin in peripheral blood (of females or males) that was exposed to a Co source (0.20 Gy min) was quantified using an enzyme-linked immunosorbent assay. The dose range was 0.5-8.0 Gy. In a time-course experiment, the time points 0, 0.02, 1, 2, 3, 7, 15, 21, and 30 d after 4-Gy irradiation of heparinized peripheral blood were used. Methemoglobin levels in a lysed erythrocyte pellet from the irradiated blood of females and males increased with the increasing dose. Methemoglobin levels in female blood irradiated with γ-doses more than 4 Gy were significantly higher than those in male samples at the same doses. Two dose-response relations were fitted to the straight line: one is with the correlation coefficient of 0.98 for females, and the other is with the correlation coefficient of 0.99 for males. The lower limit of dose assessment based on methemoglobin is about 1 Gy. Methemoglobin levels in blood as a result of auto-oxidation increase after 7-d storage at -20 °C. The upregulation of methemoglobin induced by γ-radiation persists for ∼3 d. The absorbed doses that were estimated using the two dose-response relations were close to the actual doses. The results suggest that methemoglobin can be used as a rapid and accurate biological dosimeter for early assessment of absorbed γ-dose in human blood.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- *Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210006, P.R. China; †Clincal Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China; ‡Division of Radiation Medicine, Department of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China; §Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210018, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xie LH, Zhang XH, Hu XD, Min XY, Zhou QF, Zhang HQ. Mechanisms of an increased level of serum iron in gamma-irradiated mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:81-88. [PMID: 26511140 DOI: 10.1007/s00411-015-0623-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ((60)Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions.
Collapse
Affiliation(s)
- Li-hua Xie
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Xiao-hong Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Xiao-dan Hu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Xuan-yu Min
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Qi-fu Zhou
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
- Nuclear and Radiation Safety Center, Beijing, People's Republic of China
| | - Hai-qian Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China.
- Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Min XY, Zhang XH, Zhou QP, Hu XD, Liu PD, Zhang HQ. Development of serum zinc as a biological dosimeter in mice. Int J Radiat Biol 2014; 90:909-13. [PMID: 24827851 DOI: 10.3109/09553002.2014.922718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To develop a new biological dosimeter based on serum zinc concentration. MATERIALS AND METHODS Male mice (8 weeks old) were exposed to different doses (0, 1.0, 2.0, 4.0, or 8.0 Gy) of gamma rays from a (60)Co source. Blood was then collected from the orbital area of these mice, and the serum zinc concentration was detected using the 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol colorimetric method. The data were analyzed using one-way analysis of variance. RESULTS The serum zinc concentration in the irradiated mice decreased with increasing dose. Two dose-response relationships fitted to the linear quadratic curve were obtained: One immediately after exposure (y = 0.010x(2) - 0.133x + 0.663, r = 0.983) and the other on the seventh day after exposure (y = 0.008x(2) - 0.127x + 0.695, r = 0.990). The serum zinc concentration continued to decrease until 21 days after exposure. The absorbed doses estimated using both dose-response relationships were close to the actual doses. CONCLUSIONS Serum zinc is a quick, effective, and sensitive biomarker for early biological doses assessment of mice irradiated by gamma radiation.
Collapse
Affiliation(s)
- Xuan-Yu Min
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , P. R. China
| | | | | | | | | | | |
Collapse
|
16
|
Zhang XH, Min XY, Wang AL, Lou ZC, Zhang YN, Hu XD, Zhang HQ. Development of serum copper-based biological dosimetry in whole body gamma irradiation of mice. HEALTH PHYSICS 2013; 105:351-355. [PMID: 23982611 DOI: 10.1097/hp.0b013e31829aea95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new biological dosimeter based on serum copper has been developed. Serum copper in mice subjected to a 60Co source at a dose rate of 0.5 Gy min-1 was detected using the bis(cyclohexanone) oxaldihydrazone colorimetric method. The dose range was from 0.5–7 Gy. The results demonstrate that serum copper decreases with increasing dose. A linear dose response is obtained. The detection limit based on serum copper is the same as that with the lower limit of dose assessment; i.e., about 1 Gy. The decrease in serum copper continues until the 28th day after gamma radiation. The absorbed doses in mice assessed using the linear curve are close to “blind” doses of 4 and 6 Gy. Therefore, serum copper is a quick, simple, and accurate biomarker for early assessment of radiation exposure of mice in the range of 0.5–7 Gy.
Collapse
Affiliation(s)
- Xiao-hong Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210006, PR China
| | | | | | | | | | | | | |
Collapse
|