1
|
Sato Y, Yoshino H, Ishikawa J, Monzen S, Yamaguchi M, Kashiwakura I. Prediction of hub genes and key pathways associated with the radiation response of human hematopoietic stem/progenitor cells using integrated bioinformatics methods. Sci Rep 2023; 13:10762. [PMID: 37402866 DOI: 10.1038/s41598-023-37981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are indispensable for the maintenance of the entire blood program through cytokine response. However, HSCs have high radiosensitivity, which is often a problem during radiation therapy and nuclear accidents. Although our previous study has reported that the combination cytokine treatment (interleukin-3, stem cell factor, and thrombopoietin) improves the survival of human hematopoietic stem/progenitor cells (HSPCs) after radiation, the mechanism by which cytokines contribute to the survival of HSPCs is largely unclear. To address this issue, the present study characterized the effect of cytokines on the radiation-induced gene expression profile of human CD34+ HSPCs and explored the hub genes that play key pathways associated with the radiation response using a cDNA microarray, a protein-protein interaction-MCODE module analysis and Cytohubba plugin tool in Cytoscape. This study identified 2,733 differentially expressed genes (DEGs) and five hub genes (TOP2A, EZH2, HSPA8, GART, HDAC1) in response to radiation in only the presence of cytokines. Furthermore, functional enrichment analysis found that hub genes and top DEGs based on fold change were enriched in the chromosome organization and organelle organization. The present findings may help predict the radiation response and improve our understanding of this response of human HSPCs.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Junya Ishikawa
- Department of Medical Radiologic Technology, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, 181-8612, Japan
| | - Satoru Monzen
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan.
| |
Collapse
|
2
|
Monzen S, Kimura S, Yamaguchi M, Kashiwakura I. Protective Effect of the c-mpl Agonist Romiplostim on Megakaryocytopoiesis of Human CD34 + Hematopoietic Progenitor Cells Exposed to Ionizing Radiation. J Interferon Cytokine Res 2018; 38:206-212. [PMID: 29708814 DOI: 10.1089/jir.2017.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A thrombopoiesis-stimulating protein, the myeloproliferative leukemia virus protooncogene (Mpl) ligand romiplostim (RP), is currently approved as a therapeutic agent for idiopathic thrombocytopenic purpura in many countries. Although the action of the initial MPL ligand thrombopoietin (TPO) on human megakaryocytic regeneration from irradiated human hematopoietic stem cells has been examined, there are few reports on the action of RP. In the present study, freshly prepared nonirradiated and 2-Gy X-irradiated human CD34 positive (CD34+) cells from placental umbilical cord blood were cultured with a combination of RP and various cytokines. As a result, the effect of RP on cell proliferation of nonirradiated CD34+ cells was found to be comparable to that of TPO. However, the stimulating activity of RP on megakaryocytic progenitor-derived colony formation was markedly lower compared with TPO. Regarding the action of RP with various cytokines, the present results showed that a combination of RP with interleukin-3 (IL-3) or IL-3 plus stem cell factor (SCF) showed a high regenerative effect on cell proliferation, megakaryopoiesis, thrombopoiesis, and megakaryocyte colony formation from X-irradiated CD34+ cells. The present study showed that human recombinant RP has potential effects on human megakaryocytic regeneration from X-irradiated human CD34+ cells and synergistically acts with IL-3 and IL-3 plus SCF, just as observed with TPO.
Collapse
Affiliation(s)
- Satoru Monzen
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences , Aomori, Japan
| | - Shunta Kimura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences , Aomori, Japan
| | - Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences , Aomori, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences , Aomori, Japan
| |
Collapse
|
3
|
Tsujiguchi T, Hirouchi T, Monzen S, Tabuchi Y, Takasaki I, Kondo T, Kashiwakura I. Expression analysis of radiation-responsive genes in human hematopoietic stem/progenitor cells. JOURNAL OF RADIATION RESEARCH 2016; 57:35-43. [PMID: 26661850 PMCID: PMC4708922 DOI: 10.1093/jrr/rrv071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
To clarify the nature of the genes that contribute to the radiosensitivity of human hematopoietic stem/progenitor cells (HSPCs), we analyzed the gene expression profiles detected in HSPCs irradiated with 2 Gy X-rays after culture with or without an optimal combination of hematopoietic cytokines. Highly purified CD34(+) cells from human placental/umbilical cord blood were used as HSPCs. The cells were exposed to 2 Gy X-irradiation and treated in serum-free medium under five different sets of conditions for 6 h. The gene expression levels were analyzed by cDNA microarray, and then the network of responsive genes was investigated. A comprehensive genetic analysis to search for genes associated with cellular radiosensitivity was undertaken, and we found that expression of the genes downstream of MYC oncogene increased after X-irradiation. In fact, the activation of MYC was observed immediately after X-irradiation, and MYC was the only gene still showing activation at 6 h after irradiation. Furthermore, MYC had a significant impact on the biological response, particularly on the tumorigenesis of cells and the cell cycle control. The activated gene regulator function of MYC resulting from irradiation was suppressed by culturing the HSPCs with combinations of cytokines (recombinant human thrombopoietin + interleukin 3 + stem cell factor), which exerted radioprotective effects. MYC was strongly associated with the radiosensitivity of HSPCs, and further study and clarification of the genetic mechanisms that control the cell cycle following X-irradiation are required.
Collapse
Affiliation(s)
- Takakiyo Tsujiguchi
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan
| | - Tokuhisa Hirouchi
- Department of Radiobiology, Institute for Environmental Sciences, Rokkasho, Aomori, Japan
| | - Satoru Monzen
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan
| | - Yoshiaki Tabuchi
- University of Toyama Life Science Research Center, Toyama, Japan
| | - Ichiro Takasaki
- University of Toyama Graduate School of Science and Engineering for Research Life, Toyama, Japan
| | - Takashi Kondo
- Department of Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ikuo Kashiwakura
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan
| |
Collapse
|
4
|
Ishikawa J, Hayashi N, Yamaguchi M, Monzen S, Kashiwakura I. Characteristics of human CD34+ cells exposed to ionizing radiation under cytokine-free conditions. JOURNAL OF RADIATION RESEARCH 2015; 56:678-90. [PMID: 25877692 PMCID: PMC4497397 DOI: 10.1093/jrr/rrv024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 01/18/2015] [Accepted: 03/06/2015] [Indexed: 05/16/2023]
Abstract
To clarify the mechanisms underlying radiation-induced hematopoietic stem cell death, we investigated the effects of excessive ionizing radiation on the clonogenic potential of CD34(+) cells obtained from human umbilical cord blood under cytokine-free conditions. The CD34(+) cells were X-ray-irradiated (up to 2 Gy) and were cultured for 0-48 h under cytokine-free conditions. At various time-points, the CD34(+) cells were investigated for survival, clonogenic potential and the generation of mitochondrial superoxide. At 12 h after X-ray irradiation, the number of viable cells had decreased to ∼70-80% compared with the 0-h non-irradiated control, whereas the clonogenic potential in the X-ray-irradiated cells had decreased to ∼50%-60% compared with the 0-h non-irradiated control. Furthermore, significant generation of mitochondrial superoxide was observed at 6 h, and reached a maximum value between 12 and 24 h after X-ray irradiation. However, no significant differences were observed between non-irradiated and X-ray-irradiated cells in terms of the generation of reactive oxygen species or in the intracellular mitochondrial contents. In addition, a cDNA microarray analysis showed that the majority of the altered genes in the CD34(+) cells at 6 h after X-ray irradiation were apoptosis-related genes. These results suggest the possibility that the elimination of the clonogenic potentials of CD34(+) cells involves the generation of mitochondrial superoxide induced by ionizing radiation.
Collapse
Affiliation(s)
- Junya Ishikawa
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8203, Japan
| | - Naoki Hayashi
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8203, Japan
| | - Masaru Yamaguchi
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8203, Japan
| | - Satoru Monzen
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8203, Japan
| | - Ikuo Kashiwakura
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8203, Japan
| |
Collapse
|
5
|
Garg S, Madkaikar M, Ghosh K. Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions. Int J Stem Cells 2014; 6:129-33. [PMID: 24386557 DOI: 10.15283/ijsc.2013.6.2.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.
Collapse
Affiliation(s)
- Swati Garg
- National Institute of Immunohaemtology, Mumbai, India
| | | | | |
Collapse
|
6
|
Yamaguchi M, Ebina S, Kashiwakura I. Involvement of placental/umbilical cord blood acid-base status and gas values on the radiosensitivity of human fetal/neonatal hematopoietic stem/progenitor cells. JOURNAL OF RADIATION RESEARCH 2013; 54:277-284. [PMID: 23263728 PMCID: PMC3589944 DOI: 10.1093/jrr/rrs107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
Arterial cord blood (CB) acid-base status and gas values, such as pH, PCO2, PO2, HCO3(-)and base excess, provide useful information on the fetal and neonatal condition. However, it remains unknown whether these values affect the radiosensitivity of fetal/neonatal hematopoiesis. The present study evaluated the relationship between arterial CB acid-base status, gas values, and the radiosensitivity of CB hematopoietic stem/progenitor cells (HSPCs). A total of 25 CB units were collected. The arterial CB acid-base status and gas values were measured within 30 min of delivery. The CD34(+)HSPCs obtained from CB were exposed to 2 Gy X-irradiation, and then assayed for colony-forming unit-granulocyte-macrophage, burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte erythroid, macrophage and megakaryocyte cells. Acid-base status and gas values for PCO2and HCO3(-)showed a statistically significant negative correlation with the surviving fraction of BFU-E. In addition, a significant positive correlation was observed between gestational age and PCO2. Moreover, the surviving fraction of BFU-E showed a significant negative correlation with gestational age. Thus, HSPCs obtained from CB with high PCO2/HCO3(-)levels were sensitive to X-irradiation, which suggests that the status of arterial PCO2/HCO3(-)influences the radiosensitivity of fetal/neonatal hematopoiesis, especially erythropoiesis.
Collapse
Affiliation(s)
| | | | - Ikuo Kashiwakura
- Corresponding author. Tel: +81-172-39-5938; Fax: +81-172-39-5938;
| |
Collapse
|
7
|
Omori A, Hirai M, Chiba T, Takahashi K, Yamaguchi S, Takahashi TA, Kashiwakura I. Quality-assessments of characteristics of placental/umbilical cord blood associated with maternal age- and parity-related factor. Transfus Apher Sci 2011; 46:7-13. [PMID: 22192902 DOI: 10.1016/j.transci.2011.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022]
Abstract
Umbilical cord blood (CB) has been widely used for unrelated allogeneic stem cell transplantation. It is important to determine the quality of CB units to avoid frequent problem of limited cell yields. However, no practical and/or optimum obstetric factors to predict them are yet available. This study analyzed the relationship between maternal/neonatal obstetric factors and the laboratory parameters of CB units to identify the optimum factors associated with a high yield of total nucleated cells (TNC). Primiparae in their early 30s may be one of the first selection criteria for CB donors to obtain higher yield of TNC.
Collapse
Affiliation(s)
- Atsuko Omori
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Monzen S, Takahashi K, Yoshino H, Kasai-Eguchi K, Kashiwakura I. Terminal Maturation of Megakaryocytes and Platelet Production by Hematopoietic Stem Cells Irradiated with Heavy-Ion Beams. Radiat Res 2011; 176:8-16. [DOI: 10.1667/rr2392.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Omori A, Chiba T, Kashiwakura I. Relationship between radiosensitivity of human neonatal hematopoietic stem/progenitor cells and individual maternal/neonatal obstetric factors. JOURNAL OF RADIATION RESEARCH 2010; 51:755-763. [PMID: 21079378 DOI: 10.1269/jrr.10115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) in placental/umbilical cord blood (CB), which is neonatal peripheral blood, have increasingly been used for hematopoietic stem cell transplantations. It is likely HSPCs are sensitive to extracellular oxidative stresses, such as ionizing radiation and redox-directed chemotherapeutic agents. However, the radiosensitivity of HSPCs and neonatal hematopoietic system remains unclear. This study investigated the potential relationship between the radiosensitivity of HSPCs in CB, which was obtained from singleton and full-term deliveries, and maternal/neonatal obstetric factors. Freshly prepared CB CD34(+) cells exposed to 2 Gy X-irradiation were assayed for hematopoietic progenitor cells such as colony-forming unit-granulocyte-macrophage (CFU-GM), burst-forming unit-erythroid (BFU-E), colony-forming unit-granulocyte-erythroid-macrophage-megakaryocyte (CFU-Mix), and colony-forming unit-megakaryocyte (CFU-Meg). As a result, the neonatal weight, placental weight, CB volume, total low-density (LD) cells, and CD34(+) cells showed mutually significant positive correlations. The CB volume and total LD cells showed a significant reverse correlation with the surviving fraction of CFU-Meg. The surviving fraction of CFU-GM in spring (March-May) was significantly higher than that in autumn (September-November). The surviving fraction of CFU-Meg in the spring was significantly lower than that in the autumn. Male neonates showed a significantly higher surviving fraction of CFU-GM than female neonates. Contrarily, females showed a significantly higher surviving fraction of CFU-Meg than males. The present results suggest that the obstetric factors, such as the season of birth and neonatal gender, influence the radiosensitivity of neonatal hematopoiesis.
Collapse
Affiliation(s)
- Atsuko Omori
- Division of Medical Life Sciences, Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | | | | |
Collapse
|
10
|
Monzen S, Osuda K, Miyazaki Y, Hayashi N, Takahashi K, Kashiwakura I. Radiation sensitivities in the terminal stages of megakaryocytic maturation and platelet production. Radiat Res 2009; 172:314-20. [PMID: 19708780 DOI: 10.1667/rr1519.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
These studies examined the effects of X radiation and interleukin 3 (IL-3), which is an effective cytokine for the generation of megakaryocytopoiesis from X-irradiated hematopoietic stem/progenitor cells, on the terminal process of human megakaryocytopoiesis and thrombopoiesis. Mature megakaryocytes were induced by culturing CD34(+) cells from normal human peripheral blood in a serum-free liquid culture stimulated with thrombopoietin. The experiments contained the following groups: control cultures with nonirradiated cells incubated for 15 days; cultures treated with IL-3 on day 7 or day 11, cultures irradiated with 2 Gy on day 7 or day 11, and cultures treated with IL-3 immediately after X irradiation. The nonirradiated control cultures produced megakaryocytes from day 7, and both the megakaryocyte and platelet generation reached a peak on day 12-13. When X irradiation was performed on day 7, both the megakaryocyte and platelet numbers decreased remarkably, while no significant effect was observed on those numbers when cultures were X-irradiated on day 11. IL-3 showed neither protective nor promoting effects on the terminal stages of megakaryocytic maturation and platelet production. The results demonstrated that mature megakaryocytes are radiosensitive but that the radiosensitivity decreased with the terminal stages of megakaryocytic maturation, especially for the megakaryocytes entering into proplatelet formation.
Collapse
Affiliation(s)
- Satoru Monzen
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Hayashi N, Takahashi K, Abe Y, Kashiwakura I. Placental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells support hematopoietic recovery of X-irradiated human CD34+ cells. Life Sci 2009; 84:598-605. [PMID: 19302805 DOI: 10.1016/j.lfs.2009.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 01/20/2009] [Accepted: 02/03/2009] [Indexed: 01/09/2023]
Abstract
AIMS The potential of human mesenchymal stem cell-like stroma prepared from placental/umbilical cord blood for hematopoietic regeneration by X-irradiated hematopoietic stem cells is herein assessed. MAIN METHODS Placental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells were applied to a regenerative ex vivo expansion of X-irradiated human CD34(+) cells in a serum-free liquid culture supplemented with a combination of interleukine-3 plus stem cell factor plus thrombopoietin. KEY FINDINGS The total number of cells and of lineage-committed myeloid hematopoietic progenitor cells generated in the co-culture of both non-irradiated and X-irradiated cells with stromal cells was significantly higher than those in the stroma-free culture. In addition, the number of CD34(+) cells and CD34(+)/CD38(-) cells, immature hematopoietic stem/progenitor cells also increased more than the stroma-free culture. The stromal cells produced various types of cytokines, although there was little difference between the co-cultures of non-irradiated and X-irradiated cells with stromal cells. Furthermore, when X-irradiated cells came in contact with stromal cells for 16 h before cytokine stimulation, a similar degree of hematopoiesis was observed, thus suggesting the critical role of cell-to-cell interaction. SIGNIFICANCE The present results showed the potential efficacy of human mesenchymal stem cell-like stroma for hematopoietic regeneration from irradiated hematopoietic stem/progenitor cells.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | | | | | | |
Collapse
|
12
|
Omori A, Takahashi K, Hazawa M, Misaki N, Ohba H, Manabe M, Sato H, Kudo K, Takahashi TA, Kashiwakura I. Maternal and neonatal factors associated with the high yield of mononuclear low-density/CD34+ cells from placental/umbilical cord blood. TOHOKU J EXP MED 2008; 215:23-32. [PMID: 18509232 DOI: 10.1620/tjem.215.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Placental/umbilical cord blood (CB) contains nucleated cells and hematopoietic stem/progenitor cells (CD34(+) cells). However it is difficult to predict the number of nucleated/CD34(+) cells in each CB before cell processing. Despite many previous studies from institutes affiliated with CB banks in metropolitan areas, little information is available regarding the characteristics of CB units from other medical facilities. The purpose of the present study was to analyze the maternal/neonatal factors on the yield of cells in CB units. A total of 176 CB units were obtained from single-birth and normal vaginal deliveries. Mononuclear low-density (LD) cells were separated using Ficoll-Paque within 24 hrs after CB collection and then processed for the purification of CD34(+) cells. A multiple linear regression analysis was performed to assess the correlations between the yield of cells and maternal/neonatal factors including maternal age, gravid status, duration of labor, gestational age, neonatal height and weight, cord length, and meconium in the amniotic fluid. The total LD cells per CB unit had a weak positive correlation with the maternal age of primigravidae. The total LD cells per CB unit from the primigravidae aged > or = 25 were significantly higher than those from the primigravidae aged < or = 24. The total CD34(+) cells per CB unit from the 1-gravidae were significantly higher than those from the 2-gravidae and 3-gravidae, respectively among all donors. These results indicate that the CB units from the primigravidae aged > or = 25 are more likely to contain higher yield of LD/CD34(+) cells.
Collapse
Affiliation(s)
- Atsuko Omori
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Takahashi K, Monzen S, Yoshino H, Abe Y, Eguchi-Kasai K, Kashiwakura I. Effects of a 2-step culture with cytokine combinations on megakaryocytopoiesis and thrombopoiesis from carbon-ion beam-irradiated human hematopoietic stem/progenitor cells. JOURNAL OF RADIATION RESEARCH 2008; 49:417-424. [PMID: 18504345 DOI: 10.1269/jrr.07132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To evaluate whether the continuous treatment of two cytokine combinations is effective in megakaryocytopoiesis and thrombopoiesis in hematopoietic stem/progenitor cells exposed to heavy ion beams, the effects of a 2-step culture by a combination of recombinant human interleukin-3 (IL-3) + stem cell factor (SCF) + thrombopoietin (TPO), which just slightly protected against carbon-ion beam-induced damages, and a combination of IL-3 + TPO, which selectively stimulated the differentiation of the hematopoietic stem/progenitor cells to megakaryocytes and platelets, were examined. CD34(+)-hematopoietic stem/progenitor cells isolated from the human placental and umbilical cord blood were exposed to carbon-ion beams (LET = 50 keV/microm) at 2 Gy. These cells were cultured under three cytokine conditions. The number of megakaryocytes, platelets and hematopoietic progenitors were assessed using a flow cytometer and a clonogenic assay at 14 and 21 days after irradiation, respectively. However, the efficacy of each 2-step culture was equal or lower than that of using the IL-3 + SCF + TPO combination alone and the 2-step culture could not induce megakaryocytes and platelets from hematopoietic stem/progenitor cells exposed to high LET-radiation such as carbon-ion beams. Therefore, additional cytokines and/or hematopoietic promoting compounds might be required to overcome damage to hematopoietic cells by high LET radiation.
Collapse
Affiliation(s)
- Kenji Takahashi
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Ex vivo expansions of megakaryocytopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free culture supplemented with proteoglycans extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of whale. Life Sci 2008; 82:1023-31. [PMID: 18407295 DOI: 10.1016/j.lfs.2008.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 01/22/2008] [Accepted: 03/03/2008] [Indexed: 11/23/2022]
Abstract
As a possible approach to the treatment of thrombopocytopenia, the ex vivo expansion of megakaryocytic progenitor cells may be a useful tool to accelerate platelet recovery in vivo. Our objective was to assess the promoting effect of proteoglycans in a serum-free culture condition using human cord blood CD34(+) cells. Highly purified proteoglycan (PG) extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of a whale were applied to the ex vivo expansion of megakaryocytopoiesis and thrombopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free cultures stimulated with a combination of thrombopoietin (TPO) and interleukin-3 (IL-3). Each PG (0.5 and 5 mug) was applied to the culture with three different concentrations of TPO (50, 5 and 0.5 ng/ml) and IL-3 (100, 10 and 1 ng/ml). Both of the PGs showed no promoting effects on the mononuclear cell proliferation rate in any of the cultures. However, the whale-PG promoted the generation of megakaryocytic progenitor cells and megakaryocytes in the culture with a lower dose of cytokines, respectively. In addition, whale-PG led to a significant increase in CD42a(+) particles which seemed to be platelets. While the salmon-PG failed to promote such production in almost all of the cultures. Although whale-PG is an attractive molecule for the ex vivo expansion of human megakaryocytopoiesis, its action may depend on the glycosaminoglycans sulfation pattern and the ability of the binding affinity and the kinetics to interact with the cytokines and hematopoietic stem/progenitor cells.
Collapse
|
15
|
Takahashi K, Monzen S, Eguchi-Kasai K, Abe Y, Kashiwakura I. Severe Damage of Human Megakaryocytopoiesis and Thrombopoiesis by Heavy-Ion Beam Radiation. Radiat Res 2007; 168:545-51. [DOI: 10.1667/rr1008.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 07/06/2007] [Indexed: 11/03/2022]
|