1
|
Macintyre AN, French MJ, Sanders BR, Riebe KJ, Shterev ID, Wiehe K, Hora B, Evangelous T, Dugan G, Bourland JD, Cline JM, Sempowski GD. Long-Term Recovery of the Adaptive Immune System in Rhesus Macaques After Total Body Irradiation. Adv Radiat Oncol 2021; 6:100677. [PMID: 34646962 PMCID: PMC8498734 DOI: 10.1016/j.adro.2021.100677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Ionizing radiation causes acute damage to hematopoietic and immune cells, but the long-term immunologic consequences of irradiation are poorly understood. We therefore performed a prospective study of the delayed immune effects of radiation using a rhesus macaque model. METHODS AND MATERIALS Ten macaques received 4 Gy high-energy x-ray total body irradiation (TBI) and 6 control animals received sham irradiation. TBI caused transient lymphopenia that resolved over several weeks. Once white blood cell counts recovered, flow cytometry was used to immunophenotype the circulating adaptive immune cell populations 4, 9, and 21 months after TBI. Data were fit using a mixed-effects model to determine age-dependent, radiation-dependent, and interacting effects. T cell receptor (TCR) sequencing and quantification of TCR Excision Circles were used to determine relative contributions of thymopoiesis and peripheral expansion to T cell repopulation. Two years after TBI, the cohort was vaccinated with a 23-valent pneumococcal polysaccharide vaccine and a tetravalent influenza hemagglutinin vaccine. RESULTS Aging, but not TBI, led to significant changes in the frequencies of dendritic cells, CD4 and CD8 T cells, and B cells. However, irradiated animals exhibited increased frequencies of central memory T cells and decreased frequencies of naïve T cells. These consequences of irradiation were time-dependent and more prolonged in the CD8 T cell population. Irradiation led to transient increases in CD8+ T cell TCR Excision Circles and had no significant effect on TCR sequence entropy, indicating T cell recovery was partially mediated by thymopoiesis. Animals that were irradiated and then vaccinated showed normal immunoglobulin G binding and influenza neutralization titers in response to the 4 protein antigens but weaker immunoglobulin G binding titers to 10 of the 23 polysaccharide antigens. CONCLUSIONS These findings indicate that TBI causes subtle but long-lasting immune defects that are evident years after recovery from lymphopenia.
Collapse
Affiliation(s)
- Andrew N. Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Matthew J. French
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Brittany R. Sanders
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kristina J. Riebe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ivo D. Shterev
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kevin Wiehe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Tyler Evangelous
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Greg Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
2
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Li S, Lu X, Feng JB, Tian M, Wang J, Chen H, Chen DQ, Liu QJ. Developing Gender-Specific Gene Expression Biodosimetry Using a Panel of Radiation-Responsive Genes for Determining Radiation Dose in Human Peripheral Blood. Radiat Res 2019; 192:399-409. [DOI: 10.1667/rr15355.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Jun Wang
- Department of Hematopoietic Stem Cell Transplantation, 307 Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, 307 Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - De-Qing Chen
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
4
|
Hale LP, Rajam G, Carlone GM, Jiang C, Owzar K, Dugan G, Caudell D, Chao N, Cline JM, Register TC, Sempowski GD. Late effects of total body irradiation on hematopoietic recovery and immune function in rhesus macaques. PLoS One 2019; 14:e0210663. [PMID: 30759098 PMCID: PMC6373904 DOI: 10.1371/journal.pone.0210663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
While exposure to radiation can be lifesaving in certain settings, it can also potentially result in long-lasting adverse effects, particularly to hematopoietic and immune cells. This study investigated hematopoietic recovery and immune function in rhesus macaques Cross-sectionally (at a single time point) 2 to 5 years after exposure to a single large dose (6.5 to 8.4 Gray) of total body radiation (TBI) derived from linear accelerator-derived photons (2 MeV, 80 cGy/minute) or Cobalt 60-derived gamma irradiation (60 cGy/min). Hematopoietic recovery was assessed through measurement of complete blood counts, lymphocyte subpopulation analysis, and thymus function assessment. Capacity to mount specific antibody responses against rabies, Streptococcus pneumoniae, and tetanus antigens was determined 2 years after TBI. Irradiated macaques showed increased white blood cells, decreased platelets, and decreased frequencies of peripheral blood T cells. Effects of prior radiation on production and export of new T cells by the thymus was dependent on age at the time of analysis, with evidence of interaction with radiation dose for CD8+ T cells. Irradiated and control animals mounted similar mean antibody responses to proteins from tetanus and rabies and to 10 of 11 serotype-specific pneumococcal polysaccharides. However, irradiated animals uniformly failed to make antibodies against polysaccharides from serotype 5 pneumococci, in contrast to the robust responses of non-irradiated controls. Trends toward decreased serum levels of anti-tetanus IgM and slower peak antibody responses to rabies were also observed. Taken together, these data show that dose-related changes in peripheral blood cells and immune responses to both novel and recall antigens can be detected 2 to 5 years after exposure to whole body radiation. Longer term follow-up data on this cohort and independent validation will be helpful to determine whether these changes persist or whether additional changes become evident with increasing time since radiation, particularly as animals begin to develop aging-related changes in immune function.
Collapse
Affiliation(s)
- Laura P. Hale
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- * E-mail:
| | - Gowrisankar Rajam
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - George M. Carlone
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - Chen Jiang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Nelson Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Thomas C. Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Gregory D. Sempowski
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
5
|
Impact of early life exposure to ionizing radiation on influenza vaccine response in an elderly Japanese cohort. Vaccine 2018; 36:6650-6659. [PMID: 30274868 DOI: 10.1016/j.vaccine.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate effects of whole body radiation exposure early in life on influenza vaccination immune responses much later in life. A total of 292 volunteers recruited from the cohort members of ongoing Adult Health Study (AHS) of Japanese atomic bomb (A-bomb) survivors completed this observational study spanning two influenza seasons (2011-2012 and 2012-2013). Peripheral blood samples were collected prior to and three weeks after vaccination. Serum hemagglutination inhibition (HAI) antibody titers were measured as well as concentrations of 25 cytokines and chemokines in culture supernatant from peripheral blood mononuclear cells, with and without in vitro stimulation with influenza vaccine. We found that influenza vaccination modestly enhanced serum HAI titers in this unique cohort of elderly subjects, with seroprotection ranging from 18 to 48% for specific antigen/season combinations. Twelve percent of subjects were seroprotected against all three vaccine antigens post-vaccination. Males were generally more likely to be seroprotected for one or more antigens post-vaccination, with no differences in vaccine responses based on age at vaccination or radiation exposure in early life. These results show that early life exposure to ionizing radiation does not prevent responses of elderly A-bomb survivors to seasonal influenza vaccine.
Collapse
|