1
|
Abstract
Galanin has diverse physiological functions, including nociception, arousal/sleep regulation, cognition, and many aspects of neuroendocrine activities that are associated with feeding, energy metabolism, thermoregulation, osmotic and water balance, and reproduction. This review will provide a brief overview of galanin action in some major neuroendocrine processes. Most of the recent data are about the role of galanin in the central regulation of food intake and energy metabolism, and to some extent, in the regulation of reproduction. It seems that galanin plays a modulatory role rather than a regulatory one in the central and peripheral branches of the neuroendocrine systems. In the hypothalamus, it functions as a neurotransmitter/ neuromodulator. In the pituitary and the peripheral endocrine glands, it acts via its receptors in a paracrine/autocrine fashion. The development of new, selective, and potent antagonists of GALRs should keep advancing our knowledge not only in the physiology of galanin but also in its pathophysiology.
Collapse
Affiliation(s)
- Istvan Merchenthaler
- Department of Epidemiology & Preventive Medicine, University of Maryland, 10 S. Pine Street, MSTYF 900-F, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Karatayev O, Baylan J, Weed V, Chang S, Wynick D, Leibowitz SF. Galanin knockout mice show disturbances in ethanol consumption and expression of hypothalamic peptides that stimulate ethanol intake. Alcohol Clin Exp Res 2009; 34:72-80. [PMID: 19860804 DOI: 10.1111/j.1530-0277.2009.01068.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice. METHODS Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake. RESULTS In the GALKO mice compared to WT, the results revealed: (i) a 35 to 45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as nonlittermate WT mice; (ii) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; (iii) no difference in consumption of sucrose or quinine solutions in preference tests; (iv) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and (v) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males. CONCLUSIONS These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females and their increased expression attenuating these effects in males.
Collapse
Affiliation(s)
- Olga Karatayev
- Laboratory of Behavioral Neurobiology, Rockefeller University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
3
|
Whitelaw CM, Robinson JE, Chambers GB, Hastie P, Padmanabhan V, Thompson RC, Evans NP. Expression of mRNA for galanin, galanin-like peptide and galanin receptors 1–3 in the ovine hypothalamus and pituitary gland: effects of age and gender. Reproduction 2009; 137:141-50. [DOI: 10.1530/rep-08-0266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neurotransmitters/neuromodulators galanin (GAL) and galanin-like peptide (GALP) are known to operate through three G protein-coupled receptors, GALR1, GALR2 and GALR3. The aim of this study was to investigate changes in expression of mRNA for galanin, GALP and GALR1–3 in the hypothalamus and pituitary gland, of male and female sheep, to determine how expression changed in association with growth and the attainment of reproductive competence. Tissue samples from the hypothalami and pituitary glands were analysed from late foetal and pre-pubertal lambs and adult sheep. Although mRNA for galanin and GALR1-3 was present in both tissues, at all ages and in both genders, quantification of GALP mRNA was not possible due to its low levels of expression. mRNA expression for both galanin and its receptors was seen to change significantly in both tissues as a function of age. Specifically, hypothalamic galanin mRNA expression increased with age in the male, but decreased with age in the female pituitary gland. mRNA expression for all receptors increased between foetal and pre-pubertal age groups and decreased significantly between pre-pubertal and adult animals. The results indicate that the expression of mRNA for galanin and its receptors changes dynamically with age and those significant differences exist with regard to tissue type and gender. These changes suggest that galaninergic neuroendocrine systems could be involved in the regulation of ovine growth and or the development of reproductive competence. The roles played by these systems in the sheep, however, may differ from other species, in particular the neuroendocrine link between nutrition and reproduction and GALR1's role in pituitary signalling.
Collapse
|
4
|
Lombardero M, Quintanar-Stephano A, Vidal S, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW. Vascularization of rat pituitary autografts. J Anat 2006; 208:587-93. [PMID: 16637881 PMCID: PMC2100219 DOI: 10.1111/j.1469-7580.2006.00571.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pituitary autotransplantation eliminates direct vascular contact between the hypothalamus and the adenohypophysis, and enables us to study the role of the hypothalamus in regulating adenohypophysial endocrine activity. The aim of this study was to investigate vascularization of the pituitary autografts. Three-month-old male Wistar rats were hypophysectomized, and their adenohypophyses were autotransplanted under the renal capsule. The animals were killed 3 weeks after autotransplantation. The grafts were removed and studied by using histology, immunohistochemistry and transmission electron microscopy. In the central portion of the grafts, organizing necrosis was apparent. The peripheral portion of the graft contained all adenohypophysial cell types, with a predominance of lactotrophs. Vascular endothelial growth factor and hypoxia-inducible factor were expressed in the graft mainly in the perinecrotic areas. Several capillaries inside the grafts were lined by continuous unfenestrated epithelium, while others were lined by fenestrated endothelium, suggesting that neovascularization is the result of two processes: ingrowths of capillaries from the renal capsule to the graft, and neoformation of capillaries from pre-existing adenohypophysial vessels. In conclusion, hypoxia seems to be an important factor in the vascularization of pituitary autografts. Mediated via hypoxia-inducible factor, hypoxia stimulates vascular endothelial growth factor secretion, which plays a crucial role in angiogenesis.
Collapse
Affiliation(s)
- Matilde Lombardero
- Department of Anatomy and A.P., Faculty of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Recent studies using biotechnological methods have achieved significant advances in our knowledge of molecular mechanisms underlying pituitary gland development and the differentiation of pituitary cytotypes. A large number of neuropeptides have been reported in the adult pituitary gland as well as in the central and peripheral nervous system. The early presence of neuropeptides during pituitary development is reviewed here. Neuromedin U (NmU), galanin and the polypeptide 7B2 have been localised to different endocrine cells of the gland. Their expression seems to be manifold even though it is temporally and spatially regulated. There is now firm immunocytochemical evidence that neuropeptides are present during morphogenesis of the pituitary and can be present simultaneously with all pituitary hormones.
Collapse
Affiliation(s)
- Vincenzo Cimini
- Department of Biomorphological and Functional Sciences, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
6
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1512] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
In addition to hypothalamic and feedback inputs, the secretory cells of the anterior pituitary are influenced by the activity of factors secreted within the gland. The list of putative intrapituitary factors has been expanding steadily over the past decade, although until recently much of the work was limited to descriptions of potential interactions. This took the form of evidence of production within the pituitary of factors already known to influence activity of secretory cells, or further descriptions of actions on pituitary cells by such factors when added exogenously. A new phase of discovery has been entered, with extensive efforts being made to delineate the control of the synthesis and secretion of the pituitary factors within the gland, regulation of the receptors and response mechanisms for the factors in pituitary cells, and measurements of the endogenous actions of the factors through the use of specific immunoneutralization, receptor blockade, tissue from transgenic animals, and other means. Taken together, these findings are producing blueprints of the intrapituitary interactions that influence each of the individual types of secretory cells, leading toward an understanding of the physiological significance of the interactions. The purpose of this article is to review the recent literature on many of the factors acting as intrapituitary signals and to present such finding in the context of the physiology of the secretory cells.
Collapse
Affiliation(s)
- J Schwartz
- Department of Physiology, University of Adelaide, SA, Australia.
| |
Collapse
|
8
|
Abstract
The development of a strain of galanin knockout mice has provided confirmation of a neuroendocrine role for galanin, as well as supporting results of previous physiological investigations indicating a role for galanin in analgesia and neuropathic pain, and potentially in neuronal growth and regeneration processes. Whether elevation of galanin expression in neurodegenerative disorders such as Alzheimer's disease represents a survival response or exacerbates functional deficit in afflicted individuals remains to be determined. More detailed analysis of the phenotype of the galanin knockout mouse should provide insights into the physiological role of galanin in memory and learning processes, as well as in hypothalamic function and other aspects of neuroendocrine regulation. Biochemical and molecular cloning efforts have demonstrated that the multiplicity of actions of galanin is matched by complexity in the distribution and regulation of galanin and its receptors. A focus on characterisation of galanin receptors has resulted in the molecular cloning of three receptor subtypes to date. The distribution and functional properties of these receptors have not yet been fully elucidated, currently precluding assignment of discrete functions of galanin to any one receptor subtype. It is not currently possible to reconcile available pharmacological data using analogs of galanin and chimeric peptides in functional assay systems with the pharmacological properties of cloned receptor subtypes. This highlights the value of further knockout approaches targeting galanin receptor subtypes, but also raises the possibility of the existence of additional receptor subtypes that have yet to be cloned, or that receptor activity may be modulated by regulatory molecules that remain to be identified. The development of receptor subtype-specific compounds remains a high priority to advance work in this area. The ability to selectively modulate the many different actions of galanin, through a clearer understanding of receptor structure-function relationships and neuronal distribution, promises to provide important insights into the molecular and cellular basis of galanin action in normal physiology, and may provide lead compounds with therapeutic application in the prevention and treatment of a range of disorders.
Collapse
Affiliation(s)
- T P Iismaa
- Neurobiology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
9
|
Abstract
There are several lines of evidence that point to peptides participating in the regulation of LH and/or FSH levels by action at the pituitary. This evidence includes altered secretion of gonadotropins from the anterior pituitary cells or tissue in vitro when exposed to the peptide. Additionally, modification of GnRH-stimulated LH/FSH secretion has been observed. Furthermore, there is potential for a separately modulated interaction with the primed response. Another potential of action is by interaction among non-GnRH peptides on gonadotropin-regulating processes, although there are no good data available on this aspect. Other observations, consistent with a pituitary role for the peptides in modulation of LH, include detection of the peptides in portal blood, detection of high-affinity receptors or receptor mRNA in the pituitary, and detection of intrapituitary peptide or peptide mRNA in the pituitary. The modulation by steroids of both concentrations and type of activities provides a further level of physiological refinement. There is, however, some confusion regarding the involvement of these peptides in gonadotropin control. The reasons can be seen by considering aspects of investigations. There are experimental variations such as 1) species studied, e.g., NPY has been reported to have an effect on LH secretion from rat cells (168) but not on sheep anterior pituitary tissue (64), and substance P inhibits GnRH-stimulated release from rat cells (182) but potentiates the response in prepubertal porcine cells (92); 2) the steroidal conditions under which the study is performed, e.g., NPY has opposite effects in certain endocrine environments, augmenting GnRH-stimulated LH release in proestrus-like conditions (168), and inhibiting in metestrus-like environment (66); 3) the type of cell preparation, e.g., responsiveness to substance P might depend on whether cells in overnight culture were in separated or clustered state (91); 4) the time course considered, e.g., oxytocin that might induce marked LH release from pituitary cells after a longer length of incubation than GnRH requires (68); 5) length of exposure to peptide, e.g., endothelin that augmented or inhibited GnRH-stimulated LH release (50); 6) In addition, it is possible that the traditional endpoint selected in such studies, namely, observation of gonadotropin secretion, is not necessarily the most important for these peptides (56, 81, 117). Unfortunately, at this stage a definitive answer to the question "What do the peptides actually do?" cannot be provided and we remain tantalized by the glimpses of potential roles. Perhaps in a few years an updated review will be able to include a more complete answer. It is necessary for the full understanding of LH control that not only the properties of the peptides in isolation be characterized but also their interactions.
Collapse
Affiliation(s)
- J J Evans
- University Department of Obstetrics and Gynaecology, Christchurch School of Medicine, New Zealand.
| |
Collapse
|