1
|
Huang T, Ohman LC, Clements AV, Whiddon ZD, Krimm RF. Variable Branching Characteristics of Peripheral Taste Neurons Indicates Differential Convergence. J Neurosci 2021; 41:4850-4866. [PMID: 33875572 PMCID: PMC8260161 DOI: 10.1523/jneurosci.1935-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Taste neurons are functionally and molecularly diverse, but their morphologic diversity remains completely unexplored. Using sparse cell genetic labeling, we provide the first reconstructions of peripheral taste neurons. The branching characteristics across 96 taste neurons show surprising diversity in their complexities. Individual neurons had 1-17 separate arbors entering between one and seven taste buds, 18 of these neurons also innervated non-taste epithelia. Axon branching characteristics are similar in gustatory neurons from male and female mice. Cluster analysis separated the neurons into four groups according to branch complexity. The primary difference between clusters was the amount of the nerve fiber within the taste bud available to contact taste-transducing cells. Consistently, we found that the maximum number of taste-transducing cells capable of providing convergent input onto individual gustatory neurons varied with a range of 1-22 taste-transducing cells. Differences in branching characteristics across neurons indicate that some neurons likely receive input from a larger number of taste-transducing cells than other neurons (differential convergence). By dividing neurons into two groups based on the type of taste-transducing cell most contacted, we found that neurons contacting primarily sour transducing cells were more heavily branched than those contacting primarily sweet/bitter/umami transducing cells. This suggests that neuron morphologies may differ across functional taste quality. However, the considerable remaining variability within each group also suggests differential convergence within each functional taste quality. Each possibility has functional implications for the system.SIGNIFICANCE STATEMENT Taste neurons are considered relay cells, communicating information from taste-transducing cells to the brain, without variation in morphology. By reconstructing peripheral taste neuron morphologies for the first time, we found that some peripheral gustatory neurons are simply branched, and can receive input from only a few taste-transducing cells. Other taste neurons are heavily branched, contacting many more taste-transducing cells than simply branched neurons. Based on the type of taste-transducing cell contacted, branching characteristics are predicted to differ across (and within) quality types (sweet/bitter/umami vs sour). Therefore, functional differences between neurons likely depends on the number of taste-transducing cells providing input and not just the type of cell providing input.
Collapse
Affiliation(s)
- Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Lisa C Ohman
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Anna V Clements
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Zachary D Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
2
|
Ohman LC, Krimm RF. Variation in taste ganglion neuron morphology: insights into taste function and plasticity. CURRENT OPINION IN PHYSIOLOGY 2021; 20:134-139. [DOI: 10.1016/j.cophys.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Rohlfs Domínguez P. New insights into the ontogeny of human vegetable consumption: From developmental brain and cognitive changes to behavior. Dev Cogn Neurosci 2020; 45:100830. [PMID: 32736313 PMCID: PMC7394763 DOI: 10.1016/j.dcn.2020.100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
There is research gap regarding how mental growth and brain maturation may impact on vegetable consumption. We have identified particular brain maturation and mental growth patterns that may affect child vegetable consumption. Both of these developmental patterns partially match with the Piagetian theory of development. We have identified a series of potential modulating factors. The 3–4 and 4−5 age ranges might potential sensitive periods for acquisition of brand knowledge of foods and health-related abstract concepts.
Relatively little is known about how mental development during childhood parallels brain maturation, and how these processes may have an impact on changes in eating behavior: in particular in vegetable consumption. This review aims to bridge this research gap by integrating both recent findings from the study on brain maturation with recent results from research on cognitive development. Developmental human neuroscientific research in the field of the sensory systems and on the relationship between children’s cognitive development and vegetable consumption serve as benchmarks. We have identified brain maturation and mental growth patterns that may affect child vegetable consumption and conclude that both of these developmental patterns partially match with the Piagetian theory of development. Additionally, we conclude that a series of potential modulating factors, such as learning-related experiences, may lead to fluctuations in the course of those particular developmental patterns, and thus vegetable consumption patterns. Therefore, we propose a theoretical predictive model of child vegetable consumption in which the nature of the relationship between its correlational and/or causal components should be studied in the future by adopting an integral research perspective of the three targeted study levels: brain, cognition and behavior.
Collapse
Affiliation(s)
- Paloma Rohlfs Domínguez
- Department of Psychology and Anthropology, University of Extremadura, Faculty of Nursing and Occupational Therapy and Faculty of Teaching Training, Avenida de la Universidad, s/n 10004, Cáceres Spain.
| |
Collapse
|
4
|
Yokota T, Katakura N, Morita T, Matsunaga T, Hiraba K. Two neuronal groups for NaCl with differential taste response properties and topographical distributions in the rat parabrachial nucleus. Physiol Rep 2020; 8:e14443. [PMID: 32441441 PMCID: PMC7243197 DOI: 10.14814/phy2.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 11/24/2022] Open
Abstract
It is crucial for animals to discriminate between palatable (safe) and aversive (toxic) tastants. The mechanisms underlying neuronal discrimination of taste stimuli remain unclear. We examined relations between taste response properties (spike counts, response duration, and coefficient of variation [CV]) and location of taste-sensitive neurons in the pontine parabrachial nucleus (PBN). Extracellular single units' activity in the PBN of Wistar rats was recorded using multibarrel glass micropipettes under urethane anesthesia. Forty taste-sensitive neurons were classified as NaCl (N)-best (n = 15), NaCl/HCl (NH)-best (n = 14), HCl (H)-best (n = 8), and sucrose (S)-best (n = 3) neurons. The net response to NaCl (15.2 ± 2.3 spikes/s) among the N-best neurons was significantly larger than that among the NH-best (4.5 ± 0.8 spikes/s) neurons. The response duration (4.5 ± 0.2 s) of the N-best neurons to NaCl was significantly longer than that of the NH-best (2.2 ± 0.3 s) neurons. These differences in the spike counts and the response durations between the two neuronal types in the PBN were similar to that previously reported in the rostral nucleus of the solitary tract (rNST). The CVs in the N-best and the NH-best neurons were significantly smaller in the PBN than those in the rNST. Histologically, most N-best neurons (12/13, 92%) were localized to the medial region, while NH-best neurons (11/13, 85%) were primarily found within the brachium conjunctivum. These results suggest that NaCl-specific taste information is transmitted by two distinct neuronal groups (N-best and NH-best), with different taste properties and locations within rNST to PBN tractography. Future studies on the higher order nuclei for taste could reveal more palatable and aversive taste pathways.
Collapse
Affiliation(s)
- Tatsuko Yokota
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Nubuo Katakura
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Takumi Morita
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Tomoko Matsunaga
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Katsunari Hiraba
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| |
Collapse
|
5
|
|
6
|
Matsuyama K, Seta Y, Kataoka S, Nakatomi M, Toyono T, Kawamoto T. Expression of N-cadherin and cell surface molecules in the taste buds of mouse circumvallate papillae. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Rohlfs Domínguez P. A minireview of effects of maternal diet during pregnancy on postnatal vegetable consumption: Implications for future research (a new hypothesis) and recommendations. Crit Rev Food Sci Nutr 2017; 58:2229-2238. [DOI: 10.1080/10408398.2017.1313810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Paloma Rohlfs Domínguez
- Department of Psychology and Anthropology, University of Extremadura, Spain
- Department of Social Psychology and Methodology of Behavior, University of Basque Country-Euskalherriko Univertsitatea, Spain
| |
Collapse
|
8
|
Impact of self-tongue brushing on taste perception in Thai older adults: A pilot study. Geriatr Nurs 2016; 37:128-36. [DOI: 10.1016/j.gerinurse.2015.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
9
|
|
10
|
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds. eNeuro 2015; 2:eN-NWR-0097-15. [PMID: 26730405 PMCID: PMC4697083 DOI: 10.1523/eneuro.0097-15.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022] Open
Abstract
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.
Collapse
|
11
|
Huang T, Ma L, Krimm RF. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation. Dev Biol 2015; 405:225-36. [PMID: 26164656 DOI: 10.1016/j.ydbio.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/29/2023]
Abstract
The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development.
Collapse
Affiliation(s)
- Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Liqun Ma
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
12
|
Molecular mechanisms of taste recognition: considerations about the role of saliva. Int J Mol Sci 2015; 16:5945-74. [PMID: 25782158 PMCID: PMC4394514 DOI: 10.3390/ijms16035945] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.
Collapse
|
13
|
Rohlfs-Domínguez P. Studying the effects of smell and taste experience in the pediatric population using functional near infrared spectroscopy: a hypothesis. Med Hypotheses 2013; 82:89-93. [PMID: 24315448 DOI: 10.1016/j.mehy.2013.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
There are different postnatal sensitive periods throughout the development course of sensory functions. During sensitive periods, there is a biological display of an extreme neural sensitivity to the storage of experience-driven sensory information that is not present outside these developmental stages. This neural property is reflected in subjects' reported preferences for sensory stimuli, such as odors and tastes. The human brain mapping approach (HBA) has demonstrated that disease-free human postnatal and later development of any sensory function parallels morphological and functional development of the CNS and that this development correlates with signal changes that have been acquired by means of neuroimaging techniques. Whether experience with tastes and/or odors has a stronger effect on the perception of gustatory and/or olfactory stimuli the earlier subjects are exposed to certain odors and tastes is still unknown. It is also unknown, whether as well as how this effect is reflected in brain activation patterns and whether we are currently able to identify sensitive periods of gustatory and olfactory development from the imaging signals. To answer these research questions, repeated exposure to tastes and/or odors should be applied in children of different age ranges in order to induce different age-related degrees of olfactory/gustatory preferences as well as different aged-related patterns of oxyhemoglobin (OH) and deoxyhemoglobin (DOH) changes that should be measured by means of the functional near-infrared spectroscopy (fNIRS) technique.
Collapse
|
14
|
Niki M, Yoshida R, Takai S, Ninomiya Y. Gustatory signaling in the periphery: detection, transmission, and modulation of taste information. Biol Pharm Bull 2011; 33:1772-7. [PMID: 21048297 DOI: 10.1248/bpb.33.1772] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gustatory signaling begins with taste receptor cells that express taste receptors. Recent molecular biological studies have identified taste receptors and transduction components for basic tastes (sweet, salty, sour, bitter, and umami). Activation of these receptor systems leads to depolarization and an increase in [Ca(2+)](i) in taste receptor cells. Then transmitters are released from taste cells and activate gustatory nerve fibers. The connection between taste cells and gustatory nerve fibers would be specific because there may be only limited divergence of taste information at the peripheral transmission. Recent studies have demonstrated that sweet taste information can be modulated by hormones or other endogenous factors that could act on their receptors in a specific group of taste cells. These peripheral modulations of taste information may influence preference behavior and food intake. This paper summarizes data on molecular mechanisms for detection and transduction of taste signals in taste bud cells, information transmission from taste cells to gustatory nerve fibers, and modulation of taste signals at peripheral taste organs, in particular for sweet taste, which may play important roles in regulating energy homeostasis.
Collapse
Affiliation(s)
- Mayu Niki
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3–1–1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
| | | | | | | |
Collapse
|
15
|
Domínguez PR. The study of postnatal and later development of the taste and olfactory systems using the human brain mapping approach: An update. Brain Res Bull 2011; 84:118-24. [DOI: 10.1016/j.brainresbull.2010.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/12/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
|
16
|
Murata Y, Yasuo T, Yoshida R, Obata K, Yanagawa Y, Margolskee RF, Ninomiya Y. Action potential-enhanced ATP release from taste cells through hemichannels. J Neurophysiol 2010; 104:896-901. [PMID: 20519578 DOI: 10.1152/jn.00414.2010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Only some taste cells fire action potentials in response to sapid stimuli. Type II taste cells express many taste transduction molecules but lack well-elaborated synapses, bringing into question the functional significance of action potentials in these cells. We examined the dependence of adenosine triphosphate (ATP) transmitter release from taste cells on action potentials. To identify type II taste cells we used mice expressing a green fluorescence protein (GFP) transgene from the alpha-gustducin promoter. Action potentials were recorded by an electrode basolaterally attached to a single GFP-positive taste cell. We monitored ATP release from gustducin-expressing taste cells by collecting the electrode solution immediately after tastant-stimulated action potentials and using a luciferase assay to quantify ATP. Stimulation of gustducin-expressing taste cells with saccharin, quinine, or glutamate on the apical membrane increased ATP levels in the electrode solution; the amount of ATP depended on the firing rate. Increased spontaneous firing rates also induced ATP release from gustducin-expressing taste cells. ATP release from gustducin-expressing taste cells was depressed by tetrodotoxin and inhibited below the detection limit by carbenoxolone. Our data support the hypothesis that action potentials in taste cells responsive to sweet, bitter, or umami tastants enhance ATP release through pannexin 1, not connexin-based hemichannels.
Collapse
Affiliation(s)
- Yoshihiro Murata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Yoshida R, Ninomiya Y. New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:101-34. [DOI: 10.1016/s1937-6448(10)79004-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Reception and Transmission of Taste Information in Type II and Type III Taste Bud Cells. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Moyer BD, Hevezi P, Gao N, Lu M, Kalabat D, Soto H, Echeverri F, Laita B, Yeh SA, Zoller M, Zlotnik A. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS One 2009; 4:e7682. [PMID: 19997627 PMCID: PMC2780358 DOI: 10.1371/journal.pone.0007682] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/08/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE Identification of genes encoding multi-transmembrane domain proteins expressed in primate taste buds provides new insights into the processes of taste cell development, signal transduction, and information coding. Discrete taste cell populations exhibit highly specific gene expression patterns, supporting a model whereby each mature taste receptor cell is responsible for sensing, transmitting, and coding a specific taste quality.
Collapse
Affiliation(s)
- Bryan D Moyer
- Senomyx, Inc, San Diego, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Modeling and simulation of ion channels and action potentials in taste receptor cells. ACTA ACUST UNITED AC 2009; 52:1036-47. [DOI: 10.1007/s11427-009-0138-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Indexed: 11/27/2022]
|
21
|
Abstract
P2X receptors are membrane cation channels gated by extracellular ATP. Seven P2X receptor subunits (P2X(1-7)) are widely distributed in excitable and nonexcitable cells of vertebrates. They play key roles in inter alia afferent signaling (including pain), regulation of renal blood flow, vascular endothelium, and inflammatory responses. We summarize the evidence for these and other roles, emphasizing experimental work with selective receptor antagonists or with knockout mice. The receptors are trimeric membrane proteins: Studies of the biophysical properties of mutated subunits expressed in heterologous cells have indicated parts of the subunits involved in ATP binding, ion permeation (including calcium permeability), and membrane trafficking. We review our current understanding of the molecular properties of P2X receptors, including how this understanding is informed by the identification of distantly related P2X receptors in simple eukaryotes.
Collapse
Affiliation(s)
- Annmarie Surprenant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
22
|
Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y, Yasumatsu K, Shigemura N, Yanagawa Y, Obata K, Ueno H, Margolskee RF, Ninomiya Y. Discrimination of taste qualities among mouse fungiform taste bud cells. J Physiol 2009; 587:4425-39. [PMID: 19622604 PMCID: PMC2766648 DOI: 10.1113/jphysiol.2009.175075] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/17/2009] [Indexed: 11/08/2022] Open
Abstract
Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Danilova V, Cragin T, Roberts TW, Koposov A, Hellekant G. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey. BMC PHYSIOLOGY 2009; 9:1. [PMID: 19224647 PMCID: PMC2662785 DOI: 10.1186/1472-6793-9-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 02/18/2009] [Indexed: 11/10/2022]
Abstract
Background Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. Results We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. Conclusion In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Physiology and Pharmacology, Medical School, University of Minnesota-Duluth, 1035 University Dr, Duluth, MN 55812, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Yoshida R, Horio N, Murata Y, Yasumatsu K, Shigemura N, Ninomiya Y. NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience 2009; 159:795-803. [PMID: 19167465 DOI: 10.1016/j.neuroscience.2008.12.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 11/25/2022]
Abstract
Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.
Collapse
Affiliation(s)
- R Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Frank ME, Lundy RF, Contreras RJ. Cracking taste codes by tapping into sensory neuron impulse traffic. Prog Neurobiol 2008; 86:245-63. [PMID: 18824076 DOI: 10.1016/j.pneurobio.2008.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/03/2008] [Accepted: 09/02/2008] [Indexed: 12/25/2022]
Abstract
Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from "taste" nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na(+)-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well characterized. Specialists are associated with species' nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor T1R, and N specialists, associated with the epithelial sodium channel ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific than T1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately "crack taste codes."
Collapse
Affiliation(s)
- Marion E Frank
- Center for Chemosensory Sciences, Department of Oral Health & Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030-1715, United States.
| | | | | |
Collapse
|
26
|
Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008; 9:1. [PMID: 18171468 PMCID: PMC2235881 DOI: 10.1186/1471-2202-9-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/02/2008] [Indexed: 11/16/2022] Open
Abstract
Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds. Conclusion The principal finding is that amiloride-sensitive Na+ channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Biomedical Science, Colorado State University, Fort Collins, USA.
| | | | | |
Collapse
|
27
|
Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008. [PMID: 18171468 DOI: 10.1186/1471‐2202‐9‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. RESULTS Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds. CONCLUSION The principal finding is that amiloride-sensitive Na+ channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Biomedical Science, Colorado State University, Fort Collins, USA.
| | | | | |
Collapse
|