1
|
Sapkota D, Wang D, Schreurs O, Vallenari EM, Pandey Dhakal S, Küntziger T, Toközlü BS, Utheim TP, Chaudhry FA. Investigation of Roles of SLC38A1 in Proliferation and Differentiation of Mouse Tongue Epithelium and Expression in Human Oral Tongue Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:405. [PMID: 38254895 PMCID: PMC10814082 DOI: 10.3390/cancers16020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The aerobic glycolytic pathway, boosting lactate formation, and glutamine addiction are two hallmarks of cancer pathophysiology. Consistent with this, several cell membrane glutamine transporters, belonging to different solute carrier (SLC) families, have been shown to be upregulated in a cell-specific manner to furnish the cells with glutamine and glutamine-derived metabolic intermediates. Among them, the system A transporter Slc38a1 has a higher affinity for glutamine compared to other SLC transporters, and it undergoes highly multifaceted regulation at gene and protein levels. The current study aimed to investigate the functional role of Slc38a1 in the proliferation and maturation of the mouse tongue epithelium. Secondly, we aimed to examine the expression of SLC38A1 and its regulation in human tongue oral squamous cell carcinoma (OTSCC). Employing Slc38a1 wild-type and knockout mice, we showed that Slc38a1 was not directly linked to the regulation of the proliferation and differentiation of the mouse tongue epithelium. External transcriptomic datasets and Western blot analyses showed upregulation of SLC38A1 mRNA/protein in human OTSCC and oral cancer cell lines as compared to the corresponding controls. Further, an investigation of external datasets indicated that mechanisms other than the amplification of the SLC38A1 chromosomal locus or hypomethylation of the SLC38A1 promoter region might be important for the upregulation of SLC38A1 in OTSCC.
Collapse
Affiliation(s)
- Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Daxin Wang
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Olaf Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Evan M. Vallenari
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Sushma Pandey Dhakal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Thomas Küntziger
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Burcu Sengüven Toközlü
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara 06510, Turkey
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0372 Oslo, Norway
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
2
|
Harris AN, Skankar M, Melanmed M, Batlle D. An Update on Kidney Ammonium Transport Along the Nephron. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:189-196. [PMID: 36868733 DOI: 10.1053/j.akdh.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 03/05/2023]
Abstract
Acid-base homeostasis is critical to the maintenance of normal health. The kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion. Renal ammonia excretion is the predominant component of renal net acid excretion under basal conditions and in response to acid-base disturbances. Ammonia produced in the kidney is selectively transported into the urine or the renal vein. The amount of ammonia produced by the kidney that is excreted in the urine varies dramatically in response to physiological stimuli. Recent studies have advanced our understanding of ammonia metabolism's molecular mechanisms and regulation. Ammonia transport has been advanced by recognizing that the specific transport of NH3 and NH4+ by specific membrane proteins is critical to ammonia transport. Other studies show that proximal tubule protein, NBCe1, specifically the A variant, significantly regulates renal ammonia metabolism. This review discusses these critical aspects of the emerging features of ammonia metabolism and transport.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, FL; Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL.
| | - Mythri Skankar
- Department of Nephrology, Institute of Nephro-urology, Bengaluru, India
| | - Michal Melanmed
- Albert Einstein College of Medicine/ Montefiore Medical Center, Bronx, NY
| | - Daniel Batlle
- Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
4
|
Abstract
The kidney maintains electrolyte, water, and acid-base balance, eliminates foreign and waste compounds, regulates blood pressure, and secretes hormones. There are at least 16 different highly specialized epithelial cell types in the mammalian kidney. The number of specialized endothelial cells, immune cells, and interstitial cell types might even be larger. The concerted interplay between different cell types is critical for kidney function. Traditionally, cells were defined by their function or microscopical morphological appearance. With the advent of new single-cell modalities such as transcriptomics, epigenetics, metabolomics, and proteomics we are entering into a new era of cell type definition. This new technological revolution provides new opportunities to classify cells in the kidney and understand their functions.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, USA
| |
Collapse
|
5
|
Alam P, Amlal S, Thakar CV, Amlal H. Acetazolamide causes renal [Formula: see text] wasting but inhibits ammoniagenesis and prevents the correction of metabolic acidosis by the kidney. Am J Physiol Renal Physiol 2020; 319:F366-F379. [PMID: 32657159 PMCID: PMC7509283 DOI: 10.1152/ajprenal.00501.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CAII) binds to the electrogenic basolateral Na+-[Formula: see text] cotransporter (NBCe1) and facilitates [Formula: see text] reabsorption across the proximal tubule. However, whether the inhibition of CAII with acetazolamide (ACTZ) alters NBCe1 activity and interferes with the ammoniagenesis pathway remains elusive. To address this issue, we compared the renal adaptation of rats treated with ACTZ to NH4Cl loading for up to 2 wk. The results indicated that ACTZ-treated rats exhibited a sustained metabolic acidosis for up to 2 wk, whereas in NH4Cl-loaded rats, metabolic acidosis was corrected within 2 wk of treatment. [Formula: see text] excretion increased by 10-fold in NH4Cl-loaded rats but only slightly (1.7-fold) in ACTZ-treated rats during the first week despite a similar degree of acidosis. Immunoblot experiments showed that the protein abundance of glutaminase (4-fold), glutamate dehydrogenase (6-fold), and SN1 (8-fold) increased significantly in NH4Cl-loaded rats but remained unchanged in ACTZ-treated rats. Na+/H+ exchanger 3 and NBCe1 proteins were upregulated in response to NH4Cl loading but not ACTZ treatment and were rather sharply downregulated after 2 wk of ACTZ treatment. ACTZ causes renal [Formula: see text] wasting and induces metabolic acidosis but inhibits the upregulation of glutamine transporter and ammoniagenic enzymes and thus suppresses ammonia synthesis and secretion in the proximal tubule, which prevented the correction of acidosis. This effect is likely mediated through the inhibition of the CA-NBCe1 metabolon complex, which results in cell alkalinization. During chronic ACTZ treatment, the downregulation of both NBCe1 and Na+/H+ exchanger 3, along with the inhibition of ammoniagenesis and [Formula: see text] generation, contributes to the maintenance of metabolic acidosis.
Collapse
Affiliation(s)
- Perwez Alam
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sihame Amlal
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Charuhas V Thakar
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Hassane Amlal
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
6
|
Weiner ID, Verlander JW. Emerging Features of Ammonia Metabolism and Transport in Acid-Base Balance. Semin Nephrol 2020; 39:394-405. [PMID: 31300094 DOI: 10.1016/j.semnephrol.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ammonia metabolism has a critical role in acid-base homeostasis and in other cellular functions. Kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion; ammonia metabolism is the quantitatively greatest component of net acid excretion, both under basal conditions and in response to acid-base disturbances. Several recent studies have advanced our understanding substantially of the molecular mechanisms and regulation of ammonia metabolism. First, the previous paradigm that ammonia transport could be explained by passive NH3 diffusion and NH4+ trapping has been advanced by the recognition that specific transport of NH3 and of NH4+ by specific membrane proteins is critical to ammonia transport. Second, significant advances have been made in the understanding of the regulation of ammonia metabolism. Novel studies have shown that hyperkalemia directly inhibits ammonia metabolism, thereby leading to the metabolic acidosis present in type IV renal tubular acidosis. Other studies have shown that the proximal tubule protein NBCe1, specifically the A variant NBCe1-A, has a major role in regulating renal ammonia metabolism. Third, there are important sex differences in ammonia metabolism that involve structural and functional differences in the kidney. This review addresses these important aspects of ammonia metabolism and transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL; Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, FL.
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
7
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
8
|
Harris AN, Lee HW, Fang L, Verlander JW, Weiner ID. Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney. Am J Physiol Renal Physiol 2019; 317:F890-F905. [PMID: 31390234 DOI: 10.1152/ajprenal.00244.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ammonia excretion is a critical component of acid-base homeostasis, and changes in ammonia excretion are the predominant component of increased net acid excretion in response to metabolic acidosis. We recently reported substantial sex-dependent differences in basal ammonia metabolism that correlate with sex-dependent differences in renal structure and expression of key proteins involved in ammonia metabolism. The purpose of the present study was to investigate the effect of sex on the renal ammonia response to an exogenous acid load. We studied 4-mo-old C57BL/6 mice. Ammonia excretion, which was less in male mice under basal conditions, increased in response to acid loading to a greater extent in male mice, such that maximal ammonia excretion did not differ between the sexes. Fundamental structural sex differences in the nonacid-loaded kidney persisted after acid loading, with less cortical proximal tubule volume density in the female kidney than in the male kidney, whereas collecting duct volume density was greater in the female kidney. To further investigate sex-dependent differences in the response to acid loading, we examined the expression of proteins involved in ammonia metabolism. The change in expression of phosphoenolpyruvate carboxykinase and Rh family B glycoprotein with acid loading was greater in male mice than in female mice, whereas Na+-K+-2Cl- cotransporter and inner stripe of the outer medulla intercalated cell Rh family C glycoprotein expression were significantly greater in female mice than in male mice. There was no significant sex difference in glutamine synthetase, Na+/H+ exchanger isoform 3, or electrogenic Na+-bicarbonate cotransporter 1 variant A protein expression in response to acid loading. We conclude that substantial sex-dependent differences in the renal ammonia response to acid loading enable a similar maximum ammonia excretion response.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida.,Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
9
|
Silencing of Transcription Factor Sp1 Promotes SN1 Transporter Regulation by Ammonia in Mouse Cortical Astrocytes. Int J Mol Sci 2019; 20:ijms20020234. [PMID: 30634395 PMCID: PMC6359076 DOI: 10.3390/ijms20020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
The involvement of the astrocytic SN1 (SNAT3) transporter in ammonia-induced l-glutamine retention was recently documented in mouse-cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot, and confocal microscopy. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. The role of Sp1 in SN1 expression and SN1-mediated [3H]glutamine uptake in ammonia-treated astrocytes was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to the Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine uptake, were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, which is a treatment likely to dephosphorylate Sp1. Furthermore, silencing of the PKCδ isoform appears to enhance the ammonia effect on the Sp1 level. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.
Collapse
|
10
|
Lister A, Bourgeois S, Imenez Silva PH, Rubio-Aliaga I, Marbet P, Walsh J, Shelton LM, Keller B, Verrey F, Devuyst O, Giesbertz P, Daniel H, Goldring CE, Copple IM, Wagner CA, Odermatt A. NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis. Sci Rep 2018; 8:5629. [PMID: 29618784 PMCID: PMC5884861 DOI: 10.1038/s41598-018-24000-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Expression of the glutamine transporter SNAT3 increases in kidney during metabolic acidosis, suggesting a role during ammoniagenesis. Microarray analysis of Nrf2 knock-out (KO) mouse kidney identified Snat3 as the most significantly down-regulated transcript compared to wild-type (WT). We hypothesized that in the absence of NRF2 the kidney would be unable to induce SNAT3 under conditions of metabolic acidosis and therefore reduce the availability of glutamine for ammoniagenesis. Metabolic acidosis was induced for 7 days in WT and Nrf2 KO mice. Nrf2 KO mice failed to induce Snat3 mRNA and protein expression during metabolic acidosis. However, there were no differences in blood pH, bicarbonate, pCO2, chloride and calcium or urinary pH, ammonium and phosphate levels. Normal induction of ammoniagenic enzymes was observed whereas several amino acid transporters showed differential regulation. Moreover, Nrf2 KO mice during acidosis showed increased expression of renal markers of oxidative stress and injury and NRF2 activity was increased during metabolic acidosis in WT kidney. We conclude that NRF2 is required to adapt the levels of SNAT3 in response to metabolic acidosis. In the absence of NRF2 and SNAT3, the kidney does not have any major acid handling defect; however, increased oxidative stress and renal injury may occur.
Collapse
Affiliation(s)
- Adam Lister
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Philippe Marbet
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Joanne Walsh
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Luke M Shelton
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Bettina Keller
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Francois Verrey
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pieter Giesbertz
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Christopher E Goldring
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Ian M Copple
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Carsten A Wagner
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| |
Collapse
|
11
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
12
|
Feigerlová E, Battaglia-Hsu SF. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease. FASEB J 2016; 31:457-468. [PMID: 27849555 DOI: 10.1096/fj.201601087rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease (CKD) represents an important public health problem. Its progression to end-stage renal disease is associated with increased morbidity and mortality. The determinants of renal function decline are not fully understood. Recent progress in the understanding of post-transcriptional regulation of mRNA stability has helped the identification of both the trans- and cis-acting elements of mRNA as potential markers and therapeutic targets for difficult-to-diagnose and -treat diseases, including CKDs such as diabetic nephropathy. Human antigen R (HuR), a trans-acting element of mRNA, is an RNA binding factor (RBF) best known for its ability to stabilize AU-rich-element-containing mRNAs. Deregulated HuR subcellular localization or expression occurs in a wide range of renal diseases, such as metabolic acidosis, ischemia, and fibrosis. Besides RBFs, recent evidence revealed that noncoding RNA, such as microRNA and long noncoding RNA, participates in regulating mRNA stability and that aberrant noncoding RNA expression accounts for many pathologic renal conditions. The goal of this review is to provide an overview of our current understanding of the post-transcriptional regulation of mRNA stability in renal pathophysiology and to offer perspectives for this class of diseases. We use examples of diverse renal diseases to illustrate different mRNA stability pathways in specific cellular compartments and discuss the roles and impacts of both the cis- and trans-activating factors on the regulation of mRNA stability in these diseases.-Feigerlová, E., Battaglia-Hsu, S.-F. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease.
Collapse
Affiliation(s)
- Eva Feigerlová
- Service d'Endocrinologie, Centre Hospitalier Universitaire de Poitiers, Pôle DUNE, Poitiers, France; .,Université de Poitiers, Unité de Formation et de Recherche Médecine Pharmacie, Poitiers, France.,Clinical Investigation Centre 1402, Unité 1082, INSERM, Poitiers, France; and
| | - Shyue-Fang Battaglia-Hsu
- Nutrition Génétique et Exposition aux Risques Environnementaux, INSERM Unité 954, Université de Lorraine et Centre Hospitalier Regional Universitaire de Nancy, Vandœuvre les Nancy, France
| |
Collapse
|
13
|
Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. BIOLOGY 2016; 5:biology5040040. [PMID: 27775558 PMCID: PMC5192420 DOI: 10.3390/biology5040040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.
Collapse
|
14
|
Webster R, Sheriff S, Faroqui R, Siddiqui F, Hawse JR, Amlal H. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-α-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney. Am J Physiol Renal Physiol 2016; 311:F249-59. [PMID: 27194721 PMCID: PMC5008677 DOI: 10.1152/ajprenal.00542.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/16/2016] [Indexed: 01/26/2023] Open
Abstract
Estrogen treatment causes renal phosphate (Pi) wasting and hypophosphatemia in rats and humans; however, the signaling mechanisms mediating this effect are still poorly understood. To determine the specific roles of estrogen receptor isoforms (ERα and ERβ) and the Klotho pathway in mediating these effects, we studied the effects of estrogen on renal Pi handling in female mice with null mutations of ERα or ERβ or Klotho and their wild type (WT) using balance studies in metabolic cages. Estrogen treatment of WT and ERβ knockout (KO) mice caused a significant reduction in food intake along with increased renal phosphate wasting. The latter resulted from a significant downregulation of NaPi-IIa and NaPi-IIc protein abundance. The mRNA expression levels of both transporters were unchanged in estrogen-treated mice. These effects on both food intake and renal Pi handling were absent in ERα KO mice. Estrogen treatment of Klotho KO mice or parathyroid hormone (PTH)-depleted thyroparathyroidectomized mice exhibited a significant downregulation of NaPi-IIa with no change in the abundance of NaPi-IIc. Estrogen treatment of a cell line (U20S) stably coexpressing both ERα and ERβ caused a significant downregulation of NaPi-IIa protein when transiently transfected with a plasmid containing full-length or open-reading frame (ORF) 3'-untranslated region (UTR) but not 5'-UTR ORF of mouse NaPi-IIa transcript. In conclusion, estrogen causes phosphaturia and hypophosphatemia in mice. These effects result from downregulation of NaPi-IIa and NaPi-IIc proteins in the proximal tubule through the activation of ERα. The downregulation of NaPi-IIa by estrogen involves 3'-UTR of its mRNA and is independent of Klotho/fibroblast growth factor 23 and PTH signaling pathways.
Collapse
Affiliation(s)
- Rose Webster
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sulaiman Sheriff
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; and
| | - Rashma Faroqui
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Faraaz Siddiqui
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Hassane Amlal
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, Ohio;
| |
Collapse
|
15
|
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin) 2016; 10:440-52. [PMID: 27362266 DOI: 10.1080/19336950.2016.1207024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Isabel Rubio-Aliaga
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| | - Carsten A Wagner
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| |
Collapse
|
16
|
Lee HW, Osis G, Handlogten ME, Lamers WH, Chaudhry FA, Verlander JW, Weiner ID. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am J Physiol Renal Physiol 2016; 310:F1229-42. [PMID: 27009341 PMCID: PMC4935770 DOI: 10.1152/ajprenal.00547.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Farrukh A Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
17
|
Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch 2015; 468:213-27. [PMID: 26490457 DOI: 10.1007/s00424-015-1742-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
Glutamine, the most abundant amino acid in mammals, is critical for cell and organ functions. Its metabolism depends on the ability of cells to take up or release glutamine by transporters located in the plasma membrane. Several solute carrier (SLC) families transport glutamine, but the SLC38 family has been thought to be mostly responsible for glutamine transport. We demonstrate that despite the large number of glutamine transporters, the loss of Snat3/Slc38a3 glutamine transporter has a major impact on the function of organs expressing it. Snat3 mutant mice were generated by N-ethyl-N-nitrosurea (ENU) mutagenesis and showed stunted growth, altered amino acid levels, hypoglycemia, and died around 20 days after birth. Hepatic concentrations of glutamine, glutamate, leucine, phenylalanine, and tryptophan were highly reduced paralleled by downregulation of the mTOR pathway possibly linking reduced amino acid availability to impaired growth and glucose homeostasis. Snat3-deficient mice had altered urea levels paralleled by dysregulation of the urea cycle, gluconeogenesis, and glutamine synthesis. Mice were ataxic with higher glutamine but reduced glutamate and gamma-aminobutyric acid (GABA) levels in brain consistent with a major role of Snat3 in the glutamine-glutamate cycle. Renal ammonium excretion was lower, and the expression of enzymes and amino acid transporters involved in ammoniagenesis were altered. Thus, SNAT3 is a glutamine transporter required for amino acid homeostasis and determines critical functions in various organs. Despite the large number of glutamine transporters, loss of Snat3 cannot be compensated, suggesting that this transporter is a major route of glutamine transport in the liver, brain, and kidney.
Collapse
|
18
|
Weiner ID, Mitch WE, Sands JM. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin J Am Soc Nephrol 2015; 10:1444-58. [PMID: 25078422 PMCID: PMC4527031 DOI: 10.2215/cjn.10311013] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| | - William E Mitch
- Nephrology Division, Baylor College of Medicine, Houston, Texas; and
| | - Jeff M Sands
- Nephrology Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
Bürki R, Mohebbi N, Bettoni C, Wang X, Serra AL, Wagner CA. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease. Nephrol Dial Transplant 2014; 30:770-81. [PMID: 25523450 DOI: 10.1093/ndt/gfu384] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/19/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. METHODS We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. RESULTS We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H(+)-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. CONCLUSION In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patients.
Collapse
Affiliation(s)
- Remy Bürki
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| | - Xueqi Wang
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Andreas L Serra
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Kawada N, Isaka Y, Rakugi H, Moriyama T. SCAD syndrome: A vicious cycle of kidney stones, CKD, and AciDosis. World J Clin Urol 2014; 3:113-118. [DOI: 10.5410/wjcu.v3.i2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cumulative evidence has shown that kidney stone formers are at high risk for developing end-stage renal disease (ESRD) and cardiovascular disease. The aim of this mini-review is to summarize the present knowledge about the close relationships among kidney stone formation, chronic kidney disease (CKD), and plasma and urine acidosis (SCAD). Part of the cause of the positive relationships between higher risk of developing ESRD and cardiovascular diseases in stone formers may be explained by inflammation and cell death due to the components of kidney stones. In CKD patients, acidic urine and loss of anti-crystallization factors may cause stone formation. Acidosis can promote tissue inflammation and may affect vascular tone. Correction of plasma and urine acidosis may improve renal and cardiovascular outcome of stone formers and CKD patients. More intensive and long-term interventions, which include correction of plasma and urine pH in patients with reduced renal function and correction of urine pH in patients with normal renal function, may be considered in treating patients with SCAD syndrome.
Collapse
|
21
|
Balkrishna S, Bröer A, Welford SM, Hatzoglou M, Bröer S. Expression of glutamine transporter Slc38a3 (SNAT3) during acidosis is mediated by a different mechanism than tissue-specific expression. Cell Physiol Biochem 2014; 33:1591-606. [PMID: 24854847 PMCID: PMC4424794 DOI: 10.1159/000358722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/04/2023] Open
Abstract
Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene.
Collapse
Affiliation(s)
- Sarojini Balkrishna
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
22
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|
23
|
Shimomura A, Matsui I, Hamano T, Ishimoto T, Katou Y, Takehana K, Inoue K, Kusunoki Y, Mori D, Nakano C, Obi Y, Fujii N, Takabatake Y, Nakano T, Tsubakihara Y, Isaka Y, Rakugi H. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats. J Am Soc Nephrol 2014; 25:1954-65. [PMID: 24652795 DOI: 10.1681/asn.2013090967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC.
Collapse
Affiliation(s)
| | - Isao Matsui
- Departments of Geriatric Medicine and Nephrology and
| | - Takayuki Hamano
- Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yumiko Katou
- Applied Analytical Group, Fundamental Technology Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Kenji Takehana
- Pharmacology Research Laboratory, Research Institute, Ajinomoto Pharmaceutical Co., Ltd., Kawasaki-ku, Kawasaki, Kanagawa, Japan; and
| | | | | | - Daisuke Mori
- Departments of Geriatric Medicine and Nephrology and
| | | | | | - Naohiko Fujii
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yoshiharu Tsubakihara
- Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Hiromi Rakugi
- Departments of Geriatric Medicine and Nephrology and
| |
Collapse
|
24
|
|
25
|
Jenstad M, Chaudhry FA. The Amino Acid Transporters of the Glutamate/GABA-Glutamine Cycle and Their Impact on Insulin and Glucagon Secretion. Front Endocrinol (Lausanne) 2013; 4:199. [PMID: 24427154 PMCID: PMC3876026 DOI: 10.3389/fendo.2013.00199] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is pivotal in optimizing and synchronizing cellular responses to keep homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS), glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, CNS proteins involved in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA, and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32, and Slc38) and physiology of hormone secretion in islets of Langerhans.
Collapse
Affiliation(s)
- Monica Jenstad
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- *Correspondence: Monica Jenstad, Institute for Medical Informatics, Oslo University Hospital, Radiumhospitalet, PO Box 4953 Nydalen, Oslo NO-0424, Norway e-mail:
| | - Farrukh Abbas Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch 2013; 466:155-72. [PMID: 24193407 DOI: 10.1007/s00424-013-1393-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
Transporters of the SLC38 family are found in all cell types of the body. They mediate Na(+)-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.
Collapse
|
27
|
Nissen-Meyer LSH, Chaudhry FA. Protein Kinase C Phosphorylates the System N Glutamine Transporter SN1 (Slc38a3) and Regulates Its Membrane Trafficking and Degradation. Front Endocrinol (Lausanne) 2013; 4:138. [PMID: 24106489 PMCID: PMC3788335 DOI: 10.3389/fendo.2013.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023] Open
Abstract
The system N transporter SN1 (also known as SNAT3) is enriched on perisynaptic astroglial cell membranes. SN1 mediates electroneutral and bidirectional glutamine transport, and regulates the intracellular as well as the extracellular concentrations of glutamine. We hypothesize that SN1 participates in the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle and regulates the amount of glutamine supplied to the neurons for replenishment of the neurotransmitter pools of glutamate and GABA. We also hypothesize that its activity on the plasma membrane is regulated by protein kinase C (PKC)-mediated phosphorylation and that SN1 activity has an impact on synaptic plasticity. This review discusses reports on the regulation of SN1 by PKC and presents a consolidated model for regulation and degradation of SN1 and the subsequent functional implications. As SN1 function is likely also regulated by PKC-mediated phosphorylation in peripheral organs, the same mechanisms may, thus, have impact on e.g., pH regulation in the kidney, urea formation in the liver, and insulin secretion in the pancreas.
Collapse
Affiliation(s)
- Lise Sofie H. Nissen-Meyer
- The Biotechnology Centre, University of Oslo, Oslo, Norway
- The Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Lise Sofie H. Nissen-Meyer and Farrukh Abbas Chaudhry, The Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway e-mail: ;
| | - Farrukh Abbas Chaudhry
- The Biotechnology Centre, University of Oslo, Oslo, Norway
- The Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Lise Sofie H. Nissen-Meyer and Farrukh Abbas Chaudhry, The Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway e-mail: ;
| |
Collapse
|
28
|
Abstract
The human kidneys produce approximately 160-170 L of ultrafiltrate per day. The proximal tubule contributes to fluid, electrolyte, and nutrient homeostasis by reabsorbing approximately 60%-70% of the water and NaCl, a greater proportion of the NaHCO3, and nearly all of the nutrients in the ultrafiltrate. The proximal tubule is also the site of active solute secretion, hormone production, and many of the metabolic functions of the kidney. This review discusses the transport of NaCl, NaHCO3, glucose, amino acids, and two clinically important anions, citrate and phosphate. NaCl and the accompanying water are reabsorbed in an isotonic fashion. The energy that drives this process is generated largely by the basolateral Na(+)/K(+)-ATPase, which creates an inward negative membrane potential and Na(+)-gradient. Various Na(+)-dependent countertransporters and cotransporters use the energy of this gradient to promote the uptake of HCO3 (-) and various solutes, respectively. A Na(+)-dependent cotransporter mediates the movement of HCO3 (-) across the basolateral membrane, whereas various Na(+)-independent passive transporters accomplish the export of various other solutes. To illustrate its homeostatic feat, the proximal tubule alters its metabolism and transport properties in response to metabolic acidosis. The uptake and catabolism of glutamine and citrate are increased during acidosis, whereas the recovery of phosphate from the ultrafiltrate is decreased. The increased catabolism of glutamine results in increased ammoniagenesis and gluconeogenesis. Excretion of the resulting ammonium ions facilitates the excretion of acid, whereas the combined pathways accomplish the net production of HCO3 (-) ions that are added to the plasma to partially restore acid-base balance.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | - Orson W Moe
- Departments of Internal Medicine and Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
29
|
Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177982 DOI: 10.1016/b978-0-12-394316-3.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solute carriers (SLC) that transport amino acids are key players in health and diseases in humans. Their prokaryotic relatives are often involved in essential physiological processes in microorganisms, e.g. in homeostasis and acidic/osmotic stress response. High-resolution X-ray structures of the sequence-unrelated amino acid transporters unraveled a striking structural similarity between carriers, which were formerly assigned to different families. The highly conserved fold is characterized by two inverted structural repeats of five transmembrane helices each and indicates common mechanistic transport concepts if not an evolutionary link among a large number of amino acid transporters. Therefore, these transporters are classified now into the structural amino acid-polyamine-organocation superfamily (APCS). The APCS includes among others the mammalian SLC6 transporters and the heterodimeric SLC7/SLC3 transporters. However, it has to be noted that the APCS is not limited entirely to amino acid transporters but contains also transporters for, e.g. amino acid derivatives and sugars. For instance, the betaine-choline-carnitine transporter family of bacterial activity-regulated Na(+)- and H(+)-coupled symporters for glycine betaine and choline is also part of this second largest structural superfamily. The APCS fold provides different possibilities to transport the same amino acid. Arginine can be transported by an H(+)-coupled symport or by antiport mechanism in exchange against agmatine for example. The convergence of the mechanistic concept of transport under comparable physiological conditions allows speculating if structurally unexplored amino acid transporters, e.g. the members of the SLC36 and SLC38 family, belong to the APCS, too. In the kidney, which is an organ that depends critically on the regulated amino acid transport, these different SLC transporters have to work together to account for proper function. Here, we will summarize the basic concepts of Na(+)- and H(+)-coupled amino acid symport and amino acid-product antiport in the light of the respective physiological requirements.
Collapse
Affiliation(s)
- Eva S Schweikhard
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
30
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
31
|
Häberle J, Shahbeck N, Ibrahim K, Schmitt B, Scheer I, O'Gorman R, Chaudhry FA, Ben-Omran T. Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet J Rare Dis 2012; 7:48. [PMID: 22830360 PMCID: PMC3495849 DOI: 10.1186/1750-1172-7-48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Glutamine synthetase (GS) is ubiquitously expressed in mammalian organisms and is a key enzyme in nitrogen metabolism. It is the only known enzyme capable of synthesising glutamine, an amino acid with many critical roles in the human organism. A defect in GLUL, encoding for GS, leads to congenital systemic glutamine deficiency and has been described in three patients with epileptic encephalopathy. There is no established treatment for this condition.Here, we describe a therapeutic trial consisting of enteral and parenteral glutamine supplementation in a four year old patient with GS deficiency. The patient received increasing doses of glutamine up to 1020 mg/kg/day. The effect of this glutamine supplementation was monitored clinically, biochemically, and by studies of the electroencephalogram (EEG) as well as by brain magnetic resonance imaging and spectroscopy.Treatment was well tolerated and clinical monitoring showed improved alertness. Concentrations of plasma glutamine normalized while levels in cerebrospinal fluid increased but remained below the lower reference range. The EEG showed clear improvement and spectroscopy revealed increasing concentrations of glutamine and glutamate in brain tissue. Concomitantly, there was no worsening of pre-existing chronic hyperammonemia.In conclusion, supplementation of glutamine is a safe therapeutic option for inherited GS deficiency since it corrects the peripheral biochemical phenotype and partially also improves the central biochemical phenotype. There was some clinical improvement but the patient had a long standing severe encephalopathy. Earlier supplementation with glutamine might have prevented some of the neuronal damage.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Han KH. Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism. Electrolyte Blood Press 2011; 9:45-9. [PMID: 22438855 PMCID: PMC3302905 DOI: 10.5049/ebp.2011.9.2.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/18/2011] [Indexed: 01/29/2023] Open
Abstract
Renal ammonia metabolism is the predominant component of net acid excretion and new bicarbonate generation. Renal ammonia metabolism is regulated by acid-base balance. Both acute and chronic acid loads enhance ammonia production in the proximal tubule and secretion into the urine. In contrast, alkalosis reduces ammoniagenesis. Hypokalemia is a common electrolyte disorder that significantly increases renal ammonia production and excretion, despite causing metabolic alkalosis. Although the net effects of hypokalemia are similar to metabolic acidosis, molecular mechanisms of renal ammonia production and transport have not been well understood. This mini review summarizes recent findings regarding renal ammonia metabolism in response to chronic hypokalemia.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Abu Hossain S, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H. Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 2011; 301:F969-78. [PMID: 21795646 DOI: 10.1152/ajprenal.00010.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is associated with increased ammoniagenesis and stimulation of net acid excretion by the kidney in both humans and experimental animals. The molecular mechanisms underlying these effects remain unknown. Toward this end, rats were placed in metabolic cages and fed a control or K(+)-deficient diet (KD) for up to 6 days. Rats subjected to KD showed normal acid-base status and serum electrolytes composition. Interestingly, urinary NH(4)(+) excretion increased significantly and correlated with a parallel decrease in urine K(+) excretion in KD vs. control animals. Molecular studies showed a specific upregulation of the glutamine transporter SN1, which correlated with the upregulation of glutaminase (GA), glutamate dehydrogenase (GDH), and phosphoenolpyruvate carboxykinase. These effects occurred as early as day 2 of KD. Rats subjected to a combined KD and 280 mM NH(4)Cl loading (to induce metabolic acidosis) for 2 days showed an additive increase in NH(4)(+) excretion along with an additive increment in the expression levels of ammoniagenic enzymes GA and GDH compared with KD or NH(4)Cl loading alone. The incubation of cultured proximal tubule cells NRK 52E or LLC-PK(1) in low-K(+) medium did not affect NH(4)(+) production and did not alter the expression of SN1, GA, or GDH in NRK cells. These results demonstrate that K(+) deprivation stimulates ammoniagenesis through a coordinated upregulation of glutamine transporter SN1 and ammoniagenesis enzymes. This effect is developed before the onset of hypokalemia. The signaling pathway mediating these events is likely independent of KD-induced intracellular acidosis. Finally, the correlation between increased NH(4)(+) production and decreased K(+) excretion indicate that NH(4)(+) synthesis and transport likely play an important role in renal K(+) conservation during hypokalemia.
Collapse
Affiliation(s)
- Shaikh Abu Hossain
- Center on Genetics of Transport and Epithelial Biology and Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | |
Collapse
|
34
|
Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking. J Neurosci 2011; 31:6565-75. [PMID: 21525297 DOI: 10.1523/jneurosci.3694-10.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular mechanisms involved in the replenishment of the fast neurotransmitters glutamate and GABA are poorly understood. Glutamine sustains their generation. However, glutamine formation from the recycled transmitters is confined to glial processes and requires facilitators for its translocation across the glial and neuronal membranes. Indeed, glial processes are enriched with the system N transporter SN1 (Slc38a3), which, by bidirectional transport, maintains steady extracellular glutamine levels and thereby furnishes neurons with the primary precursor for fast neurotransmitters. We now demonstrate that SN1 is phosphorylated by protein kinase Cα (PKCα) and PKCγ. Electrophysiological characterization shows that phosphorylation reduces V(max) dramatically, whereas no significant effects are seen on the K(m). Phosphorylation occurs specifically at a single serine residue (S52) in the N-terminal rat (Rattus norvegicus) SN1 and results in sequestration of the protein into intracellular reservoirs. Prolonged activation of PKC results in partial degradation of SN1. These results provide the first demonstration of phosphorylation of SN1 and regulation of its activity at the plasma membrane. Interestingly, membrane trafficking of SN1 resembles that of the glutamate transporter GLT and the glutamate-aspartate transporter GLAST: it involves the same PKC isoforms and occurs in the same glial processes. This suggests that the glutamate/GABA-glutamine cycle may be modified at two key points by similar signaling events and unmasks a prominent role for PKC-dependent phosphorylation. Our data suggest that extracellular glutamine levels may be fine-tuned by dynamic regulation of glial SN1 activity, which may impact on transmitter generation, contribute to defining quantal size, and have profound effects on synaptic plasticity.
Collapse
|
35
|
Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA. SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 2010; 4:1. [PMID: 20161990 PMCID: PMC2820376 DOI: 10.3389/neuro.05.001.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/30/2009] [Indexed: 11/13/2022] Open
Abstract
Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAergic neurons. By generating specific antibodies against SAT1 we show that this glutamine carrier is particularly enriched in GABAergic neurons. Cellular SAT1 distribution resembles that of GAD67, an essential GABA synthesis enzyme, suggesting that SAT1 can be involved in translocating glutamine into GABAergic neurons to facilitate inhibitory neurotransmitter generation.
Collapse
Affiliation(s)
- Tom Tallak Solbu
- The Biotechnology Centre of Oslo, University of Oslo Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
Xue Y, Liao SF, Son KW, Greenwood SL, McBride BW, Boling JA, Matthews JC. Metabolic acidosis in sheep alters expression of renal and skeletal muscle amino acid enzymes and transporters1. J Anim Sci 2010; 88:707-17. [DOI: 10.2527/jas.2009-2101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA. Induction of Metabolic Acidosis with Ammonium Chloride (NH 4Cl) in Mice and Rats – Species Differences and Technical Considerations. Cell Physiol Biochem 2010; 26:1059-72. [DOI: 10.1159/000323984] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
|
38
|
Yoshioka C, Yasuda S, Kimura F, Kobayashi M, Itagaki S, Hirano T, Iseki K. Expression and role of SNAT3 in the placenta. Placenta 2009; 30:1071-7. [PMID: 19892400 DOI: 10.1016/j.placenta.2009.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 11/26/2022]
Abstract
Glutamine is the most versatile amino acid and its plasma concentration is the highest of all amino acid. Many transporters are therefore involved in glutamine uptake or efflux. Glutamine is actively released from the placenta into fetal circulation. In this study, we examined the alteration of transporters that transport glutamine into fetal circulation as gestation progresses. High expression levels of system A and y(+)L were found in the rat placenta in the late period of pregnancy and the expression levels of these transporters increased as gestation progressed (p<0.05). On the other hand, the expression of SNAT3, the system N transporter, was detected in the early period of pregnancy and its expression level decreased as gestation progressed (p<0.05). SNAT3 was also found to be expressed in isolated human primary cytotrophoblast cells and its expression level was decreased by their differentiation into syncytiotrophoblast cells (p<0.05). Since this regulation is closely related to glutamine synthetase expression, SNAT3 may play a key role in providing glutamine corresponding to glutamine synthetase function in the early period of gestation. This is the first report on the expression of SNAT3 in the placenta in the early stage of pregnancy.
Collapse
Affiliation(s)
- C Yoshioka
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Busque SM, Wagner CA. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 2009; 297:F440-50. [PMID: 19458124 DOI: 10.1152/ajprenal.90318.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidneys produce ammonium to buffer and excrete acids through metabolism of glutamine. Expression of the glutamine transporter Slc38a3 (SNAT3) increases in kidney during metabolic acidosis (MA), suggesting a role during ammoniagenesis. Potassium depletion and high dietary protein intake are known to elevate renal ammonium excretion. In this study, we examined SNAT3, phosphate-dependent glutaminase (PDG), and phosphoenolpyruvate carboxykinase (PEPCK) regulation during a control (0.36%) or low-K(+) (0.02%) diet for 7 or 14 days or a control (20%) or high-protein (50%) diet for 7 days. MA was induced in control and low-K(+) groups by addition of NH(4)Cl. Urinary ammonium excretion increased during MA, after 14-day K(+) restriction alone, and during high protein intake. SNAT3, PDG, and PEPCK mRNA abundance were elevated during MA and after 14-day K(+) restriction but not during high protein intake. SNAT3 protein abundance was enhanced during MA (both control and low K(+)), after 14-day low-K(+) treatment alone, and during high protein intake. Seven-day dietary K(+) depletion alone had no effect. Immunohistochemistry showed SNAT3 staining in earlier parts of the proximal tubule during 14-day K(+) restriction with and without NH(4)Cl treatment and during high protein intake. In summary, SNAT3, PDG, and PEPCK mRNA expression were congruent with urinary ammonium excretion during MA. Chronic dietary K(+) restriction, high protein intake, and MA enhance ammoniagenesis, an effect that may involve enhanced SNAT3 mRNA and protein expression. Our data suggest that SNAT3 plays an important role as the glutamine uptake mechanism in ammoniagenesis under these conditions.
Collapse
Affiliation(s)
- Stephanie M Busque
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
40
|
Gammelsaeter R, Jenstad M, Bredahl MKL, Gundersen V, Chaudhry FA. Complementary expression of SN1 and SAT2 in the islets of Langerhans suggests concerted action of glutamine transport in the regulation of insulin secretion. Biochem Biophys Res Commun 2009; 381:378-82. [PMID: 19233140 DOI: 10.1016/j.bbrc.2009.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 11/29/2022]
Abstract
Insulin and glucagon secretion from the islets of Langerhans is highly regulated. Although an increased plasma glucose level is the major stimulus for insulin exocytosis, roles for glutamine and glutamate have been suggested. Interestingly, the islet cells display elements associated with synaptic transmission. In the central nervous system (CNS), glutamine transport by SN1 and SAT2 sustain the generation of neurotransmitter glutamate. We hypothesized that the same transporters are essential for glutamine transport into the islet cells and for subsequent formation of glutamate acting as an intracellular signaling molecule. We demonstrate that islet cells express several transporters which can mediate glutamine transport. In particular, we show pronounced expression of SN1 and SAT2 in B-cells and A-cells, respectively. The cell-specific expression of these transporters together with their functional characteristics suggest an important role for glutamine in the regulation of insulin secretion.
Collapse
Affiliation(s)
- R Gammelsaeter
- The Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
41
|
Abstract
Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na(+)-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B(0)AT1 (SLC6A19) and suggested for the L: -proline transporter SIT1 (IMINO(B), SLC6A20) and for B(0)AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin-angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B(0)AT1 and SIT1. Some mutations of B(0)AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.
Collapse
|
42
|
Jenstad M, Quazi AZ, Zilberter M, Haglerød C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, S Haug FM, Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA. System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. ACTA ACUST UNITED AC 2008; 19:1092-106. [PMID: 18832333 DOI: 10.1093/cercor/bhn151] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Glutamate mediates several modes of neurotransmission in the central nervous system including recently discovered retrograde signaling from neuronal dendrites. We have previously identified the system N transporter SN1 as being responsible for glutamine efflux from astroglia and proposed a system A transporter (SAT) in subsequent transport of glutamine into neurons for neurotransmitter regeneration. Here, we demonstrate that SAT2 expression is primarily confined to glutamatergic neurons in many brain regions with SAT2 being predominantly targeted to the somatodendritic compartments in these neurons. SAT2 containing dendrites accumulate high levels of glutamine. Upon electrical stimulation in vivo and depolarization in vitro, glutamine is readily converted to glutamate in activated dendritic subsegments, suggesting that glutamine sustains release of the excitatory neurotransmitter via exocytosis from dendrites. The system A inhibitor MeAIB (alpha-methylamino-iso-butyric acid) reduces neuronal uptake of glutamine with concomitant reduction in intracellular glutamate concentrations, indicating that SAT2-mediated glutamine uptake can be a prerequisite for the formation of glutamate. Furthermore, MeAIB inhibited retrograde signaling from pyramidal cells in layer 2/3 of the neocortex by suppressing inhibitory inputs from fast-spiking interneurons. In summary, we demonstrate that SAT2 maintains a key metabolic glutamine/glutamate balance underpinning retrograde signaling by dendritic release of the neurotransmitter glutamate.
Collapse
Affiliation(s)
- Monica Jenstad
- The Biotechnology Centre of Oslo, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Umapathy NS, Dun Y, Martin PM, Duplantier JN, Roon P, Prasad P, Smith SB, Ganapathy V. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells. Invest Ophthalmol Vis Sci 2008; 49:5151-60. [PMID: 18689705 DOI: 10.1167/iovs.08-2245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. METHODS The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. RESULTS Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. CONCLUSIONS These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.
Collapse
Affiliation(s)
- Nagavedi S Umapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008; 88:249-86. [PMID: 18195088 DOI: 10.1152/physrev.00018.2006] [Citation(s) in RCA: 632] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
45
|
Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 2007; 32:322-34. [PMID: 18056784 DOI: 10.1152/physiolgenomics.00160.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Production and excretion of acids are balanced to maintain systemic acid-base homeostasis. During metabolic acidosis (MA) excess acid accumulates and is removed from the body, a process achieved, at least in part, by increasing renal acid excretion. This acid-secretory process requires the concerted regulation of metabolic and transport pathways, which are only partially understood. Chronic MA causes also morphological remodeling of the kidney. Therefore, we characterized transcriptional changes in mammalian kidney during MA to gain insights into adaptive pathways. Total kidney RNA from control and 2- and 7-days NH(4)Cl treated mice was subjected to microarray gene profiling. We identified 4,075 transcripts significantly (P < 0.05) regulated after 2 and/or 7 days of treatment. Microarray results were confirmed by qRT-PCR. Analysis of candidate genes revealed that a large group of regulated transcripts was represented by different solute carrier transporters, genes involved in cell growth, proliferation, apoptosis, water homeostasis, and ammoniagenesis. Pathway analysis revealed that oxidative phosphorylation was the most affected pathway. Interestingly, the majority of acutely regulated genes after 2 days, returned to normal values after 7 days suggesting that adaptation had occurred. Besides these temporal changes, we detected also differential regulation of selected genes (SNAT3, PEPCK, PDG) between early and late proximal tubule. In conclusion, the mammalian kidney responds to MA by temporally and spatially altering the expression of a large number of genes. Our analysis suggests that many of these genes may participate in various processes leading to adaptation and restoration of normal systemic acid-base and electrolyte homeostasis.
Collapse
Affiliation(s)
- Marta Nowik
- Institute of Physiology and Zurich Center for Human Integrative Physiology (ZIHP), University of Zurich
| | | | | | | | | | | |
Collapse
|
46
|
Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 2007; 52:905-19. [PMID: 18061308 DOI: 10.1016/j.neuint.2007.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 11/27/2022]
Abstract
The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that accompany metabolic stress but have no distinct implications for the pH regulatory mechanisms are not dealt with. In most cases, the vast body of knowledge derived from in vitro studies remains to be verified in in vivo settings.
Collapse
Affiliation(s)
- Marta Obara
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
47
|
Abstract
The renal response to metabolic acidosis is mediated, in part, by increased expression of the genes encoding key enzymes of glutamine catabolism and various ion transporters that contribute to the increased synthesis and excretion of ammonium ions and the net production and release of bicarbonate ions. The resulting adaptations facilitate the excretion of acid and partially restore systemic acid-base balance. Much of this response may be mediated by selective stabilization of the mRNAs that encode the responsive proteins. For example, the glutaminase mRNA contains a direct repeat of 8-nt AU sequences that function as a pH-response element (pHRE). This element is both necessary and sufficient to impart a pH-responsive stabilization to chimeric mRNAs. The pHRE also binds multiple RNA-binding proteins, including zeta-crystallin (zeta-cryst), AU-factor 1 (AUF1), and HuR. The onset of acidosis initiates an endoplasmic reticulum (ER)-stress response that leads to the formation of cytoplasmic stress granules. zeta-cryst is transiently recruited to the stress granules, and concurrently, HuR is translocated from the nucleus to the cytoplasm. On the basis of the cumulative data, a mechanism for the stabilization of selective mRNAs is proposed. This hypothesis suggests multiple experiments that should define better how cells in the kidney sense very slight changes in intracellular pH and mediate this essential adaptive response.
Collapse
Affiliation(s)
- H Ibrahim
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
48
|
Abstract
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.
Collapse
Affiliation(s)
- Robert H Edwards
- Department of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Metabolic acidosis is a severe disturbance of extracellular pH homeostasis that can be caused both by inborn or acquired defects in renal acid excretion or metabolic acid production. Chronic metabolic acidosis causes osteomalacia with nephrocalcinosis and urolithiasis. In the setting of end-stage renal disease, metabolic acidosis is often associated with increased peripheral insulin resistance, and represents an additional independent morbidity risk factor. This review summarizes recent insight, gained primarily from mouse models, into the mechanisms whereby the kidney regulates and adapts acid excretion. RECENT FINDINGS Human genetics and various mouse models have shed new light on mechanisms that contribute to the kidney's ability to excrete acid and adapt appropriately to metabolism. Progress in four specific areas will be highlighted: mechanisms contributing to the synthesis and excretion of ammonia; insights into adaptive processes during acidosis; mechanisms by which the kidney may sense acidosis; and the pathophysiology of acquired and inborn errors of renal acid handling. SUMMARY Genetic mouse models and various messenger RNA and proteome profiling and screening technologies demonstrate the importance of various acid-base transporting proteins and a metabolic and regulatory network that contributes to the kidney's ability to maintain the systemic acid-base balance.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology and Zurich Center for Human Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Moret C, Dave MH, Schulz N, Jiang JX, Verrey F, Wagner CA. Regulation of renal amino acid transporters during metabolic acidosis. Am J Physiol Renal Physiol 2006; 292:F555-66. [PMID: 17003226 DOI: 10.1152/ajprenal.00113.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance.
Collapse
Affiliation(s)
- Caroline Moret
- Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|