1
|
Li Q, Krieger NS, Yang L, Asplin J, Bushinsky DA. Magnesium Decreases Urine Supersaturation but Not Calcium Oxalate Stone Formation in Genetic Hypercalciuric Stone-Forming Rats. Nephron Clin Pract 2024; 148:480-486. [PMID: 38262368 PMCID: PMC11219255 DOI: 10.1159/000534495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND/AIMS Hypercalciuria is the most common identifiable risk factor predisposing to CaOx stone formation. Increased oral magnesium intake may lead to decreased CaOx stone formation by binding intestinal Ox leading to decreased absorption and/or binding urinary Ox to decrease urinary supersaturation. This study assessed the effect of oral magnesium on 24-h urine ion excretion, supersaturation, and kidney stone formation in a genetic hypercalciuric stone-forming (GHS) rat model of human idiopathic hypercalciuria. METHODS When fed the oxalate precursor, hydroxyproline, every GHS rat develops CaOx stones. The GHS rats, fed a normal calcium and phosphorus diet supplemented with hydroxyproline to induce CaOx, were divided into three groups of ten rats per group: control diet with 4.0 g/kg MgO, low MgO diet (0.5 g/kg), and high MgO diet (8 g/kg). At 6 weeks, 24-h urines were collected, and urine chemistry and supersaturation were determined. Stone formation was quantified. RESULTS The GHS rats fed the low and high Mg diets had a significant reduction and increase, respectively, in urinary Mg compared to those fed the control diet. Dietary Mg did not alter urine Ca excretion while the low Mg diet led to a significant fall in urinary Ox. Urine supersaturation with respect to CaOx was significantly increased with low Mg, whereas urine supersaturation was significantly decreased with high Mg. There was no effect of dietary Mg on stone formation within 6 weeks of treatment. CONCLUSION Dietary magnesium decreases urine supersaturation but not CaOx stone formation in GHS rats.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA,
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA,
| | - Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Lee Yang
- Laboratory Corporation of America Holdings, Itasca, Illinois, USA
| | - John Asplin
- Laboratory Corporation of America Holdings, Itasca, Illinois, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
2
|
Krieger NS, Asplin J, Granja I, Chen L, Spataru D, Wu TT, Grynpas M, Bushinsky DA. Chlorthalidone with potassium citrate decreases calcium oxalate stones and increases bone quality in genetic hypercalciuric stone-forming rats. Kidney Int 2021; 99:1118-1126. [PMID: 33417997 PMCID: PMC8076055 DOI: 10.1016/j.kint.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
To study human idiopathic hypercalciuria we developed an animal model, genetic hypercalciuric stone-forming rats, whose pathophysiology parallels that of human idiopathic hypercalciuria. Fed the oxalate precursor, hydroxyproline, every rat in this model develops calcium oxalate stones. Using this rat model, we tested whether chlorthalidone and potassium citrate combined would reduce calcium oxalate stone formation and improve bone quality more than either agent alone. These rats (113 generation) were fed a normal calcium and phosphorus diet with hydroxyproline and divided into four groups: diets plus potassium chloride as control, potassium citrate, chlorthalidone plus potassium chloride, or potassium citrate plus chlorthalidone. Urine was collected at six, 12, and 18 weeks and kidney stone formation and bone parameters were determined. Compared to potassium chloride, potassium citrate reduced urinary calcium, chlorthalidone reduced it further and potassium citrate plus chlorthalidone even further. Potassium citrate plus chlorthalidone decreased urine oxalate compared to all other groups. There were no significant differences in calcium oxalate supersaturation in any group. Neither potassium citrate nor chlorthalidone altered stone formation. However, potassium citrate plus chlorthalidone significantly reduced stone formation. Vertebral trabecular bone increased with chlorthalidone and potassium citrate plus chlorthalidone. Cortical bone area increased with chlorthalidone but not potassium citrate or potassium citrate plus chlorthalidone. Mechanical properties of trabecular bone improved with chlorthalidone, but not with potassium citrate plus chlorthalidone. Thus in genetic hypercalciuric stone-forming rats fed a diet resulting in calcium oxalate stone formation, potassium citrate plus chlorthalidone prevented stone formation better than either agent alone. Chlorthalidone alone improved bone quality, but adding potassium citrate provided no additional benefit.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | - John Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois, USA
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois, USA
| | - Luojing Chen
- Division of Nephrology, Department of Medicine University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Daiana Spataru
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
3
|
Krieger NS, Chen L, Becker J, DeBoyace S, Wang H, Favus MJ, Bushinsky DA. Increased Osteoclast and Decreased Osteoblast Activity Causes Reduced Bone Mineral Density and Quality in Genetic Hypercalciuric Stone-Forming Rats. JBMR Plus 2020; 4:e10350. [PMID: 32258968 PMCID: PMC7117851 DOI: 10.1002/jbm4.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022] Open
Abstract
To study human idiopathic hypercalciuria (IH), we developed an animal model, genetic hypercalciuric stone-forming (GHS) rats, whose pathophysiology parallels that in IH. All GHS rats form kidney stones and have decreased BMD and bone quality compared with the founder Sprague-Dawley (SD) rats. To understand the bone defect, we characterized osteoclast and osteoblast activity in the GHS compared with SD rats. Bone marrow cells were isolated from femurs of GHS and SD rats and cultured to optimize differentiation into osteoclasts or osteoblasts. Osteoclasts were stained for TRAcP (tartrate resistant acid phosphatase), cultured to assess resorptive activity, and analyzed for specific gene expression. Marrow stromal cells or primary neonatal calvarial cells were differentiated to osteoblasts, and osteoblastic gene expression as well as mineralization was analyzed. There was increased osteoclastogenesis and increased resorption pit formation in GHS compared with SD cultures. Osteoclasts had increased expression of cathepsin K, Tracp, and MMP9 in cells from GHS compared with SD rats. Osteoblastic gene expression and mineralization was significantly decreased. Thus, alterations in baseline activity of both osteoclasts and osteoblasts in GHS rats, led to decreased BMD and bone quality, perhaps because of their known increase in vitamin D receptors. Better understanding of the role of GHS bone cells in decreased BMD and quality may provide new strategies to mitigate the low BMD and increased fracture risk found in patients with IH. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Luojing Chen
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Jennifer Becker
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Sean DeBoyace
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Hongwei Wang
- Section of EndocrinologyUniversity of Chicago Pritzker School of MedicineChicagoILUSA
| | - Murray J Favus
- Section of EndocrinologyUniversity of Chicago Pritzker School of MedicineChicagoILUSA
| | - David A Bushinsky
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| |
Collapse
|
4
|
Abstract
Current understanding of the mechanisms underlying renal disease in humans is incomplete. Consequently, our ability to prevent the occurrence of renal disease or treat established kidney disease is limited. Investigating kidney disease directly in humans poses objective difficulties, which has led investigators to seek experimental animal models that simulate renal disease in humans. Animal models have thus become a tool of major importance in the study of renal physiology and have been crucial in shedding light on the complex mechanisms involved in kidney function and in our current understanding of the pathophysiology of renal disease. Among animal models, the rat has been the preferred and most commonly used species for the investigation of renal disease. This chapter reviews what has been achieved over the years, using the rat as a tool for the investigation of renal disease in humans, focusing on the contribution of rat genetics and genomics to the elucidation of the mechanisms underlying the pathophysiology of the major types of renal disease, including primary and secondary renal diseases.
Collapse
|
5
|
Krieger NS, Asplin JR, Granja I, Ramos FM, Flotteron C, Chen L, Wu TT, Grynpas MD, Bushinsky DA. Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats. J Am Soc Nephrol 2019; 30:1163-1173. [PMID: 31101664 DOI: 10.1681/asn.2018101066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats. METHODS To test whether chlorthalidone and potassium citrate combined would reduce calcium phosphate stone formation more than either medication alone, four groups of rats were fed a fixed amount of a normal calcium and phosphorus diet, supplemented with potassium chloride (as control), potassium citrate, chlorthalidone (with potassium chloride to equalize potassium intake), or potassium citrate plus chlorthalidone. We measured urine every 6 weeks and assessed stone formation and bone quality at 18 weeks. RESULTS Potassium citrate reduced urine calcium compared with controls, chlorthalidone reduced it further, and potassium citrate plus chlorthalidone reduced it even more. Chlorthalidone increased urine citrate and potassium citrate increased it even more; the combination did not increase it further. Potassium citrate, alone or with chlorthalidone, increased urine calcium phosphate supersaturation, but chlorthalidone did not. All control rats formed stones. Potassium citrate did not alter stone formation. No stones formed with chlorthalidone, and rats given potassium citrate plus chlorthalidone had some stones but fewer than controls. Rats given chlorthalidone with or without potassium citrate had higher bone mineral density and better mechanical properties than controls, whereas those given potassium citrate did not. CONCLUSIONS In genetic hypercalciuric stone-forming rats, chlorthalidone is superior to potassium citrate alone or combined with chlorthalidone in reducing calcium phosphate stone formation and improving bone quality.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Courtney Flotteron
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine, Rochester, New York; and
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
6
|
Krieger NS, Grynpas M, VandenEynde A, Asplin JR, Frick KK, Kim MH, Ramos FM, Granja I, Bushinsky DA. Low Sodium Diet Decreases Stone Formation in Genetic Hypercalciuric Stone-Forming Rats. Nephron Clin Pract 2019; 142:147-158. [PMID: 30726853 DOI: 10.1159/000497117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Urine (u) calcium (Ca) excretion is directly dependent on dietary sodium (Na) intake leading to the recommendation for Na restriction in hypercalciuric kidney stone formers. However, there is no direct evidence that limiting Na intake will reduce recurrent stone formation. MATERIALS AND METHODS We used genetic hypercalciuric stone-forming (GHS) rats, which universally form Ca phosphate (P) kidney stones, fed either a low Na (LNa, 0.05%) or normal Na (NNa, 0.4%) Na diet (D) for 18 weeks. Urine was collected at 6-week intervals. Radiographic analysis for stone formation and bone analyses were done at the conclusion of the study. RESULTS Mean uCa was lower with LNaD than NNaD as was uP and LNaD decreased mean uNa and uChloride. There were no differences in urine supersaturation (SS) with respect to calcium phosphate (CaP) or Ca oxalate (CaOx). However, stone formation was markedly decreased with LNaD by radiographic analysis. The LNaD group had significantly lower femoral anterior-posterior diameter and volumetric bone mineral density (vBMD), but no change in vertebral trabecular vBMD. There were no differences in the bone formation rate or osteoclastic bone resorption between groups. The LNaD group had significantly lower femoral stiffness; however, the ultimate load and energy to fail was not different. CONCLUSION Thus, a low Na diet reduced uCa and stone formation in GHS rats, even though SS with respect to CaP and CaOx was unchanged and effects on bone were modest. These data, if confirmed in humans, support dietary Na restriction to prevent recurrent Ca nephrolithiasis.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA,
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amy VandenEynde
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Min Ho Kim
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
7
|
Sayer JA. Progress in Understanding the Genetics of Calcium-Containing Nephrolithiasis. J Am Soc Nephrol 2016; 28:748-759. [PMID: 27932479 DOI: 10.1681/asn.2016050576] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renal stone disease is a frequent condition, causing a huge burden on health care systems globally. Calcium-based calculi account for around 75% of renal stone disease and the incidence of these calculi is increasing, suggesting environmental and dietary factors are acting upon a preexisting genetic background. The familial nature and significant heritability of stone disease is known, and recent genetic studies have successfully identified genes that may be involved in renal stone formation. The detection of monogenic causes of renal stone disease has been made more feasible by the use of high-throughput sequencing technologies and has also facilitated the discovery of novel monogenic causes of stone disease. However, the majority of calcium stone formers remain of undetermined genotype. Genome-wide association studies and candidate gene studies implicate a series of genes involved in renal tubular handling of lithogenic substrates, such as calcium, oxalate, and phosphate, and of inhibitors of crystallization, such as citrate and magnesium. Additionally, expression profiling of renal tissues from stone formers provides a novel way to explore disease pathways. New animal models to explore these recently-identified mechanisms and therapeutic interventions are being tested, which hopefully will provide translational insights to stop the growing incidence of nephrolithiasis.
Collapse
Affiliation(s)
- John A Sayer
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
8
|
Frick KK, Krieger NS, Bushinsky DA. Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat. Curr Opin Nephrol Hypertens 2015; 24:336-44. [PMID: 26050120 PMCID: PMC4495578 DOI: 10.1097/mnh.0000000000000130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss how the genetic hypercalciuric stone-forming (GHS) rats, which closely model idiopathic hypercalciuria and stone formation in humans, provide insights into the pathophysiology and consequences of clinical hypercalciuria. RECENT FINDINGS Hypercalciuria in the GHS rats is due to a systemic dysregulation of calcium transport, as manifest by increased intestinal calcium absorption, increased bone resorption and decreased renal tubule calcium reabsorption. Increased levels of vitamin D receptor in intestine, bone and kidney appear to mediate these changes. The excess receptors are biologically active and increase tissue sensitivity to exogenous vitamin D. Bones of GHS rats have decreased bone mineral density (BMD) as compared with Sprague-Dawley rats, and exogenous 1,25(OH)2D3 exacerbates the loss of BMD. Thiazide diuretics improve the BMD in GHS rats. SUMMARY Studying GHS rats allows direct investigation of the effects of alterations in diet and utilization of pharmacologic therapy on hypercalciuria, urine supersaturation, stone formation and bone quality in ways that are not possible in humans.
Collapse
Affiliation(s)
- Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | |
Collapse
|
9
|
Krieger NS, Asplin JR, Frick KK, Granja I, Culbertson CD, Ng A, Grynpas MD, Bushinsky DA. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria. J Am Soc Nephrol 2015; 26:3001-8. [PMID: 25855777 DOI: 10.1681/asn.2014121223] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/02/2015] [Indexed: 01/24/2023] Open
Abstract
Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; and
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; and
| | - Christopher D Culbertson
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Adeline Ng
- Laboratory Medicine and Pathobiology Department, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Laboratory Medicine and Pathobiology Department, University of Toronto, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
10
|
Ng AH, Frick KK, Krieger NS, Asplin JR, Cohen-McFarlane M, Culbertson CD, Kyker-Snowman K, Grynpas MD, Bushinsky DA. 1,25(OH)₂D₃ induces a mineralization defect and loss of bone mineral density in genetic hypercalciuric stone-forming rats. Calcif Tissue Int 2014; 94:531-43. [PMID: 24481706 PMCID: PMC4276134 DOI: 10.1007/s00223-014-9838-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague-Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)₂D₃ (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats. To examine the effect of the increased VDR on the osseous response to 1,25D, we fed GHS and SD rats an ample Ca diet and injected either 1,25D [low dose (LD) 12.5 or high dose (HD) 25 ng/100 g body weight/day] or vehicle (veh) daily for 16 days. Femoral areal bone mineral density (aBMD, by DEXA) was decreased in GHS+LD and GHS+HD relative to GHS+veh, while there was no effect on SD. Vertebral aBMD was lower in GHS compared to SD and further decreased in GHS+HD. Both femoral and L6 vertebral volumetric BMD (by μCT) were lower in GHS and further reduced by HD. Histomorphometry indicated a decreased osteoclast number in GHS+HD compared to GHS+veh or SD+HD. In tibiae, GHS+HD trabecular thickness and number increased, with a 12-fold increase in osteoid volume but only a threefold increase in bone volume. Bone formation rate was decreased in GHS+HD relative to GHS+veh, confirming the mineralization defect. The loss of BMD and the mineralization defect in GHS rats contribute to increased hypercalciuria; if these effects persist, they would result in decreased bone strength, making these bones more fracture-prone. The enhanced effect of 1,25D in GHS rats indicates that the increased VDRs are biologically active.
Collapse
Affiliation(s)
- Adeline H. Ng
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Kevin K. Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nancy S. Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | - Christopher D. Culbertson
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kelly Kyker-Snowman
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Marc D. Grynpas
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - David A. Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
11
|
Frick KK, Asplin JR, Culbertson CD, Granja I, Krieger NS, Bushinsky DA. Persistence of 1,25D-induced hypercalciuria in alendronate-treated genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 2014; 306:F1081-7. [PMID: 24573387 DOI: 10.1152/ajprenal.00680.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats demonstrate increased intestinal Ca absorption, increased bone resorption, and reduced renal tubular Ca reabsorption leading to hypercalciuria and all form kidney stones. GHS have increased vitamin D receptors (VDR) at these sites of Ca transport. Injection of 1,25(OH)2D3 (1,25D) leads to a greater increase in urine (u)Ca in GHS than in control Sprague-Dawley (SD), possibly due to the additional VDR. In GHS the increased uCa persists on a low-Ca diet (LCD) suggesting enhanced bone resorption. We tested the hypothesis that LCD, coupled to inhibition of bone resorption by alendronate (alen), would eliminate the enhanced 1,25D-induced hypercalciuria in GHS. SD and GHS were fed LCD and half were injected daily with 1,25D. After 8 days all were also given alen until euthanasia at day 16. At 8 days, 1,25D increased uCa in SD and to a greater extent in GHS. At 16 days, alen eliminated the 1,25D-induced increase in uCa in SD. However, in GHS alen decreased, but did not eliminate, the 1,25D-induced hypercalciuria, suggesting maximal alen cannot completely prevent the 1,25D-induced bone resorption in GHS, perhaps due to increased VDR. There was no consistent effect on mRNA expression of renal transcellular or paracellular Ca transporters. Urine CaP and CaOx supersaturation (SS) increased with 1,25D alone in both SD and GHS. Alen eliminated the increase in CaP SS in SD but not in GHS. If these results are confirmed in humans with IH, the use of bisphosphonates, such as alen, may not prevent the decreased bone density observed in these patients.
Collapse
Affiliation(s)
- Kevin K Frick
- Research Assistant Professor of Medicine, Univ. of Rochester School of Medicine and Dentistry, Division of Nephrology, Dept. of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY 14642.
| | | | | | | | | | | |
Collapse
|
12
|
Frick KK, Asplin JR, Krieger NS, Culbertson CD, Asplin DM, Bushinsky DA. 1,25(OH)₂D₃-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 2013; 305:F1132-8. [PMID: 23926184 DOI: 10.1152/ajprenal.00296.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hypercalciuria and have elevated levels of vitamin D receptors (VDR) in calcium (Ca)-transporting organs. On a normal-Ca diet, 1,25(OH)2D3 (1,25D) increases urine (U) Ca to a greater extent in GHS than in controls [Sprague-Dawley (SD)]. The additional UCa may result from an increase in intestinal Ca absorption and/or bone resorption. To determine the source, we asked whether 1,25D would increase UCa in GHS fed a low-Ca (0.02%) diet (LCD). With 1,25D, UCa in SD increased from 1.2 ± 0.1 to 9.3 ± 0.9 mg/day and increased more in GHS from 4.7 ± 0.3 to 21.5 ± 0.9 mg/day (P < 0.001). In GHS rats on LCD with or without 1,25D, UCa far exceeded daily Ca intake (2.6 mg/day). While the greater excess in UCa in GHS rats must be derived from bone mineral, there may also be a 1,25D-mediated decrease in renal tubular Ca reabsorption. RNA expression of the components of renal Ca transport indicated that 1,25D administration results in a suppression of klotho, an activator of the renal Ca reabsorption channel TRPV5, in both SD and GHS rats. This fall in klotho would decrease tubular reabsorption of the 1,25D-induced bone Ca release. Thus, the greater increase in UCa with 1,25D in GHS fed LCD strongly suggests that the additional UCa results from an increase in bone resorption, likely due to the increased number of VDR in the GHS rat bone cells, with a possible component of decreased renal tubular calcium reabsorption.
Collapse
Affiliation(s)
- Kevin K Frick
- Univ. of Rochester School of Medicine and Dentistry, Div. of Nephrology, Dept. of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY 14642.
| | | | | | | | | | | |
Collapse
|
13
|
Frick KK, Asplin JR, Favus MJ, Culbertson C, Krieger NS, Bushinsky DA. Increased biological response to 1,25(OH)(2)D(3) in genetic hypercalciuric stone-forming rats. Am J Physiol Renal Physiol 2013; 304:F718-26. [PMID: 23344574 DOI: 10.1152/ajprenal.00645.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)(2)D(3) (1,25D), indicating that their VDR is undersaturated with 1,25D. We tested the hypothesis that 1,25D would induce a greater increase in UCa in GHS rats by feeding both strains ample Ca and injecting 1,25D (25 ng · 100 g body wt(-1) · day(-1)) or vehicle for 16 days. With 1,25D, UCa in SD increased from 1.7 ± 0.3 mg/day to 24.4 ± 1.2 (Δ = 22.4 ± 1.5) and increased more in GHS from 10.5 ± 0.7 to 41.9 ± 0.7 (Δ = 29.8 ± 1.8; P = 0.003). To determine the mechanism of the greater increase in UCa in GHS rats, we measured kidney RNA expression of components of renal Ca transport. Expression of transient receptor potential vanilloid (TRPV)5 and calbindin D(28K) were increased similarly in SD + 1,25D and GHS + 1,25D. The Na(+)/Ca(2+) exchanger (NCX1) was increased in GHS + 1,25D. Klotho was decreased in SD + 1,25D and GHS + 1,25D. TRPV6 was increased in SD + 1,25D and increased further in GHS + 1,25D. Claudin 14, 16, and 19, Na/K/2Cl transporter (NKCC2), and secretory K channel (ROMK) did not differ between SD + 1,25D and GHS + 1,25D. Increased UCa with 1,25D in GHS exceeded that of SD, indicating that the increased VDR in GHS induces a greater biological response. This increase in UCa, which must come from the intestine and/or bone, must exceed any effect of 1,25D on TRPV6 or NCX1-mediated renal Ca reabsorption.
Collapse
Affiliation(s)
- Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Perry GML, Nehrke KW, Bushinsky DA, Reid R, Lewandowski KL, Hueber P, Scheinman SJ. Sex modifies genetic effects on residual variance in urinary calcium excretion in rat (Rattus norvegicus). Genetics 2012; 191:1003-13. [PMID: 22554889 PMCID: PMC3389963 DOI: 10.1534/genetics.112.138909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/23/2012] [Indexed: 01/03/2023] Open
Abstract
Conventional genetics assumes common variance among alleles or genetic groups. However, evidence from vertebrate and invertebrate models suggests that residual genotypic variance may itself be under partial genetic control. Such a phenomenon would have great significance: high-variability alleles might confound the detection of "classically" acting genes or scatter predicted evolutionary outcomes among unpredicted trajectories. Of the few works on this phenomenon, many implicate sex in some aspect of its control. We found that female genetic hypercalciuric stone-forming (GHS) rats (Rattus norvegicus) had higher coefficients of variation (CVs) for urinary calcium (CV = 0.14) than GHS males (CV = 0.06), and the reverse in normocalciuric Wistar-Kyoto rats (WKY) (CV(♂) = 0.14; CV(♀) = 0.09), suggesting sex-by-genotype interaction on residual variance. We therefore investigated the effect of sex on absolute-transformed residuals in urinary calcium in an F(2) GHS × WKY mapping cohort. Absolute residuals were associated with genotype at two microsatellites, D3Rat46 (RNO3, 33.9 Mb) and D4Mgh1 (RNO4, 84.8 MB) at Bonferroni thresholds across the entire cohort, and with the microsatellites D3Rat46, D9Mgh2 (RNO9, 84.4 Mb), and D12Rat25 (RNO12, 40.4 Mb) in females (P < 0.05) but not males. In GHS chromosome 1 congenic lines bred onto a WKY genomic background, we found that congenic males had significantly (P < 0.0001) higher CVs for urinary calcium (CV = 0.25) than females (CV = 0.15), supporting the hypothesis of the inheritance of sex-by-genotype interaction on this effect. Our findings suggest that genetic effects on residual variance are sex linked; heritable, sex-specific residuals might have great potential implications for evolution, adaptation, and genetic analysis.
Collapse
Affiliation(s)
- Guy M L Perry
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Slawińska A, Witkowski A, Nieuwland M, Minozzi G, Bednarczyk M, Siwek M. Quantitative trait loci associated with the humoral innate immune response in chickens were confirmed in a cross between Green-Legged Partridgelike and White Leghorn. Poult Sci 2011; 90:1909-15. [PMID: 21844254 DOI: 10.3382/ps.2011-01465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Natural antibodies (NA) create a crucial barrier at the initial steps of the innate humoral immune response. The main role of NA in the defense system is to bind the pathogens at early stages of infection. Different pathogens are recognized by the presence of highly conserved antigen determinant [e.g., lipopolysaccharide (LPS) in gram-negative bacteria or lipoteichoic acid (LTA) in gram-positive bacteria]. In chickens, a different genetic background of NA binds LPS and LTA antigens, encoded by different QTL. The main objective of this work was to confirm known QTL associated with LPS and LTA NA. For this purpose a chicken reference population was created by crossing 2 breeds: a commercial layer, White Leghorn, and a Polish indigenous chicken, Green-Legged Partridgelike. The chromosomal regions analyzed harbored to GGA3, GGA5, GGA6, GGA8, GGA9, GGA10, GGA14, GGA15, GGA18, and GGAZ. The data collected consisted of the NA titers binding LPS and LTA (determined by ELISA at 12 wk of age) as well as the genotypes (30 short tandem repeat markers; average of 3 markers/chromosome, collected for generations F(0), F(1), and F(2)). The analyses were performed with 3 statistical models (paternal and maternal half-sib, line cross, and linkage analysis and linkage disequilibrium) implemented in GridQTL software (http://www.gridqtl.org.uk/). The QTL study of humoral innate immune response traits resulted in the confirmation of 3 QTL associated with NA titers binding LPS (located on GGA9, GGA18, and GGAZ) and 2 QTL associated with NA titers binding LTA (located on GGA5 and GGA14). A set of candidate genes within the regions of the validated QTL has been proposed.
Collapse
Affiliation(s)
- A Slawińska
- Department of Animal Biotechnology, University of Technology and Life Sciences, Mazowiecka 28, 85-225 Bydgoszcz, Poland.
| | | | | | | | | | | |
Collapse
|
16
|
Vezzoli G, Terranegra A, Arcidiacono T, Soldati L. Genetics and calcium nephrolithiasis. Kidney Int 2010; 80:587-93. [PMID: 20962745 DOI: 10.1038/ki.2010.430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium nephrolithiasis is one of the most prevalent uronephrologic disorders in the western countries. Studies in families and twins evidenced a genetic predisposition to calcium nephrolithiasis. Family-based or case-control studies of single-candidate genes evidenced the possible involvement of calcium-sensing receptor (CASR), vitamin D receptor (VDR), and osteopontin (OPN) gene polymorphisms in stone formation. The only high-throughput genome-wide association study identified claudin 14 (CLDN14) gene as a possible major gene of nephrolithiasis. Specific phenotypes were related with these genes: CASR gene in normocitraturic patients, VDR gene in hypocitraturic patients with severe clinical course, and CLDN14 gene in hypercalciuric patients. The pathogenetic weight of these genes remains unclear, but an alteration of their expression may occur in stone formers. Technological skills, accurate clinical examination, and a detailed phenotype description are the basis to get new insight about the genetic basis of nephrolithiasis.
Collapse
Affiliation(s)
- Giuseppe Vezzoli
- Nephrology and Dialysis Unit, San Raffaele Scientific Institute, via Olgettina 60, Milan, Italy.
| | | | | | | |
Collapse
|
17
|
Verdugo RA, Farber CR, Warden CH, Medrano JF. Serious limitations of the QTL/microarray approach for QTL gene discovery. BMC Biol 2010; 8:96. [PMID: 20624276 PMCID: PMC2919467 DOI: 10.1186/1741-7007-8-96] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/12/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed. RESULTS Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP). CONCLUSIONS The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.
Collapse
Affiliation(s)
- Ricardo A Verdugo
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Charles R Farber
- Departments of Medicine, Biochemistry and Molecular Genetics, and Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig H Warden
- Departments of Pediatrics and Neurobiology, Physiology and Behavior, University of California Davis. Davis, CA 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
| |
Collapse
|
18
|
Abstract
Current understanding of the mechanisms underlying renal disease in humans is incomplete. Consequently, our ability to prevent the occurrence of renal disease or treat kidney disease once it develops is limited. There are objective difficulties in investigating kidney disease directly in humans, leading investigators to resort to experimental animal models that simulate renal disease in humans. Animal models have thus been a tool of major importance in the study of normal renal physiology and have been crucial in shedding light on the complex mechanisms involved in normal kidney function and in our current understanding of and ability to treat renal disease. Among the animal models, rat has been the preferred and most commonly used species for the investigation of renal disease. This chapter reviews what has been achieved over the years, using rat as a tool for the investigation of renal disease in humans, focusing on the contribution of rat genetics and genomics to the elucidation of the mechanisms underlying the pathophysiology of the major types of renal disease, including primary and secondary renal diseases.
Collapse
|
19
|
Wiessner JH, Garrett MR, Roman RJ, Mandel NS. Dissecting the genetic basis of kidney tubule response to hyperoxaluria using chromosome substitution strains. Am J Physiol Renal Physiol 2009; 297:F301-6. [PMID: 19493966 DOI: 10.1152/ajprenal.00009.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whether genetics may play a role in the pathophysiologic response of kidney tubules to oxalate exposure remains unexplored despite that as many as 15% of the U.S. population annually will experience a kidney stone composed of calcium oxalate. To explore this issue, we utilized a panel of chromosome substitution strains in which one chromosome at a time was transferred from the Brown Norway (BN) rat onto the Dahl salt-sensitive (SS) genetic background. Hyperoxaluria was induced by adding hydroxyproline (HP) to the drinking water. A dose-response (0-2% HP) study found that both SS and BN exhibited the same level of oxalate excretion as HP concentration increased, but only the BN exhibited changes in urothelial pathology and demonstrated crystal deposition at sites of urothelial injury as a function of dose (at 1.5-2.0%). The consomic panel was treated with 2.0% HP and evaluated for hyperoxaluria, renal injury, and crystal deposition. Tubular injury (% Area) and crystal deposition (% Area) were similar between the resistant SS and SS-4, -6, -7, -8, -9, -11, -16, and -20(BN) consomic rats. However, tubular injury was significantly increased in SS-2(BN) compared with the SS parental (9.8 +/- 1.56 and 4.2 +/- 1.09%, respectively). Crystal deposition was observed in SS-2(BN) and SS-18(BN) (4.7 +/- 0.70 and 3.5 +/- 1.3%, respectively) to the same extent as seen in the susceptible BN (3.2 +/- 0.44%). The fact that crystal deposition was observed in SS-18(BN) without extensive overall tubule injury, compared with the more severe widespread tubular injury seen in SS-2(BN), suggests that the underlying mechanism of each locus is different. In conclusion, these studies establish that BN rats demonstrate oxalate-associated pathology and they retain calcium oxalate crystals coincident with urothelial injury but SS rats do not. These observations establish that BN rat chromosome 2 and 18 harbor genes that contribute to these processes.
Collapse
Affiliation(s)
- John H Wiessner
- Kidney Disease Center, Medical College of Wisconsin and Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA
| | | | | | | |
Collapse
|
20
|
Sławińska A, Siwek M, Knol E, Roelofs-Prins D, van Wijk H, Dibbits B, Bednarczyk M. Validation of the QTL on SSC4 for meat and carcass quality traits in a commercial crossbred pig population. J Anim Breed Genet 2009; 126:43-51. [DOI: 10.1111/j.1439-0388.2008.00753.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Effect of bolus and divided feeding on urine ions and supersaturation in genetic hypercalciuric stone-forming rats. Kidney Int 2007; 73:423-9. [PMID: 18046318 DOI: 10.1038/sj.ki.5002699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because urine ion excretion varies throughout the day, clinicians monitor 24 h urine samples to measure ion excretion and supersaturation in kidney stone patients. However, these results are averages and may not reflect maximal supersaturation which drives stone formation. We measured ion excretion and saturation in genetic hypercalciuric stone-forming rats on both a normal or low calcium diet over 0-3, 3-6 and 6-24 h using two feeding protocols, where the daily food allotment was fed either as a bolus or divided into three portions. With a normal calcium diet, urine calcium, oxalate, volume, and calcium oxalate supersaturation were significantly greater on the bolus compared to the divided feeds in the prandial and postprandial periods. Bolus eaters also excreted more calcium and oxalate and had increased volume over 24 h. Maximal calcium oxalate supersaturation was greater during the initial time periods than during the entire 24 h, regardless of the feeding schedule. With the low calcium diet, the effect of bolus feeding was reduced. Thus, urine ion excretion and supersaturation vary with the type of feeding. If these results are confirmed in man, it suggests that eating as a bolus may result in greater prandial and postprandial calcium oxalate supersaturation. This may increase growth on Randall's plaques and promote stone disease.
Collapse
|
22
|
Abstract
With a lifetime incidence of up to 12% in man and 6% in woman, nephrolithiasis is a major health problem worldwide. Approximately, 80% of kidney stones are composed of calcium and hypercalciuria is found in up to 40% of stone-formers. Although the mechanisms resulting in precipitation and growth of calcium crystals in the urinary tract are multiple and not fully understood, hypercalciuria per se is recognized as an important and reversible risk factor in stone formation. In this brief review, we summarize the studies assessing the heritability of hypercalciuria and pinpoint recently identified human genetic disorders as well as relevant animal models that provided new insights into the segment-specific tubular handling of calcium and the pathophysiology of renal hypercalciuria and kidney stones. We also discuss novel strategies that may help to unravel the genetic bases of such complex conditions.
Collapse
Affiliation(s)
- O Devuyst
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium.
| | | |
Collapse
|
23
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:388-93. [PMID: 17565283 DOI: 10.1097/mnh.0b013e3282472fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|