1
|
Schwotzer N, Fakhouri F, Martins PV, Delmas Y, Caillard S, Zuber J, Moranne O, Mesnard L, Frémeaux-Bacchi V, El-Sissy C. Hot Spot of Complement Factor I Rare Variant p.Ile357Met in Patients With Hemolytic Uremic Syndrome. Am J Kidney Dis 2024; 84:244-249. [PMID: 38423159 DOI: 10.1053/j.ajkd.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare kidney disease due to a dysregulation of the complement alternative pathway. Complement factor I (CFI) negatively regulates the alternative pathway and CFI gene rare variants have been associated to aHUS with a low disease penetrance. We report 10 unrelated cases of HUS associated to a rare CFI variant, p.Ile357Met (c.1071T>G). All patients with isolated p.Ile357Met CFI missense variant were retrospectively identified among patients included between January 2007 and January 2022 in the French HUS Registry. We identified 10 unrelated patients (70% women; median age at HUS diagnosis, 36.5 years) who carry the same rare variant p.Ile357Met in the CFI gene. Seven patients (cases 1-7) presented with aHUS in the native kidney associated with malignant hypertension in 5 patients. None received a C5 inhibitor. Two of these cases occurred in the peripartum period with complete recovery of kidney function, while 5 of these patients reached kidney failure requiring replacement therapy (KFRT). Four patients with KFRT subsequently underwent kidney transplantation. Three later developed C3 glomerulopathy in their kidney graft, but none had aHUS recurrence. Three other patients (cases 8-10) experienced de novo thrombotic microangiopathy after kidney transplantation, precipitated by various triggers. The rare CFI variant p.Ile357Met appears to be a facilitating genetic factor for HUS and for some forms of secondary HUS.
Collapse
Affiliation(s)
- Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paula Vieira Martins
- Department of Nephrology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; Paris University, Paris, France
| | - Yahsou Delmas
- Nephrology Department, CHU de Bordeaux Bordeaux, France
| | - Sophie Caillard
- Nephrology Department, Strasbourg University Hospital, Strasbourg, France
| | - Julien Zuber
- Department of Renal and Metabolic Diseases, Transplantation, and Clinical Immunology Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Olivier Moranne
- Department of Nephrology, Dialysis and Apheresis, Nîmes Hôpital Universitaire, Nîmes, France
| | - Laurent Mesnard
- Sorbonne Université, Paris, France; Nephrology Intensive Care Unit, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Véronique Frémeaux-Bacchi
- Department of Nephrology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; Paris University, Paris, France; Inflammation, Complement and Cancer Team, Cordeliers Research Center, INSERM Unité Mixte de Recherche (UMR) S1138, Paris, France
| | - Carine El-Sissy
- Department of Nephrology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; Paris University, Paris, France
| |
Collapse
|
2
|
Rodríguez de Córdoba S. Genetic variability shapes the alternative pathway complement activity and predisposition to complement-related diseases. Immunol Rev 2023; 313:71-90. [PMID: 36089777 PMCID: PMC10086816 DOI: 10.1111/imr.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The implementation of next-generation sequencing technologies has provided a sharp picture of the genetic variability in the components and regulators of the alternative pathway (AP) of the complement system and has revealed the association of many AP variants with different rare and common diseases. An important finding that has emerged from these analyses is that each of these complement-related diseases associate with genetic variants altering specific aspects of the activation and regulation of the AP. These genotype-phenotype correlations have provided valuable insights into their pathogenic mechanisms with important diagnostic and therapeutic implications. While genetic variants in coding regions and structural variants are reasonably well characterized and occasionally have been instrumental to uncover unknown features of the complement proteins, data about complement expressed quantitative trait loci are still very limited. A crucial task for future studies will be to identify these quantitative variations and to determine their impact in the overall activity of the AP. This is fundamental as it is now clear that the consequences of genetic variants in the AP are additive and that susceptibility or resistance to disease is the result of specific combinations of genetic variants in different complement components and regulators ("complotypes").
Collapse
|
3
|
Complement factor H variants are associated with microangiopathy lesions in IgA nephropathy. Int Immunopharmacol 2022; 112:109234. [PMID: 36113314 DOI: 10.1016/j.intimp.2022.109234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thrombotic microangiopathy (TMA) occurs in immunoglobulin A nephropathy (IgAN), and the pathogenesis is not known behind the endothelium injury. The genetic studies have indicated that complement factor H (CFH) and complement factor H-related protein genes (CFHRs)play a key role in IgAN. We perform a study to investigate the CFH /CFHRs gene variants and their roles in IgAN with microangiopathy based on a previous genome-wide association study (GWAS). METHODS We re-review microangiopathic lesions in 2055 IgAN patients by light microscopy. And 204 IgAN patients with MA and 1851 IgAN without MA are confirmed in this study. Nineteen single nucleotide polymorphisms (SNPs) across CFH and CFHRs genes information are extracted from GWAS data. RESULTS The results show that 204 out of 2055(9.93 %) MA patients are screened from our IgAN cohort. Patients with MA lesions are strongly associated with more severe clinical conditions and higher serum complement factor H (FH) levels than IgAN without MA(MA vs IgAN-non MA:428.16 ± 141.05 vs 364.62 ± 139.06ug/mL, p = 0.004). The genetic association study indicates the frequency of rs800292-G in CFH was significantly higher in the MA group (0.441 vs 0.374, odds ratio1.37[1.07-1.62], p = 0.010) compared with IgAN without MA. In addition, patients with the rs412852-G allele in CFH become an independent risk factor for end-stage renal disease (ESRD)in MA patients (Hazard Ratio 2.77[1.17-6.65], p = 0.021). However, the gene variants did not correlate with serum FH, serum C3, and C3 deposits in the renal specimens. CONCLUSION Our results indicated that variants in CFH are associated with the development and progression of IgAN with microangiopathy.
Collapse
|
4
|
Kurup M, Mandelbrot D, Garg N, Singh T. Living Related Donor Kidney Transplantation in Atypical HUS: When Should It Be Considered? KIDNEY360 2021; 2:524-527. [PMID: 35369010 PMCID: PMC8785996 DOI: 10.34067/kid.0007112020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023]
|
5
|
Tzoumas N, Hallam D, Harris CL, Lako M, Kavanagh D, Steel DHW. Revisiting the role of factor H in age-related macular degeneration: Insights from complement-mediated renal disease and rare genetic variants. Surv Ophthalmol 2020; 66:378-401. [PMID: 33157112 DOI: 10.1016/j.survophthal.2020.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Ophthalmologists are long familiar with the eye showing signs of systemic disease, but the association between age-related macular degeneration and abnormal complement activation, common to several renal disorders, has only recently been elucidated. Although complement activation products were identified in drusen almost three decades ago, it was not until the early 21st century that a single-nucleotide polymorphism in the complement factor H gene was identified as a major heritable determinant of age-related macular degeneration, galvanizing global efforts to unravel the pathogenesis of this common disease. Advances in proteomic analyses and familial aggregation studies have revealed distinctive clinical phenotypes segregated by the functional effects of common and rare genetic variants on the mature protein and its splice variant, factor H-like protein 1. The predominance of loss-of-function, N-terminal mutations implicate age-related macular degeneration as a disease of general complement dysregulation, offering several therapeutic avenues for its modulation. Here, we explore the molecular impact of these mutations/polymorphisms on the ability of variant factor H/factor H-like protein 1 to localize to polyanions, pentraxins, proinflammatory triggers, and cell surfaces across ocular and renal tissues and exert its multimodal regulatory functions and their clinical implications. Finally, we critically evaluate key therapeutic and diagnostic efforts in this rapidly evolving field.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire L Harris
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Sunderland Eye Infirmary, Sunderland, United Kingdom
| |
Collapse
|
6
|
Dekkers G, Brouwer MC, Jeremiasse J, Kamp A, Biggs RM, van Mierlo G, Lauder S, Katti S, Kuijpers TW, Rispens T, Jongerius I. Unraveling the Effect of a Potentiating Anti-Factor H Antibody on Atypical Hemolytic Uremic Syndrome-Associated Factor H Variants. THE JOURNAL OF IMMUNOLOGY 2020; 205:1778-1786. [PMID: 32848031 DOI: 10.4049/jimmunol.2000368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
The complement system plays an important role in our innate immune system. Complement activation results in clearance of pathogens, immune complex, and apoptotic cells. The host is protected from complement-mediated damage by several complement regulators. Factor H (FH) is the most important fluid-phase regulator of the alternative pathway of the complement system. Heterozygous mutations in FH are associated with complement-related diseases such as atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration. We recently described an agonistic anti-FH mAb that can potentiate the regulatory function of FH. This Ab could serve as a potential new drug for aHUS patients and alternative to C5 blockade by eculizumab. However, it is unclear whether this Ab can potentiate FH mutant variants in addition to wild-type (WT) FH. In this study, the functionality and potential of the agonistic Ab in the context of pathogenic aHUS-related FH mutant proteins was investigated. The binding affinity of recombinant WT FH and the FH variants, W1183L, V1197A, R1210C, and G1194D to C3b was increased upon addition of the potentiating Ab and similarly, the decay-accelerating activity of all mutants is increased. The potentiating anti-FH Ab is able to restore the surface regulatory function of most of the tested FH mutants to WT FH levels on a human HAP-1 cell line and on sheep erythrocytes. In conclusion, our potentiating anti-FH is broadly active and able to enhance both WT FH function as well as most aHUS-associated FH variants tested in this study.
Collapse
Affiliation(s)
- Gillian Dekkers
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Jorn Jeremiasse
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Angela Kamp
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | | | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | | | | | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, the Netherlands; and.,Department of Blood Cell Research, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, the Netherlands; and
| |
Collapse
|
7
|
Mulvey JJ, Magro CM, Ma LX, Nuovo GJ, Baergen RN. WITHDRAWN: A mechanistic analysis placental intravascular thrombus formation in COVID-19 patients. Ann Diagn Pathol 2020; 46:151529. [PMID: 32361635 PMCID: PMC7195270 DOI: 10.1016/j.anndiagpath.2020.151529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Affiliation(s)
- J Justin Mulvey
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, United States of America
| | - Cynthia M Magro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States of America
| | - Lucy X Ma
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States of America
| | - Gerard J Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America; Discovery Life Sciences, Powell, OH, United States of America
| | - Rebecca N Baergen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States of America
| |
Collapse
|
8
|
Mulvey JJ, Magro CM, Ma LX, Nuovo GJ, Baergen RN. Analysis of complement deposition and viral RNA in placentas of COVID-19 patients. Ann Diagn Pathol 2020; 46:151530. [PMID: 32387855 PMCID: PMC7182529 DOI: 10.1016/j.anndiagpath.2020.151530] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by the novel Coronavirus, SARS-CoV-2, is increasingly being recognized as a systemic thrombotic and microvascular injury syndrome that may have its roots in complement activation. We had the opportunity to study the placental pathology of five full-term births to COVID-19 patients. All five exhibited histology indicative of fetal vascular malperfusion characterized by focal avascular villi and thrombi in larger fetal vessels. Vascular complement deposition in the placentas was not abnormal, and staining for viral RNA and viral spike protein was negative. While all cases resulted in healthy, term deliveries, these findings indicate the systemic nature of COVID-19 infection. The finding of vascular thrombosis without complement deposition may reflect the systemic nature of COVID-19's procoagulant effects unrelated to systemic complement activation. This paper explores thrombosis in the placentas COVID-19-positive patients at our hospital Potential prothrombotic mechanisms are explored. Direct infection of the placentas is ruled out as a cause.
Collapse
Affiliation(s)
- J Justin Mulvey
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, United States of America
| | - Cynthia M Magro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States of America
| | - Lucy X Ma
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States of America
| | - Gerard J Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America; Discovery Life Sciences, Powell, OH, United States of America
| | - Rebecca N Baergen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States of America.
| |
Collapse
|
9
|
Shoshany N, Weiner C, Safir M, Einan-Lifshitz A, Pokroy R, Kol A, Modai S, Shomron N, Pras E. Rare Genetic Variants in Jewish Patients Suffering from Age-Related Macular Degeneration. Genes (Basel) 2019; 10:genes10100825. [PMID: 31635417 PMCID: PMC6826738 DOI: 10.3390/genes10100825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose: To identify rare genetic variants in early age-related macular degeneration (AMD) utilizing whole-exome sequencing (WES). Methods: Eight non-related early-AMD families of different Jewish ethnicities were ascertained. Initial mutation screening (phase-1) included common complement factor-H (CFH) p.Y402H; and age related maculopathy susceptibility 2 (ARMS2) p.A69S; and rare variants complement factor-I (CFI) p.V412M; and hemicentin1 (HMCN1) c.4163delC identified previously in our population. Four families, whose initial screening for the aforementioned variants was negative, underwent WES (phase-2). Bioinformatics filtering was based on functionality (from a panel of 234 genes with proven or presumed association to AMD); predicted severity; and frequency (rare variants with minor allele frequency <1%). When applicable, further screening for specific rare variants was carried out on additional cases of similar ethnicities and phenotypes (phase-3). Results: Phase-1 identified three families carrying CFI p.V412M mutation. WES analysis detected probable disease-related variants in three out of the remaining families. These included: a family with a variant in PLEKHA1 gene p.S177N; a family with previously reported variant p.R1210C in CFH gene; and two families with the C3 p.R735W variant. Conclusions: Rare, high-penetrance variants have a profound contribution to early-AMD pathogenesis. Utilization of WES in genetic research of multifactorial diseases as AMD, allows a thorough comprehensive analysis with the identification of previously unreported rare variants.
Collapse
Affiliation(s)
- Nadav Shoshany
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
| | - Chen Weiner
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Margarita Safir
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Adi Einan-Lifshitz
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Russell Pokroy
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
| | - Ayala Kol
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
| | | | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Variantyx Inc, MA 01701, USA.
| | - Eran Pras
- The Matlow's Ophthalmo-Genetics Laboratory, Department of Ophthalmology, Shamir (formerly Assaf-Harofeh) Medical Center, Zerifin 70300, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Noris M, Ruggenenti P, Remuzzi G. Kidney Transplantation in Patients With Atypical Hemolytic Uremic Syndrome: A Therapeutic Dilemma (or Not)? Am J Kidney Dis 2019; 70:754-757. [PMID: 29169515 DOI: 10.1053/j.ajkd.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Marina Noris
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Clinical Research Center for Rare Diseases, Aldo e Cele Daccò Ranica, Bergamo, Italy.
| | - Piero Ruggenenti
- Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Clinical Research Center for Rare Diseases, Aldo e Cele Daccò Ranica, Bergamo, Italy; Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy; University of Milan, Milan, Italy
| |
Collapse
|
11
|
Tseng MH, Tsai JD, Tsai IJ, Huang SM, Huang JL, Fan WL, Lee HJ, Wu TW, Lin SH. Whole-exome sequencing detects mutations in pediatric patients with atypical hemolytic uremic syndrome in Taiwan. Clin Chim Acta 2019; 494:143-150. [PMID: 30905589 DOI: 10.1016/j.cca.2019.03.1623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
Although atypical hemolytic uremic syndrome (aHUS) is a genetic disorder, molecular defects are detected in only 60% of patients. We aim to dissect the genetic background by whole exome sequence and the clinical characteristics of pediatric patients with aHUS. Ten patients (6 male and 4 female) with mean age 5.2 ± 5.0 years were enrolled. The age at onset ranged from 2 days to 11 years. Eighteen different mutations (17 missense, 2 nonsense, and 11 novel) on 7 complement and 3 coagulation genes were detected in all patients. The majority of mutation was heterozygous and S1191L on CFH were the recurrent mutation. Sixty percent of patients had multiple genetic mutations. Nine mutations were associated with genes known to be implicated in aHUS (CFH, CFI, CD46, CFHR5, and DGKE), while 4 and 5 mutations were detected on complement- (C8B, C9, and MASP1) and coagulation-associated (VWF and CD36) genes, respectively. CD36 may be a candidate gene act as disease modifier for aHUS through the contribution of thrombosis by impairing the interaction with TSP-1 and ADAMTS 13 shown in simulation model. Genetic defects on both complement and coagulation pathways play pathogenic roles on aHUS. CD36 may be a novel candidate gene act as disease modifier of aHUS.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Xiamen Chang Gung Hospital, Ximen, China
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - I-Jung Tsai
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, US
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Frémeaux-Bacchi V, Sellier-Leclerc AL, Vieira-Martins P, Limou S, Kwon T, Lahoche A, Novo R, Llanas B, Nobili F, Roussey G, Cailliez M, Ulinski T, Deschênes G, Alberti C, Weill FX, Mariani P, Loirat C. Complement Gene Variants and Shiga Toxin-Producing Escherichia coli-Associated Hemolytic Uremic Syndrome: Retrospective Genetic and Clinical Study. Clin J Am Soc Nephrol 2019; 14:364-377. [PMID: 30674459 PMCID: PMC6419292 DOI: 10.2215/cjn.05830518] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Inherited complement hyperactivation is critical for the pathogenesis of atypical hemolytic uremic syndrome (HUS) but undetermined in postdiarrheal HUS. Our aim was to investigate complement activation and variants of complement genes, and their association with disease severity in children with Shiga toxin-associated HUS. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Determination of complement biomarkers levels and next-generation sequencing for the six susceptibility genes for atypical HUS were performed in 108 children with a clinical diagnosis of post-diarrheal HUS (75 Shiga toxin-positive, and 33 Shiga toxin-negative) and 80 French controls. As an independent control cohort, we analyzed the genotypes in 503 European individuals from the 1000 Genomes Project. RESULTS During the acute phase of HUS, plasma levels of C3 and sC5b-9 were increased, and half of patients had decreased membrane cofactor protein expression, which normalized after 2 weeks. Variants with minor allele frequency <1% were identified in 12 Shiga toxin-positive patients with HUS (12 out of 75, 16%), including pathogenic variants in four (four out of 75, 5%), with no significant differences compared with Shiga toxin-negative patients with HUS and controls. Pathogenic variants with minor allele frequency <0.1% were found in three Shiga toxin-positive patients with HUS (three out of 75, 4%) versus only four European controls (four out of 503, 0.8%) (odds ratio, 5.2; 95% confidence interval, 1.1 to 24; P=0.03). The genetic background did not significantly affect dialysis requirement, neurologic manifestations, and sC5b-9 level during the acute phase, and incident CKD during follow-up. However, the only patient who progressed to ESKD within 3 years carried a factor H pathogenic variant. CONCLUSIONS Rare variants and complement activation biomarkers were not associated with severity of Shiga toxin-associated HUS. Only pathogenic variants with minor allele frequency <0.1% are more frequent in Shiga toxin-positive patients with HUS than in controls.
Collapse
Affiliation(s)
- Véronique Frémeaux-Bacchi
- Service d’Immunologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Team “Complement and Disease,” Centre de recherche des Cordeliers, Sorbonne Université, INSERM, Paris, France
| | | | - Paula Vieira-Martins
- Service d’Immunologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Limou
- Institute for Transplantation in Urology and Nephrology, Centre Hospitalo-Universitaire de Nantes, Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé et de la Recherche Médicale U1064, Université de Nantes, Ecole Centrale de Nantes, Nantes, France
| | | | - Annie Lahoche
- Pediatric Nephrology Department, Hôpital Jeanne de Flandre, Centre Hospitalo-Universitaire de Lille, Lille, France
| | - Robert Novo
- Pediatric Nephrology Department, Hôpital Jeanne de Flandre, Centre Hospitalo-Universitaire de Lille, Lille, France
| | - Brigitte Llanas
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
| | - François Nobili
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Besançon, Besançon, France
| | - Gwenaëlle Roussey
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Nantes, Nantes, France
| | - Mathilde Cailliez
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Marseille, Marseille, France
| | - Tim Ulinski
- Pediatric Nephrology Department, Hôpital Trousseau, University Pierre and Marie Curie, Assistance Publique-Hôpitaux de Paris, Paris, France; and
| | | | - Corinne Alberti
- Unit of Clinical Epidemiology, Institut National de la Santé et de la Recherche Médicale U1123 and Centre d'Investigation Clinique-Epidémiologie Clinique 1426, and
| | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, France
| | - Patricia Mariani
- Laboratory of Microbiology, Escherichia coli Associated National Reference Center, Hôpital Robert Debré, University Paris Diderot, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
13
|
Geerlings MJ, Volokhina EB, de Jong EK, van de Kar N, Pauper M, Hoyng CB, van den Heuvel LP, den Hollander AI. Genotype-phenotype correlations of low-frequency variants in the complement system in renal disease and age-related macular degeneration. Clin Genet 2018; 94:330-338. [PMID: 29888403 PMCID: PMC6175426 DOI: 10.1111/cge.13392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/24/2018] [Accepted: 06/03/2018] [Indexed: 12/28/2022]
Abstract
Genetic alterations in the complement system have been linked to a variety of diseases, including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3G), and age‐related macular degeneration (AMD). We performed sequence analysis of the complement genes complement factor H (CFH), complement factor I (CFI), and complement C3 (C3) in 866 aHUS/C3G and 697 AMD patients. In total, we identified 505 low‐frequency alleles, representing 121 unique variants, of which 51 are novel. CFH contained the largest number of unique low‐frequency variants (n = 64; 53%), followed by C3 (n = 32; 26%) and CFI (n = 25; 21%). A substantial number of variants were found in both patients groups (n = 48; 40%), while 41 (34%) variants were found only in aHUS/C3G and 32 (26%) variants were AMD specific. Genotype‐phenotype correlations between the disease groups identified a higher frequency of protein altering alleles in short consensus repeat 20 (SCR20) of factor H (FH), and in the serine protease domain of factor I (FI) in aHUS/C3G patients. In AMD, a higher frequency of protein‐altering alleles was observed in SCR3, SCR5, and SCR7 of FH, the SRCR domain of FI, and in the MG3 domain of C3. In conclusion, we observed a substantial overlap of variants between aHUS/C3G and AMD; however, there is a distinct clustering of variants within specific domains.
Collapse
Affiliation(s)
- M J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E B Volokhina
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N van de Kar
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands
| | - M Pauper
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L P van den Heuvel
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatrics, Department of Growth and Regeneration, University Hospital Leuven, Leuven, Belgium
| | - A I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
|
15
|
Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood 2017; 129:1184-1196. [PMID: 28057640 DOI: 10.1182/blood-2016-07-728253] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/22/2016] [Indexed: 01/07/2023] Open
Abstract
Complement plays a key role in host defense, but its dysregulation can cause autologous tissue injury. Complement activation is normally controlled by regulatory proteins, including factor H (FH) in plasma and membrane cofactor protein (MCP) on the cell surface. Mutations in FH and MCP are linked to atypical hemolytic uremic syndrome, a type of thrombotic microangiopathy (TMA) that causes renal failure. We describe here that disruption of FH function on the cell surface can also lead to disseminated complement-dependent macrovascular thrombosis. By gene targeting, we introduced a point mutation (W1206R) into murine FH that impaired its interaction with host cells but did not affect its plasma complement-regulating activity. Homozygous mutant mice carrying this mutation developed renal TMA as well as systemic thrombophilia involving large blood vessels in multiple organs, including liver, lung, spleen, and kidney. Approximately 30% of mutant mice displayed symptoms of stroke and ischemic retinopathy, and 48% died prematurely. Genetic deficiency of complement C3 and factor D prevented both the systemic thrombophilia and renal TMA phenotypes. These results demonstrate a causal relationship between complement dysregulation and systemic angiopathy and suggest that complement activation may contribute to various human thrombotic disorders involving both the micro- and macrovasculature.
Collapse
|
16
|
Durey MAD, Sinha A, Togarsimalemath SK, Bagga A. Anti-complement-factor H-associated glomerulopathies. Nat Rev Nephrol 2016; 12:563-78. [PMID: 27452363 DOI: 10.1038/nrneph.2016.99] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atypical haemolytic uraemic syndrome (aHUS), an important cause of acute kidney injury, is characterized by dysregulation of the complement pathway, frequent need for dialysis, and progression to end-stage renal disease. Autoantibodies against complement factor H (FH), the main plasma regulatory protein of the alternative pathway of the complement system, account for a considerable proportion of children with aHUS. The autoantibodies are usually associated with the occurrence of a homozygous deletion in the genes encoding the FH-related proteins FHR1 and FHR3. High levels of autoantibodies, noted at the onset of disease and during relapses, induce functional deficiency of FH, whereas their decline, in response to plasma exchanges and/or immunosuppressive therapy, is associated with disease remission. Management with plasma exchange and immunosuppression is remarkably effective in inducing and maintaining remission in aHUS associated with FH autoantibodies, whereas terminal complement blockade with eculizumab is considered the most effective therapy in other forms of aHUS. Anti-FH autoantibodies are also detected in a small proportion of patients with C3 glomerulopathies, which are characterized by chronic glomerular injury mediated by activation of the alternative complement pathway and predominant C3 deposits on renal histology.
Collapse
Affiliation(s)
- Marie-Agnes Dragon Durey
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 15 rue de l'ecole de medecine, 75006 Paris, France.,Université Paris Descartes, Paris, France.,Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, APHP, 20 rue Leblanc, 75015 Paris, France
| | - Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Shambhuprasad Kotresh Togarsimalemath
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 15 rue de l'ecole de medecine, 75006 Paris, France.,Université Paris Descartes, Paris, France
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
17
|
Abstract
Age-related macular degeneration (AMD), widely prevalent across the globe, is a major stakeholder among adult visual morbidity and blindness, not only in the Western world but also in Asia. Several risk factors have been identified, including critical genetic factors, which were never imagined 2 decades ago. The etiopathogenesis is emerging to demonstrate that immune and complement-related inflammation pathway members chronically exposed to environmental insults could justifiably influence disease morbidity and treatment outcomes. Approximately half a dozen physiological and biochemical cascades are disrupted in the AMD disease genesis, eventually leading to the distortion and disruption of the subretinal space, subretinal pigment epithelium, and Bruch membrane, thus setting off chaos and disorder for signs and symptoms to manifest. Approximately 3 dozen genetic factors have so far been identified, including the recent ones, through powerful genomic technologies and large robust sample sizes. The noteworthy genetic variants (common and rare) are complement factor H, complement factor H-related genes 1 to 5, C3, C9, ARMS2/HTRA1, vascular endothelial growth factor A, vascular endothelial growth factor receptor 2/KDR, and rare variants (show causal link) such as TIMP3, fibrillin, COL4A3, MMP19, and MMP9. Despite the enormous amount of scientific information generated over the years, diagnostic genetic or biomarker tests are still not available for clinicians to understand the natural course of the disease and its management in a patient. However, further research in the field should reduce this gap not only by aiding the clinician but also through the possibilities of clinical intervention with complement pathway-related inhibitors entering preclinical and clinical trials in the near future.
Collapse
|
18
|
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54:64-102. [PMID: 27156982 DOI: 10.1016/j.preteyeres.2016.04.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Collapse
Affiliation(s)
- Nathan G Lambert
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Malkit K Singh
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Maximilian Padilla
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - David Keegan
- Mater Misericordia Hospital, Eccles St, Dublin 7, Ireland.
| | - Ruth E Hogg
- Centre for Experimental Medicine, Institute of Clinical Science Block A, Grosvenor Road, Belfast, Co.Antrim, Northern Ireland, UK.
| | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology. J Transl Med 2016; 96:378-90. [PMID: 26752746 DOI: 10.1038/labinvest.2015.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) involves nephron injury leading to irreversible nephron loss, ie, chronic kidney disease (CKD). Both AKI and CKD are associated with distinct histological patterns of tissue injury, but kidney atrophy in CKD involves tissue remodeling with interstitial inflammation and scarring. No doubt, nephron atrophy, inflammation, fibrosis, and renal dysfunction are associated with each other, but their hierarchical relationships remain speculative. To better understand the pathophysiology, we provide an overview of the fundamental danger response programs that assure host survival upon traumatic injury from as early as the first multicellular organisms, ie, bleeding control by coagulation, infection control by inflammation, epithelial barrier restoration by re-epithelialization, and tissue stabilization by mesenchymal repair. Although these processes assure survival in the majority of the populations, their dysregulation causes kidney disease in a minority. We discuss how, in genetically heterogeneous population, genetic variants shift balances and modulate danger responses toward kidney disease. We further discuss how classic kidney disease entities develop from an insufficient or overshooting activation of these danger response programs. Finally, we discuss molecular pathways linking, for example, inflammation and regeneration or inflammation and fibrosis. Understanding the causative and hierarchical relationships and the molecular links between the danger response programs should help to identify molecular targets to modulate kidney injury and to improve outcomes for kidney disease patients.
Collapse
|
20
|
Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome. Mol Immunol 2016; 71:10-22. [DOI: 10.1016/j.molimm.2016.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 01/02/2016] [Indexed: 11/21/2022]
|
21
|
Magro CM, Momtahen S, Mulvey JJ, Yassin AH, Kaplan RB, Laurence JC. Role of the skin biopsy in the diagnosis of atypical hemolytic uremic syndrome. Am J Dermatopathol 2016; 37:349-56; quiz 357-9. [PMID: 25893747 DOI: 10.1097/dad.0000000000000234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Atypical hemolytic uremic syndrome (aHUS) is a prototypic thrombotic microangiopathy attributable to complement dysregulation. In the absence of complement inhibition, progressive clinical deterioration occurs. The authors postulated that a biopsy of normal skin could corroborate the diagnosis of aHUS through the demonstration of vascular deposits of C5b-9. MATERIALS AND METHODS Biopsies of normal skin from 22 patients with and without aHUS were processed for routine light microscopy and immunofluorescent studies. An assessment was made for vascular C5b-9 deposition immunohistochemically and by immunofluorescence. The biopsies were obtained primarily from the forearm and/or deltoid. RESULTS Patients with classic features of aHUS showed insidious microvascular changes including loose luminal platelet thrombi, except in 2 patients in whom a striking thrombogenic vasculopathy was apparent in biopsied digital ulcers. Extensive microvascular deposits of the membrane attack complex/C5b-9 were identified, excluding 1 patient in whom eculizumab was initiated before biopsy. In 5 of the 7 patients where follow-up was available, the patients exhibited an excellent treatment response to eculizumab. Patients without diagnostic clinical features of aHUS failed to show significant vascular deposits of complement, except 2 patients with thrombotic thrombocytopenic purpura including 1 in whom a Factor H mutation was identified. CONCLUSIONS In a clinical setting where aHUS is an important diagnostic consideration, extensive microvascular deposition of C5b-9 supports the diagnosis of either aHUS or a subset of thrombotic thrombocytopenic purpura patients with concomitant complement dysregulation; significant vascular C5b-9 deposition predicts clinical responsiveness to eculizumab.
Collapse
Affiliation(s)
- Cynthia M Magro
- *Professor of Pathology and Laboratory Medicine, Dermatopathologist, Director of Dermatopathology, Department of Pathology and Laboratory Medicine and †Anatomic and Clinical Pathology Resident, Weill Cornell Medical College, Cornell University, New York, NY; ‡MD-PhD Candidate, Weill Cornell Graduate School of Medical Sciences, Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY; §Research Assistant, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY; ¶Hematologist, Department of Hemostasis, Thrombosis Laboratory, The Western Pennsylvania Hospital Allegheny Health Network, Pittsburgh, PA; and #Professor of Medicine in the Division of Hematology-Oncology, Attending Physician, Department of Medicine Weill Cornell Medical College, NewYork-Presbyterian Hospital New York, NY
| | | | | | | | | | | |
Collapse
|
22
|
Ferrara D, Seddon JM. Phenotypic Characterization of Complement Factor H R1210C Rare Genetic Variant in Age-Related Macular Degeneration. JAMA Ophthalmol 2015; 133:785-91. [PMID: 25880396 DOI: 10.1001/jamaophthalmol.2015.0814] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE The complement factor H R1210C rare variant confers the strongest genetic risk for age-related macular degeneration and earlier age at onset; however, its associated phenotype has not been well characterized. OBJECTIVE To describe specific fundus features of a white population with the R1210C rare variant. DESIGN, SETTING, AND PARTICIPANTS Fundus features specific for diagnosis and disease staging were retrospectively characterized by systematic review of all available fundus images for each patient, including color photography, fluorescein angiography, fundus autofluorescence, and optical coherence tomography, at a tertiary ophthalmologic referral center. For this retrospective observational study conducted from 2012 to 2014, enrolled patients with the variant and their family members without the variant were identified from the Age-Related Macular Degeneration Study for a family-based study arm. For patients with the variant but without a family member enrolled in the study, age-matched comparison individuals without the variant were selected randomly from the database. MAIN OUTCOMES AND MEASURES The presence of drusen in the macula (macular drusen score) and estimated number (total macular drusen score) were assessed. The presence of drusen in the extramacular regions (extramacular drusen score), pigmentary abnormalities, and disease staging were also evaluated. Binary logistic regression models were used to evaluate the association between rare variant status and ocular phenotypes. RESULTS Images from a total of 143 patients (283 eyes), including 62 patients with the rare variant, were analyzed. Drusen score covariates were associated with the R1210C rare variant. A larger proportion of patients carrying the variant had the highest level of macular and total macular drusen scores compared with those without the variant (57.9% vs 16.7% and 52.9% vs 14.2%, respectively; P for trend < .001 for both scores). Patients carrying the rare variant had a much greater likelihood of having advanced disease (odds ratio, 7.0; 95% CI, 3.1-16.2; P < .001). A higher prevalence of geographic atrophy was observed among patients carrying the variant (odds ratio, 13.7; 95% CI, 5.0-37.7; P < .001). CONCLUSIONS AND RELEVANCE The typical phenotype of the complement factor H R1210C rare variant is associated with extensive drusen accumulation in the macula and throughout the fundus, as well as with a high risk for having advanced disease. Better characterization of genetic profiles in age-related macular degeneration may be important for screening and future therapeutic strategies for this vision-threatening condition.
Collapse
Affiliation(s)
- Daniela Ferrara
- New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Johanna M Seddon
- New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts2Ophthalmic Epidemiology and Genetics Service, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
23
|
Recalde S, Tortajada A, Subias M, Anter J, Blasco M, Maranta R, Coco R, Pinto S, Noris M, García-Layana A, Rodríguez de Córdoba S. Molecular Basis of Factor H R1210C Association with Ocular and Renal Diseases. J Am Soc Nephrol 2015; 27:1305-11. [PMID: 26376859 DOI: 10.1681/asn.2015050580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/26/2015] [Indexed: 12/23/2022] Open
Abstract
The complement factor H (FH) mutation R1210C, which was described in association with atypical hemolytic uremic syndrome (aHUS), also confers high risk of age-related macular degeneration (AMD) and associates with C3 glomerulopathy (C3G). To reveal the molecular basis of these associations and to provide insight into what determines the disease phenotype in FH-R1210C carriers, we identified FH-R1210C carriers in our aHUS, C3G, and AMD cohorts. Disease status, determined in patients and relatives, revealed an absence of AMD phenotypes in the aHUS cohort and, vice versa, a lack of renal disease in the AMD cohort. These findings were consistent with differences in the R1210C-independent overall risk for aHUS and AMD between mutation carriers developing one pathology or the other. R1210C is an unusual mutation that generates covalent complexes between FH and HSA. Using purified FH proteins and surface plasmon resonance analyses, we demonstrated that formation of these FH-HSA complexes impairs accessibility to all FH functional domains. These data suggest that R1210C is a unique C-terminal FH mutation that behaves as a partial FH deficiency, predisposing individuals to diverse pathologies with distinct underlying pathogenic mechanisms; the final disease outcome is then determined by R1210C-independent genetic risk factors.
Collapse
Affiliation(s)
- Sergio Recalde
- Department of Ophthalmology, University Clinic of Navarra, Pamplona, Navarra, Spain
| | - Agustin Tortajada
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Marta Subias
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Jaouad Anter
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Miquel Blasco
- Nephrology and Kidney Transplant Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramona Maranta
- Mario Negri Institute for Pharmacology Research, Aldo and Cele Daccò Clinical Research Center for Rare Diseases, Ranica, Bergamo, Italy; and
| | - Rosa Coco
- Institute of Applied Ophthalmology, University of Valladolid, Valladolid, Spain
| | - Sheila Pinto
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Marina Noris
- Mario Negri Institute for Pharmacology Research, Aldo and Cele Daccò Clinical Research Center for Rare Diseases, Ranica, Bergamo, Italy; and
| | | | - Santiago Rodríguez de Córdoba
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain;
| |
Collapse
|
24
|
Miyake M, Saito M, Yamashiro K, Sekiryu T, Yoshimura N. Complement factor H R1210C among Japanese patients with age-related macular degeneration. Jpn J Ophthalmol 2015. [PMID: 26215151 DOI: 10.1007/s10384-015-0394-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the genotype distribution of a rare age-related macular degeneration (AMD)-susceptibility variant, complement factor H (CFH) R1210C, among a large Japanese cohort with AMD. METHODS One thousand three hundred and sixty-four Japanese patients with neovascular AMD were evaluated. We screened for CFH R1210C (rs121913059) by genotyping with the Taqman method; the mutation was confirmed by Sanger sequencing. We also searched for this mutation in the human genome variant database, which contains the whole-exome sequencing data for 1208 Japanese individuals. The detailed characteristics of patients with this mutation were reviewed. RESULTS The mean age of the patients was 74.5 years (standard deviation 8.7); men accounted for 71.8 % of the patients. The CFH R1210C variant was found in only 1 of the 1364 AMD patients, and was heterozygous (minor allele frequency (MAF) = 0.037 %); it was not found in any of the 1208 individuals in the control group (MAF = 0 %). The patient with CFH R1210C was a 70-year-old woman whose main complaint was visual loss in the right eye. Dilated fundus examination, optical coherence tomography, and fluorescein and indocyanine angiography revealed polypoidal choroidal neovasculopathy (PCV), but no drusen in either eye. Despite treatment, her visual acuity had decreased to 1/50 by 6.8 years after her first visit. CONCLUSIONS The CFH R1210C variant was found to be rare among Japanese patients with AMD. The patient with the mutation did have the PCV subtype, but no drusen formation. Considering their ethnicity-specific nature, such rare variants should be studied by use of next-generation sequencing for each ethnicity.
Collapse
Affiliation(s)
- Masahiro Miyake
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaaki Saito
- Department of Ophthalmology, Fukushima Medical University, Fukushima, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Tetsuju Sekiryu
- Department of Ophthalmology, Fukushima Medical University, Fukushima, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Kijlstra A, Berendschot TTJM. Age-related macular degeneration: a complementopathy? Ophthalmic Res 2015; 54:64-73. [PMID: 26159686 DOI: 10.1159/000432401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive eye disease affecting many elderly individuals. It has a multifactorial pathogenesis and is associated with numerous environmental (e.g. smoking, light and nutrition) and genetic risk factors. A breakthrough in the mechanisms causing AMD is emerging; the involvement of the alternative pathway of the complement system appears to play a pivotal role. This has led to the statement that AMD is a disease caused by a hyperactive complement system, allowing the term 'complementopathy' to define it more precisely. Abundant evidence includes: the identification of drusen components as activators of complement, immunohistochemical data showing the presence of many species of the complement system in the retinal pigment epithelium-Bruch's membrane-choroidocapillary region of AMD eyes, a strong association of AMD with certain genetic complement protein variants, raised complement levels in blood from AMD patients and the preliminary successful treatments of geographic atrophy with complement factor D (FD) inhibitors. FD is the rate-limiting enzyme of the alternative complement pathway, and is produced by adipose tissue. Recent findings suggest that nutrition may play a role in controlling the level of FD in the circulation. Addressing modifiable risk factors such as smoking and nutrition may thus offer opportunities for the prevention of AMD.
Collapse
Affiliation(s)
- Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
26
|
de Córdoba SR. Complement genetics and susceptibility to inflammatory disease. Lessons from genotype-phenotype correlations. Immunobiology 2015; 221:709-14. [PMID: 26004345 DOI: 10.1016/j.imbio.2015.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Different genome-wide linkage and association studies performed during the last 15 years have associated mutations and polymorphisms in complement genes with different diseases characterized by tissue damage and inflammation. These are complex disorders in which genetically susceptible individuals usually develop the pathology as a consequence of environmental triggers. Although complement dysregulation is a common feature of these pathologies, how the disease phenotype is determined is only partly understood. One way to advance understanding is to focus the research in the analysis of the peculiar genotype-phenotype correlations that characterize some of these diseases. I will review here how understanding the functional consequences of these disease-associated complement genetic variants is providing us with novel insights into the underpinning complement biology and a better knowledge of the pathogenic mechanisms underlying each of these pathologies. These advances have important therapeutic and diagnostic implications.
Collapse
|
27
|
Martínez-Barricarte R, Heurich M, López-Perrote A, Tortajada A, Pinto S, López-Trascasa M, Sánchez-Corral P, Morgan BP, Llorca O, Harris CL, Rodríguez de Córdoba S. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol 2015; 66:263-73. [PMID: 25879158 PMCID: PMC4503813 DOI: 10.1016/j.molimm.2015.03.248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 01/28/2023]
Abstract
Mutations in C3 have been associated with aHUS and other glomerulopathies. aHUS-associated C3 mutants R592W, R161W, and I1157T impair regulation by MCP, but not by FH. EM analysis provides the structural basis for the functional impairment of the R161W and I1157T mutants. Data supports aHUS-associated C3 mutations selectively affect complement regulation on surfaces.
Atypical hemolytic uremic syndrome (aHUS) associates with complement dysregulation caused by mutations and polymorphisms in complement activators and regulators. However, the reasons why some mutations in complement proteins predispose to aHUS are poorly understood. Here, we have investigated the functional consequences of three aHUS-associated mutations in C3, R592W, R161W and I1157T. First, we provide evidence that penetrance and disease severity for these mutations is modulated by inheritance of documented “risk” haplotypes as has been observed with mutations in other complement genes. Next, we show that all three mutations markedly reduce the efficiency of factor I-mediated C3b cleavage when catalyzed by membrane cofactor protein (MCP), but not when catalyzed by factor H. Biacore analysis showed that each mutant C3b bound sMCP (recombinant soluble MCP; CD46) at reduced affinity, providing a molecular basis for its reduced cofactor activity. Lastly, we show by electron microscopy structural analysis a displacement of the TED domain from the MG ring in C3b in two of the C3 mutants that explains these defects in regulation. As a whole our data suggest that aHUS-associated mutations in C3 selectively affect regulation of complement on surfaces and provide a structural framework to predict the functional consequences of the C3 genetic variants found in patients.
Collapse
Affiliation(s)
- Rubén Martínez-Barricarte
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Meike Heurich
- Institute of Infection & Immunity, School of Medicine, Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | - Agustin Tortajada
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sheila Pinto
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Margarita López-Trascasa
- Unidad de Inmunología, Hospital Universitario La Paz-IdiPAZ, and Ciber de Enfermedades Raras. Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Pilar Sánchez-Corral
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, and Ciber de Enfermedades Raras. Paseo de la Castellana 261, 28046 Madrid, Spain
| | - B Paul Morgan
- Institute of Infection & Immunity, School of Medicine, Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Oscar Llorca
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Claire L Harris
- Institute of Infection & Immunity, School of Medicine, Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Santiago Rodríguez de Córdoba
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Alasfar S, Alachkar N. Atypical hemolytic uremic syndrome post-kidney transplantation: two case reports and review of the literature. Front Med (Lausanne) 2014; 1:52. [PMID: 25593925 PMCID: PMC4292050 DOI: 10.3389/fmed.2014.00052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 11/29/2014] [Indexed: 01/09/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare disorder characterized by over-activation and dysregulation of the alternative complement pathway. Its estimated prevalence is 1–2 per million. The disease is characterized by thrombotic microangiopathy, which causes anemia, thrombocytopenia, and acute renal failure. aHUS has more severe course compared to typical (infection-induced) HUS and is frequently characterized by relapses that leads to end stage renal disease. For a long time, kidney transplantation for these patients was contraindicated because of high rate of recurrence and subsequent renal graft loss. The post-kidney transplantation recurrence rate largely depends on the pathogenetic mechanisms involved. However, over the past several years, advancements in the understanding and therapeutics of aHUS have allowed successful kidney transplantation in these patients. Eculizumab, which is a complement C5 antibody that inhibits complement factor 5a and subsequent formation of the membrane-attack complex, has been used in prevention and treatment of post-transplant aHUS recurrence. In this paper, we present two new cases of aHUS patients who underwent successful kidney transplantation in our center with the use of prophylactic and maintenance eculizumab therapy that have not been published before. The purpose of reporting these two cases is to emphasize the importance of using eculizumab as a prophylactic therapy to prevent aHUS recurrence post-transplant in high-risk patients. We will also review the current understanding of the genetics of aHUS, the pathogenesis of its recurrence after kidney transplantation, and strategies for prevention and treatment of post-transplant aHUS recurrence.
Collapse
Affiliation(s)
- Sami Alasfar
- Department of Medicine, Division of Nephrology, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Nada Alachkar
- Department of Medicine, Division of Nephrology, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
29
|
Sansbury FH, Cordell HJ, Bingham C, Bromilow G, Nicholls A, Powell R, Shields B, Smyth L, Warwicker P, Strain L, Wilson V, Goodship JA, Goodship THJ, Turnpenny PD. Factors determining penetrance in familial atypical haemolytic uraemic syndrome. J Med Genet 2014; 51:756-64. [PMID: 25261570 DOI: 10.1136/jmedgenet-2014-102498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Inherited abnormalities of complement are found in ∼60% of patients with atypical haemolytic uraemic syndrome (aHUS). Such abnormalities are not fully penetrant. In this study, we have estimated the penetrance of the disease in three families with a CFH mutation (c.3643C>G; p. Arg1215Gly) in whom a common lineage is probable. 25 individuals have been affected with aHUS with three peaks of incidence-early childhood (n=6), early adulthood (n=11) and late adulthood (n=8). Eighteen individuals who have not developed aHUS carry the mutation. METHODS We estimated penetrance at the ages of 4, 27, 60 and 70 years as both a binary and a survival trait using MLINK and Mendel. We genotyped susceptibility factors in CFH, CD46 and CFHR1 in affected and unaffected carriers. RESULTS AND CONCLUSIONS We found that the estimates of penetrance at the age of 4 years ranged from <0.01 to 0.10, at the age of 27 years from 0.16 to 0.29, at the age of 60 years from 0.39 to 0.51 and at the age of 70 years from 0.44 to 0.64. We found that the CFH haplotype on the allele not carrying the CFH mutation had a significant effect on disease penetrance. In this family, we did not find that the CD46 haplotypes had a significant effect on penetrance.
Collapse
Affiliation(s)
- Francis H Sansbury
- Peninsula Clinical Genetics Service, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK University of Exeter Medical School, University of Exeter, Exeter, UK Bristol Clinical Genetics Service, University Hospitals Bristol NHS Foundation Trust, Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Coralie Bingham
- University of Exeter Medical School, University of Exeter, Exeter, UK Department of Renal Medicine, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Wonford), Exeter, UK
| | - Gilly Bromilow
- Peninsula Clinical Genetics Service, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Anthony Nicholls
- Department of Renal Medicine, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Wonford), Exeter, UK
| | - Roy Powell
- Research Design Service South West, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Wonford), Exeter, UK
| | - Bev Shields
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lucy Smyth
- Department of Renal Medicine, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Wonford), Exeter, UK
| | - Paul Warwicker
- Lister Renal Units, East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Lisa Strain
- Northern Molecular Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Valerie Wilson
- Northern Molecular Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Peter D Turnpenny
- Peninsula Clinical Genetics Service, Royal Devon & Exeter NHS Foundation Trust, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
30
|
Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM, Shi SF, Liu LJ, Yu F, Zhao MH, Novak J, Gharavi AG, Zhang H. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy. J Am Soc Nephrol 2014; 26:1195-204. [PMID: 25205734 DOI: 10.1681/asn.2014010096] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN.
Collapse
Affiliation(s)
- Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ya-Ling Zhai
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng-Mei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ping Hou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Da-Min Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li-Jun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Ali G Gharavi
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China;
| |
Collapse
|
31
|
Abstract
Atypical hemolytic-uremic syndrome (aHUS) is associated with genetic complement abnormalities/anti-complement factor H antibodies, which paved the way to treatment with eculizumab. We studied 44 aHUS patients and their relatives to (1) test new assays of complement activation, (2) verify whether such abnormality occurs also in unaffected mutation carriers, and (3) search for a tool for eculizumab titration. An abnormal circulating complement profile (low C3, high C5a, or SC5b-9) was found in 47% to 64% of patients, irrespective of disease phase. Acute aHUS serum, but not serum from remission, caused wider C3 and C5b-9 deposits than control serum on unstimulated human microvascular endothelial cells (HMEC-1). In adenosine 5'-diphosphate-activated HMEC-1, also sera from 84% and 100% of patients in remission, and from all unaffected mutation carriers, induced excessive C3 and C5b-9 deposits. At variance, in most patients with C3 glomerulopathies/immune complex-associated membranoproliferative glomerulonephritis, serum-induced endothelial C5b-9 deposits were normal. In 8 eculizumab-treated aHUS patients, C3/SC5b-9 circulating levels did not change posteculizumab, whereas serum-induced endothelial C5b-9 deposits normalized after treatment, paralleled or even preceded remission, and guided drug dosing and timing. These results point to efficient complement inhibition on endothelium for aHUS treatment. C5b-9 endothelial deposits might help monitor eculizumab effectiveness, avoid drug overexposure, and save money considering the extremely high cost of the drug.
Collapse
|
32
|
Román-Ortiz E, Mendizabal Oteiza S, Pinto S, López-Trascasa M, Sánchez-Corral P, Rodríguez de Cordoba S. Eculizumab long-term therapy for pediatric renal transplant in aHUS with CFH/CFHR1 hybrid gene. Pediatr Nephrol 2014; 29:149-53. [PMID: 23982707 DOI: 10.1007/s00467-013-2591-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by dysregulation of the complement system. Outcomes of kidney transplantation are poor owing to aHUS recurrence and loss of graft. Patients carrying CFH mutations or CFH/CFHR1 hybrid genes present a very high risk of recurrence despite preventive plasmapheresis. Evaluation of recent data suggests that prophylactic eculizumab pretransplant might be the preferred therapy if available. CASE-DIAGNOSIS/TREATMENT We report 3-year follow-up data in a 9-year-old boy with aHUS and successful renal transplant treated with prophylactic eculizumab without recurrence. He presented with aHUS at age 3, irreversible renal failure and uncontrolled severe hypertension with concentric left ventricular hypertrophy, recurrent acute pulmonary edema, and congestive heart failure despite five hypotensive agents and bilateral nephrectomy. Complement analysis demonstrated the presence of a CFH/CFHR1 hybrid gene inherited from his mother and a SNP risk CFH haplotype inherited from his father. Kidney transplant was performed with prophylactic eculizumab and subsequent fortnightly administration. Three years post-transplant, graft function remains stable (serum creatinine 0.9 mg/dl), hypertension is controlled, no left ventricular hypertrophy, no opportunistic infections, and negative clinical chemistry parameters for hemolysis. CONCLUSION Eculizumab is a safe and effective therapy for preventing TMA recurrence and provides long-term graft function in aHUS with the CFH/CFHR1 hybrid gene.
Collapse
Affiliation(s)
- Elena Román-Ortiz
- Pediatric Nephrology Unit, Hospital La Fe, Bulevar sur s/n, 46026, Valencia, Spain,
| | | | | | | | | | | |
Collapse
|
33
|
Sobrin L, Seddon JM. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog Retin Eye Res 2013; 40:1-15. [PMID: 24374240 DOI: 10.1016/j.preteyeres.2013.12.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is a common cause of irreversible visual loss and the disease burden is rising world-wide as the population ages. Both environmental and genetic factors contribute to the development of this disease. Among environmental factors, smoking, obesity and dietary factors including antioxidants and dietary fat intake influence onset and progression of AMD. There are also several lines of evidence that link cardiovascular, immune and inflammatory biomarkers to AMD. The genetic etiology of AMD has been and continues to be an intense and fruitful area of investigation. Genome-wide association studies have revealed numerous common variants associated with AMD and sequencing is increasing our knowledge of how rare genetic variants strongly impact disease. Evidence for interactions between environmental, therapeutic and genetic factors is emerging and elucidating the mechanisms of this interplay remains a major challenge in the field. Genotype-phenotype associations are evolving. The knowledge of non-genetic, modifiable risk factors along with information about heritability and genetic risk variants for this disease acquired over the past 25 years have greatly improved patient management and our ability to predict which patients will develop or progress to advanced forms of AMD. Personalized medicine and individualized prevention and treatment strategies may become a reality in the near future.
Collapse
Affiliation(s)
- Lucia Sobrin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Johanna M Seddon
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA, USA; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
34
|
Boon CJ, van de Ven JP, Hoyng CB, den Hollander AI, Klevering BJ. Cuticular drusen: Stars in the sky. Prog Retin Eye Res 2013; 37:90-113. [DOI: 10.1016/j.preteyeres.2013.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
|
35
|
Wilson V, Darlay R, Wong W, Wood KM, McFarlane J, Schejbel L, Schmidt IM, Harris CL, Tellez J, Hunze EM, Marchbank K, Goodship JA, Goodship THJ. Genotype/phenotype correlations in complement factor H deficiency arising from uniparental isodisomy. Am J Kidney Dis 2013; 62:978-83. [PMID: 23870792 DOI: 10.1053/j.ajkd.2013.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/15/2013] [Indexed: 11/11/2022]
Abstract
We report a male infant who presented at 8 months of age with atypical hemolytic uremic syndrome (aHUS) responsive to plasma therapy. Investigation showed him to have complement factor H (CFH) deficiency associated with a homozygous CFH mutation (c.2880delT [p.Phe960fs]). Mutation screening of the child's parents revealed that the father was heterozygous for this change but that it was not present in his mother. Chromosome 1 uniparental isodisomy of paternal origin was confirmed by genotyping chromosome 1 SNPs. CD46 SNP genotyping was undertaken in this individual and another patient with CFH deficiency associated with chromosome 1 uniparental isodisomy. This showed a homozygous aHUS risk haplotype (CD46GGAAC) in the patient with aHUS and a homozygous glomerulonephritis risk haplotype (CD46AAGGT) in the patient with endocapillary glomerulonephritis. We also showed that FHL-1 (factor H-like protein 1) was present in the patient with aHUS and absent in the patient with glomerulonephritis. This study emphasizes that modifiers such as CD46 and FHL-1 may determine the kidney phenotype of patients who present with homozygous CFH deficiency.
Collapse
Affiliation(s)
- Valerie Wilson
- Northern Molecular Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Complement dysregulation and disease: from genes and proteins to diagnostics and drugs. Immunobiology 2013; 217:1034-46. [PMID: 22964229 DOI: 10.1016/j.imbio.2012.07.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 12/21/2022]
Abstract
During the last decade, numerous studies have associated genetic variations in complement components and regulators with a number of chronic and infectious diseases. The functional characterization of these complement protein variants, in addition to recent structural advances in understanding of the assembly, activation and regulation of the AP C3 convertase, have provided important insights into the pathogenic mechanisms involved in some of these complement related disorders. This knowledge has identified potential targets for complement inhibitory therapies which are demonstrating efficacy and generating considerable expectation in changing the natural history of these diseases. Comprehensive understanding of the genetic and non-genetic risk factors contributing to these disorders will also result in targeting of the right patient groups in a stratified medicine approach through better diagnostics and individually tailored treatments, thereby improving management of patients.
Collapse
|
37
|
Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, Pinto S, Goodship THJ, Alberti M, Ribes D, Valoti E, Remuzzi G, Noris M. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol 2013; 24:475-86. [PMID: 23431077 DOI: 10.1681/asn.2012090884] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype-phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%-10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation.
Collapse
Affiliation(s)
- Elena Bresin
- Clinical Research Center for Rare Diseases, “Aldo e Cele Daccò,” Mario Negri Institute for Pharmacological Research, Ranica, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Familial atypical hemolytic uremic syndrome: a review of its genetic and clinical aspects. Clin Dev Immunol 2012; 2012:370426. [PMID: 23251215 PMCID: PMC3509654 DOI: 10.1155/2012/370426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare renal disease (two per one million in the USA) characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Both sporadic (80% of cases) and familial (20% of cases) forms are recognized. The study of familial aHUS has implicated genetic variation in multiple genes in the complement system in disease pathogenesis, helping to define the mechanism whereby complement dysregulation at the cell surface level leads to both sporadic and familial disease. This understanding has culminated in the use of Eculizumab as first-line therapy in disease treatment, significantly changing the care and prognosis of affected patients. However, even with this bright outlook, major challenges remain to understand the complexity of aHUS at the genetic level. It is possible that a more detailed picture of aHUS can be translated to an improved understanding of disease penetrance, which is highly variable, and response to therapy, both in the short and long terms.
Collapse
|
39
|
Westra D, Wetzels JFM, Volokhina EB, van den Heuvel LP, van de Kar NCAJ. A new era in the diagnosis and treatment of atypical haemolytic uraemic syndrome. Neth J Med 2012; 25:2195-202. [PMID: 22516576 DOI: 10.1093/ndt/gfq010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The haemolytic uraemic syndrome (HUS) is characterised by haemolytic anaemia, thrombocytopenia and acute renal failure. The majority of cases are seen in childhood and are preceded by an infection with Shiga-like toxin producing Escherichia coli (STEC-HUS; so-called typical HUS). Non-STEC or atypical HUS (aHUS) is seen in 5 to 10% of all cases and occurs at all ages. These patients have a poorer outcome and prognosis than patients with STEC-HUS. New insights into the pathogenesis of aHUS were revealed by the identification of mutations in genes encoding proteins of the alternative pathway of the complement system in aHUS patients. Specific information of the causative mutation is important for individualised patient care with respect to choice and efficacy of therapy, the outcome of renal transplantation, and the selection of living donors. This new knowledge about the aetiology of the disease has stimulated the development of more specific treatment modalities. Until now, plasma therapy was used with limited success in aHUS, but recent clinical trials have demonstrated that patients with aHUS can be effectively treated with complement inhibitors, such as the monoclonal anti-C5 inhibitor eculizumab.
Collapse
Affiliation(s)
- D Westra
- Department of Paediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
40
|
Harris CL, Heurich M, Rodriguez de Cordoba S, Morgan BP. The complotype: dictating risk for inflammation and infection. Trends Immunol 2012; 33:513-21. [PMID: 22749446 PMCID: PMC3460238 DOI: 10.1016/j.it.2012.06.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 12/19/2022]
Abstract
Complement is a key component of immune defence against infection; it potently drives inflammation at sites of pathology and is essential for killing of pathogens. Genetic linkage of common complement polymorphisms to disease has advanced the concept that subtle changes in complement activity significantly affect disease risk. Functional analyses of disease-linked polymorphic variants demonstrate that, although individual polymorphisms cause only small changes in activity, when combined, the aggregate effects are large. The inherited set of common variants, the complotype, thus has a major impact on susceptibility to inflammatory and infectious diseases. Assessing the complotype of an individual will aid prediction of disease risk and inform intervention to reduce or eliminate risk.
Collapse
Affiliation(s)
- Claire L Harris
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | |
Collapse
|
41
|
Brown JH, Tellez J, Wilson V, Mackie IJ, Scully M, Tredger MM, Moore I, McDougall NI, Strain L, Marchbank KJ, Sheerin NS, O'Grady J, Harris CL, Goodship THJ. Postpartum aHUS secondary to a genetic abnormality in factor H acquired through liver transplantation. Am J Transplant 2012; 12:1632-6. [PMID: 22420623 DOI: 10.1111/j.1600-6143.2012.03991.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here a young female who underwent a successful deceased donor liver transplant for hepatic vein thrombosis. Five years after transplantation she developed postpartum atypical hemolytic uremic syndrome (aHUS). She did not recover renal function. Mutation screening of complement genes in her DNA did not show any abnormality. Mutation screening of DNA available from the donor showed a nonsense CFH mutation leading to factor H deficiency. Genotyping of the patient showed that she was homozygous for an aHUS CD46 at-risk haplotype. In this individual, the development of aHUS has been facilitated by the combination of a trigger (pregnancy), an acquired rare genetic variant (CFH mutation) and a common susceptibility factor (CD46 haplotype).
Collapse
Affiliation(s)
- J H Brown
- Renal Unit, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood 2012; 119:4182-91. [PMID: 22246034 DOI: 10.1182/blood-2011-10-383281] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare renal thrombotic microangiopathy commonly associated with rare genetic variants in complement system genes, unique to each patient/family. Here, we report 14 sporadic aHUS patients carrying the same mutation, R139W, in the complement C3 gene. The clinical presentation was with a rapid progression to end-stage renal disease (6 of 14) and an unusually high frequency of cardiac (8 of 14) and/or neurologic (5 of 14) events. Although resting glomerular endothelial cells (GEnCs) remained unaffected by R139W-C3 sera, the incubation of those sera with GEnC preactivated with pro-inflammatory stimuli led to increased C3 deposition, C5a release, and procoagulant tissue-factor expression. This functional consequence of R139W-C3 resulted from the formation of a hyperactive C3 convertase. Mutant C3 showed an increased affinity for factor B and a reduced binding to membrane cofactor protein (MCP; CD46), but a normal regulation by factor H (FH). In addition, the frequency of at-risk FH and MCP haplotypes was significantly higher in the R139W-aHUS patients, compared with normal donors or to healthy carriers. These genetic background differences could explain the R139W-aHUS incomplete penetrance. These results demonstrate that this C3 mutation, especially when associated with an at-risk FH and/or MCP haplotypes, becomes pathogenic following an inflammatory endothelium-damaging event.
Collapse
|
43
|
A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome. Blood 2012; 119:591-601. [DOI: 10.1182/blood-2011-03-339903] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Genomic disorders affecting the genes encoding factor H (fH) and the 5 factor H related proteins have been described in association with atypical hemolytic uremic syndrome. These include deletions of CFHR3, CFHR1, and CFHR4 in association with fH autoantibodies and the formation of a hybrid CFH/CFHR1 gene. These occur through nonallelic homologous recombination secondary to the presence of large segmental duplications (macrohomology) in this region. Using multiplex ligation-dependent probe amplification to screen for such genomic disorders, we have identified a large atypical hemolytic uremic syndrome family where a deletion has occurred through microhomology-mediated end joining rather than nonallelic homologous recombination. In the 3 affected persons of this family, we have shown that the deletion results in formation of a CFH/CFHR3 gene. We have shown that the protein product of this is a 24 SCR protein that is secreted with normal fluid-phase activity but marked loss of complement regulation at cell surfaces despite increased heparin binding. In this study, we have therefore shown that microhomology in this area of chromosome 1 predisposes to disease associated genomic disorders and that the complement regulatory function of fH at the cell surface is critically dependent on the structural integrity of the whole molecule.
Collapse
|
44
|
A rare variant in CFH directly links age-related macular degeneration with rare glomerular nephropathies. Nat Genet 2011; 43:1176-7. [PMID: 22120053 DOI: 10.1038/ng.1012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A careful analysis of risk haplotypes in relation to age-related macular degeneration (AMD) susceptibility has led to the identification of a rare, high-penetrance variant in the complement factor H (CFH) gene that is also causally associated with atypical hemolytic uremic syndrome (aHUS) and related glomerulopathies. This finding provides a convincing causal mechanism linking the two diseases and develops a paradigm for the genetic architecture of a common and complex disease.
Collapse
|
45
|
Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S, Gowrisankar S, Vemuri S, Montgomery K, Yu Y, Reynolds R, Zack DJ, Campochiaro B, Campochiaro P, Katsanis N, Daly MJ, Seddon JM. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet 2011; 43:1232-6. [PMID: 22019782 PMCID: PMC3225644 DOI: 10.1038/ng.976] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/20/2011] [Indexed: 01/12/2023]
Abstract
Two common variants within CFH, the Y402H1–4 and the rs1410996 SNPs5,6, explain 17% of age-related macular degeneration (AMD) liability. However, proof for the involvement of CFH, as opposed to a neighboring transcript, and the potential mechanism of susceptibility alleles are lacking. Assuming that rare functional variants might provide mechanistic insights, we used genotype data and high throughput sequencing to discover a rare high-risk CFH haplotype containing an R1210C mutation. This allele has been implicated previously in atypical hemolytic uremic syndrome, and abrogates C-terminal ligand binding7,8. Genotyping R1210C in 2,423 AMD cases and 1,122 controls demonstrated high penetrance (present in 40 cases versus 1 control, p=7.0×10−6) and six year earlier onset of disease (p=2.3×10−6). This result suggests that loss of function alleles at CFH likely drive AMD risk. This finding represents one of the first instances where a common complex disease variant has led to discovery of a rare penetrant mutation.
Collapse
Affiliation(s)
- Soumya Raychaudhuri
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Piscione TD, Licht C. Genetics of proteinuria: an overview of gene mutations associated with nonsyndromic proteinuric glomerulopathies. Adv Chronic Kidney Dis 2011; 18:273-89. [PMID: 21782134 DOI: 10.1053/j.ackd.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/02/2011] [Accepted: 06/16/2011] [Indexed: 02/08/2023]
Abstract
Heritable causes of proteinuria are rare and account for a relatively small proportion of all cases of proteinuria affecting children and adults. Yet, significant contributions to understanding the mechanistic basis for proteinuria have been made through genetic and molecular analyses of a small group of syndromic and nonsyndromic proteinuric disorders which are caused by mutations encoding structural components of the glomerular filtration barrier. Technological advances in genomic analyses and improved accessibility to mutational screening at clinically approved laboratories have facilitated diagnosis of proteinuria in the clinical setting. From a clinical standpoint, it may be argued that a genetic diagnosis mitigates exposure to potentially ineffective and harmful treatments in instances where a clear genotype-phenotype correlation exists between a specific gene mutation and treatment nonresponsiveness. However, cautious interpretation of risk may be necessitated in cases with phenotypic heterogeneity (eg, variability in clinical or histological presentation). This review summarizes gene mutations which are known to be associated with proteinuric glomerulopathies in children and adults.
Collapse
|
47
|
Frémeaux-Bacchi V, Fakhouri F, Roumenina L, Dragon-Durey MA, Loirat C. [Atypical hemolytic-uremic syndrome related to abnormalities within the complement system]. Rev Med Interne 2011; 32:232-40. [PMID: 21376430 DOI: 10.1016/j.revmed.2009.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/19/2009] [Indexed: 12/25/2022]
Abstract
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA) disorder characterised by the association of haemolytic anaemia, thrombocytopenia and acute renal failure. Atypical forms (non-shigatoxin related forms) may be familial or sporadic, frequently with relapses and most of them lead to end stage renal failure. During the last years, different groups have demonstrated genetic predisposition to atypical HUS (aHUS) involving five genes encoding for complement components which play a role in the activation or control of the alternative pathway: encoding factor H (CFH), accounting for 30% of aHUS; CD46 (encoding membrane cofactor protein [MCP]) accounting for approximately 10% of aHUS; CFI (encoding factor I) accounting for an estimated 5-15% of patients; C3 (encoding C3) accounting for approximately 10% of aHUS; and rarely CFB (encoding factor B). Predisposition to aHUS is inherited with incomplete penetrance. It is admitted that mutations confer a predisposition to develop aHUS rather than directly causing the disease and that a second event (genetic or environmental) is required for disease manifestation. HUS onset follows a triggering event in most cases (frequently banal seasonal infection and pregnancy). Uncontrolled C3 convertase leads to increased deposition of C3b on vascular endothelium and participates to the prothrombotic state. The phenotype of aHUS is variable ranging from mild forms, with complete recovery of renal function to severe forms with end stage renal disease within the first year after the onset. Overall, the outcome is severe with a mortality rate of 10% and with more than 60% of patients on dialysis. The most severe prognosis was in the CFH mutation group. There is a high risk of recurrence of the disease after renal transplantation in patients with mutations in CFH, CFI, CFB and C3. Plasma therapy may allow complete haematological remission but frequently with persistent renal damage. Some patients are plasma resistant and some are plasma dependent. The recent progress in the determination of the susceptibility factors for aHUS, have allowed to propose new diagnostic tests including a molecular genetic testing and may permit to consider some new specific treatments in this disease (human plasma-derived CFH or complement inhibitors).
Collapse
Affiliation(s)
- V Frémeaux-Bacchi
- Service d'immunologie biologique, hôpital Européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20-40, rue Leblanc, 75908 Paris cedex 15, France.
| | | | | | | | | |
Collapse
|
48
|
Kavanagh D, Goodship THJ. Atypical hemolytic uremic syndrome, genetic basis, and clinical manifestations. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:15-20. [PMID: 22160007 DOI: 10.1182/asheducation-2011.1.15] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is now well recognized to be a disease characterized by excessive complement activation in the microvasculature. In both the familial and sporadic forms, inherited and acquired abnormalities affecting components of the alternative complement pathway are found in ~ 60% of patients. These include mutations in the genes encoding both complement regulators (factor H, factor I, membrane cofactor protein, and thrombomodulin) and activators (factors B and C3) and autoantibodies against factor H. Multiple hits are necessary for the disease to manifest, including a trigger, mutations, and at-risk haplotypes in complement genes. The prognosis for aHUS is poor, with most patients developing end-stage renal failure. Renal transplantation in most patients also has a poor prognosis, with frequent loss of the allograft to recurrent disease. However, improving results with combined liver-kidney transplantation and the advent of complement inhibitors such as eculizumab offer hope that the prognosis for aHUS will improve in future years.
Collapse
Affiliation(s)
- David Kavanagh
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
49
|
Abstract
Central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS) is over-activation of the alternative pathway of complement. Following the initial discovery of mutations in the complement regulatory protein, factor H, mutations have been described in factor I, membrane cofactor protein and thrombomodulin, which also result in decreased complement regulation. Autoantibodies to factor H have also been reported to impair complement regulation in aHUS. More recently, gain of function mutations in the complement components C3 and Factor B have been seen. This review focuses on the genetic causes of aHUS, their functional consequences, and clinical effect.
Collapse
|
50
|
|