1
|
Finn LS. Nephrotic Syndrome Throughout Childhood: Diagnosing Podocytopathies From the Womb to the Dorm. Pediatr Dev Pathol 2024; 27:426-458. [PMID: 38745407 DOI: 10.1177/10935266241242669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The etiologies of podocyte dysfunction that lead to pediatric nephrotic syndrome (NS) are vast and vary with age at presentation. The discovery of numerous novel genetic podocytopathies and the evolution of diagnostic technologies has transformed the investigation of steroid-resistant NS while simultaneously promoting the replacement of traditional morphology-based disease classifications with a mechanistic approach. Podocytopathies associated with primary and secondary steroid-resistant NS manifest as diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy. Molecular testing, once an ancillary option, has become a vital component of the clinical investigation and when paired with kidney biopsy findings, provides data that can optimize treatment and prognosis. This review focuses on the causes including selected monogenic defects, clinical phenotypes, histopathologic findings, and age-appropriate differential diagnoses of nephrotic syndrome in the pediatric population with an emphasis on podocytopathies.
Collapse
Affiliation(s)
- Laura S Finn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Suihko A, Tainio J, Tuokkola J, Ylinen E, Hölttä T, Jahnukainen T. Late nephrectomy in infants with congenital nephrotic syndrome of the Finnish type. Acta Paediatr 2024; 113:1957-1964. [PMID: 38785367 DOI: 10.1111/apa.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
AIM Bilateral nephrectomy is commonly performed in patients with congenital nephrotic syndrome of the Finnish type. The optimal timing of nephrectomy is unclear. METHODS Growth, thromboembolic events, infections, transplant-related complications and ability to eat were compared between infants with early (Group 1, n = 13) and late (Group 2, n = 10) nephrectomy. 'Early' was defined as nephrectomy at 7-kg body weight followed by peritoneal dialysis and 'late' as nephrectomy at ≥10 kg followed by 3-4 weeks of haemodialysis and kidney transplantation. Patients were followed until the end of the first post-transplant year. RESULTS Dialysis time was significantly longer in group 1 than in group 2. Late nephrectomy did not increase the risk for thromboembolic events or septicaemia but decreased tube feeding dependency (group 1 69% vs. group 2 20%, p = 0.019). Motor development at transplantation was considered normal in 80% of the infants with late nephrectomy compared to 31% in the early nephrectomy group (p = 0.019); however, the difference between the groups disappeared by the end of the follow-up. CONCLUSION Infants with late nephrectomy have comparative outcome but less feeding tube dependency and better motor development during the first post-transplant months compared to infants with early nephrectomy.
Collapse
Affiliation(s)
- Aino Suihko
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juuso Tainio
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jetta Tuokkola
- Clinical Nutrition Unit, Internal Medicine and Rehabilitation, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Ylinen
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuula Hölttä
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Jahnukainen
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Caparali EB, De Gregorio V, Barua M. Genetic Causes of Nephrotic Syndrome and Focal and Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:309-316. [PMID: 39084756 DOI: 10.1053/j.akdh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024]
Abstract
The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa De Gregorio
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Bărar AA, Pralea IE, Maslyennikov Y, Munteanu R, Berindan-Neagoe I, Pîrlog R, Rusu I, Nuțu A, Rusu CC, Moldovan DT, Potra AR, Tirinescu D, Ticala M, Elec FI, Iuga CA, Kacso IM. Minimal Change Disease: Pathogenetic Insights from Glomerular Proteomics. Int J Mol Sci 2024; 25:5613. [PMID: 38891801 PMCID: PMC11171934 DOI: 10.3390/ijms25115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanism underlying podocyte dysfunction in minimal change disease (MCD) remains unknown. This study aimed to shed light on the potential pathophysiology of MCD using glomerular proteomic analysis. Shotgun proteomics using label-free quantitative mass spectrometry was performed on formalin-fixed, paraffin-embedded (FFPE) renal biopsies from two groups of samples: control (CTR) and MCD. Glomeruli were excised from FFPE renal biopsies using laser capture microdissection (LCM), and a single-pot solid-phase-enhanced sample preparation (SP3) digestion method was used to improve yield and protein identifications. Principal component analysis (PCA) revealed a distinct separation between the CTR and MCD groups. Forty-eight proteins with different abundance between the two groups (p-value ≤ 0.05 and |FC| ≥ 1.5) were identified. These may represent differences in podocyte structure, as well as changes in endothelial or mesangial cells and extracellular matrix, and some were indeed found in several of these structures. However, most differentially expressed proteins were linked to the podocyte cytoskeleton and its dynamics. Some of these proteins are known to be involved in focal adhesion (NID1 and ITGA3) or slit diaphragm signaling (ANXA2, TJP1 and MYO1C), while others are structural components of the actin and microtubule cytoskeleton of podocytes (ACTR3 and NES). This study suggests the potential of mass spectrometry-based shotgun proteomic analysis with LCM glomeruli to yield valuable insights into the pathogenesis of podocytopathies like MCD. The most significantly dysregulated proteins in MCD could be attributable to cytoskeleton dysfunction or may be a compensatory response to cytoskeleton malfunction caused by various triggers.
Collapse
Affiliation(s)
- Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
| | - Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Raluca Munteanu
- Department of In Vivo Studies, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Radu Pîrlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400394 Cluj-Napoca, Romania;
| | - Andreea Nuțu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Florin Ioan Elec
- Department of Urology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| |
Collapse
|
5
|
Haeri H, Eisermann J, Schimm H, Büscher A, Hoyer P, Hinderberger D. Profound Changes in Functional Structure and Dynamics of Serum Albumin in Children with Nephrotic Syndrome: An Exploratory Research Study. J Med Chem 2023; 66:12115-12129. [PMID: 37648246 PMCID: PMC10510392 DOI: 10.1021/acs.jmedchem.3c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/01/2023]
Abstract
Patients with nephrotic syndrome (NS) suffer from urinary loss of albumin. As a cause, previous studies focused on the glomerular filter rather than analyzing the molecular properties of albumin itself. Later one was initiated by clinical observations indicating unexplained molecular alterations of human serum albumin (HSA) in an NS pediatric patient. Therefore, we examined serum from eight pediatric patients with steroid-sensitive and -resistant NS and compared it with serum from healthy subjects as well as commercial HSA. We used dynamic and electrophoretic light scattering to characterize the protein size and effective surface charge and electron paramagnetic resonance spectroscopy to measure the local environment and binding dynamics of up to seven fatty acids associated with HSA. Our findings suggest that pronounced differences in binding behavior and surface charge of HSA could enhance their filtration through the GBM, leading to direct toxicity of HSA to podocytes.
Collapse
Affiliation(s)
- Haleh
H. Haeri
- Physical
Chemistry, Complex Self-Organizing Systems, Martin Luther University
Halle-Wittenberg, Institute of Chemistry, Von Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Jana Eisermann
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, W12 0BZ London, U.K.
| | - Heike Schimm
- Physical
Chemistry, Complex Self-Organizing Systems, Martin Luther University
Halle-Wittenberg, Institute of Chemistry, Von Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Anja Büscher
- Universitätsklinikum
Essen (AöR), Klinik für Kinderheilkunde II, Zentrum
für Kinder- und Jugendmedizin, Hufelandstraße 55, D-45147 Essen, Germany
| | - Peter Hoyer
- Universitätsklinikum
Essen (AöR), Klinik für Kinderheilkunde II, Zentrum
für Kinder- und Jugendmedizin, Hufelandstraße 55, D-45147 Essen, Germany
| | - Dariush Hinderberger
- Physical
Chemistry, Complex Self-Organizing Systems, Martin Luther University
Halle-Wittenberg, Institute of Chemistry, Von Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Alaamery M, Alghamdi J, Massadeh S, Alsawaji M, Aljawini N, Albesher N, Alghamdi B, Almutairi M, Hejaili F, Alfadhel M, Baz B, Almuzzaini B, Almutairi AF, Abdullah M, Quintana FJ, Sayyari A. Analysis of chronic kidney disease patients by targeted next-generation sequencing identifies novel variants in kidney-related genes. Front Genet 2022; 13:886038. [PMID: 36035137 PMCID: PMC9407681 DOI: 10.3389/fgene.2022.886038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the enormous economic and societal burden of chronic kidney disease (CKD), its pathogenesis remains elusive, impeding specific diagnosis and targeted therapy. Herein, we sought to elucidate the genetic causes of end-stage renal disease (ESRD) and identify genetic variants associated with CKD and related traits in Saudi kidney disease patients. We applied a genetic testing approach using a targeted next-generation sequencing gene panel including 102 genes causative or associated with CKD. A total of 1,098 Saudi participants were recruited for the study, including 534 patients with ESRD and 564 healthy controls. The pre-validated NGS panel was utilized to screen for genetic variants, and then, statistical analysis was conducted to test for associations. The NGS panel revealed 7,225 variants in 102 sequenced genes. Cases had a significantly higher number of confirmed pathogenic variants as classified by the ClinVar database than controls (i.e., individuals with at least one allele of a confirmed pathogenic variant that is associated with CKD; 279 (0.52) vs. 258 (0.45); p-value = 0.03). A total of 13 genetic variants were found to be significantly associated with ESRD in PLCE1, CLCN5, ATP6V1B1, LAMB2, INVS, FRAS1, C5orf42, SLC12A3, COL4A6, SLC3A1, RET, WNK1, and BICC1, including four novel variants that were not previously reported in any other population. Furthermore, studies are necessary to validate these associations in a larger sample size and among individuals of different ethnic groups.
Collapse
Affiliation(s)
- Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
- Saudi Human Genome Program, National Center for Genomic Technologies and Bioinformatics, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- *Correspondence: Manal Alaamery, ; Abdullah Sayyari,
| | | | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
- Saudi Human Genome Program, National Center for Genomic Technologies and Bioinformatics, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mona Alsawaji
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Nora Aljawini
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
- Saudi Human Genome Program, National Center for Genomic Technologies and Bioinformatics, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Nour Albesher
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bader Alghamdi
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Mansour Almutairi
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Fayez Hejaili
- Department of Internal Medicine, Division of Nephrology, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Batoul Baz
- Saudi Human Genome Program, National Center for Genomic Technologies and Bioinformatics, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Adel F. Almutairi
- Science and Technology Unit, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Mubarak Abdullah
- Department of Medicine, Ministry of the National Guard–Health Affairs, Riyadh, Saudi Arabia
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Abdullah Sayyari
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medicine, Ministry of the National Guard–Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Manal Alaamery, ; Abdullah Sayyari,
| |
Collapse
|
7
|
Ye Q, Lan B, Liu H, Persson PB, Lai EY, Mao J. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol (Oxf) 2022; 235:e13850. [PMID: 35716094 DOI: 10.1111/apha.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023]
Abstract
Selective glomerular filtration relies on the membrane separating the glomerular arterioles from the Bowman space. As a major component of the glomerular filtration barrier, podocytes form foot processes by the actin cytoskeleton, which dynamically adjusts in response to environmental changes to maintain filtration barrier integrity. The slit diaphragms bridge the filtration slits between neighboring foot processes and act as signaling hubs interacting with the actin cytoskeleton. Focal adhesions relay signals to regulate actin dynamics while allowing podocyte adherence to the basement membrane. Mutations in actin regulatory and signaling proteins may disrupt the actin cytoskeleton, resulting in foot process retraction, effacement, and proteinuria. Large-scale gene expression profiling platforms, transgenic animal models, and other in vivo gene delivery methods now enhance our understanding of the interactions among podocyte focal adhesions, slit diaphragms, and actin dynamics. In addition, our team found that at least 66% of idiopathic nephrotic syndrome (INS) children have podocyte autoantibodies, which was defined as a new disease subgroup-, autoimmune podocytopathies. This review outlines the pathophysiological mechanisms of podocyte cytoskeleton protein interactions in proteinuria and glomerular podocytopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bing Lan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany
| | - En Yin Lai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
8
|
Wu M, Chen Y, Chiu I, Wu M. Genetic Insight into Primary Glomerulonephritis. Nephrology (Carlton) 2022; 27:649-657. [DOI: 10.1111/nep.14074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mei‐Yi Wu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health National Taiwan University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
| | - Ying‐Chun Chen
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
| | - I‐Jen Chiu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
| | - Mai‐Szu Wu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| |
Collapse
|
9
|
Spectrum of NPHS1 and NPHS2 variants in egyptian children with focal segmental glomerular sclerosis: identification of six novel variants and founder effect. Mol Genet Genomics 2022; 297:689-698. [DOI: 10.1007/s00438-022-01877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/20/2022] [Indexed: 01/10/2023]
|
10
|
Li Q, Zhu L, Shi S, Xu D, Lv J, Zhang H. Case Report: A Pathogenic Missense Variant of WT1 Cosegregates With Proteinuria in a Six-Generation Chinese Family With IgA Nephropathy. Front Med (Lausanne) 2022; 8:810940. [PMID: 35174184 PMCID: PMC8841721 DOI: 10.3389/fmed.2021.810940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common type of primary glomerulonephritis worldwide. In addition to hematuria, proteinuria is observed in a considerable proportion of patients with IgAN and has proven to be a strong risk factor for disease progression. Although the exact pathogenesis of IgAN is still unclear, genetic factors are widely considered to play a role in its occurrence and development. Here, we investigated a large IgAN-associated pedigree of 47 members belonging to six generations. Two members of the family who presented with proteinuria and hematuria were diagnosed with IgAN through renal biopsy. Four other members also exhibited proteinuria or hematuria but without renal biopsy. Using whole-exome sequencing, we identified a likely pathogenic variant in WT1 (c.1397C>T; p.Ser466Phe) that cosegregated with proteinuria in the affected family members. In addition, another pathogenic variant in NPHS1 (c.3478C>T; p.Arg1160Ter) was identified; however, it did not cosegregate with abnormal proteinuria. Compared to individuals in the pedigree with only one heterozygous WT1 variant (c.1397C>T; p.Ser466Phe), the proband and her younger brother carried an additional WT1 variant (c.1433-10G>A) and presented with a more severe phenotype and rapid progression to end-stage kidney disease. Our findings suggest the WT1 missense variant (c.1397C>T; p.Ser466Phe)-induced primary podocyte injury might contribute to the proteinuria phenotype and IgAN progression in this pedigree.
Collapse
|
11
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
Rong L, Chen L, Rao J, Shen Q, Li G, Liu J, Mao J, Feng C, Wang X, Wang S, Kuang X, Huang W, Ma Q, Liu X, Ling C, Fu R, Gao X, Ding G, Yang H, Han M, Huang Z, Li Q, Zhang Q, Lin Y, Jiang X, Xu H. Genetic Variations and Clinical Features of NPHS1-Related Nephrotic Syndrome in Chinese Children: A Multicenter, Retrospective Study. Front Med (Lausanne) 2021; 8:771227. [PMID: 34859019 PMCID: PMC8632042 DOI: 10.3389/fmed.2021.771227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Few studies have addressed the genetic spectrum of NPHS1 variants in Chinese children with nephrotic syndrome. In this multicenter study, the clinical manifestations and features of NPHS1 variants in Chinese children with nephrotic syndrome were researched. Method: Genotypical and phenotypical data from 30 children affected by NPHS1 variants were collected from a multicenter registration system in China and analyzed retrospectively. Results: The patients were divided into two groups: congenital nephrotic syndrome (CNS [n = 24]) and non-CNS (early onset nephrotic syndrome [n = 6]). Renal biopsy was performed on four patients in the non-CNS group, revealing minimal change disease in three and focal segmental glomerulosclerosis in one. A total of 61 NPHS1 variants were detected, involving 25 novel variants. The "recurrent variants" included c.928G>A(p.Asp310Asn) in eight patients with CNS, followed by c.616C>A(p.Pro206Thr) in four, and c.2207T>C (p.Val736Ala) in three. Steroid treatment was applied in 29.2% (7/24)of the patients in the CNS group and 50% (3/6) of the patients in the non-CNS group. One patient in each group experienced complete remission but relapsed subsequently. Immunosuppressants were administered to three patients in the non-CNS group, eliciting an effective response. In the CNS group, three patients underwent renal transplantation and six died mainly from infection. Conclusion: Variants of NPHS1 cause CNS and early childhood-onset nephrotic syndrome. NPHS1 variants in Chinese individuals with nephrotic syndrome (NS) were mainly compound heterozygous variants, and c.928G>A(p.Asp310Asn) in exon 8 may act as a recurrent variant in the Chinese population, followed by c.616C>A(p.Pro206Thr) in exon 6. Steroids and immunosuppressants may be effective in selected patients.
Collapse
Affiliation(s)
- Liping Rong
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Guomin Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyue Feng
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowen Wang
- Department of Nephrology and Rheumatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Si Wang
- Department of Nephrology and Rheumatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xinyu Kuang
- Department of Nephrology and Rheumatology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Wenyan Huang
- Department of Nephrology and Rheumatology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Qingshan Ma
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, China
| | - Xiaorong Liu
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Chen Ling
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Rong Fu
- Department of Pediatrics, Puyang Oilfield General Hospital, Puyang, China
| | - Xiaojie Gao
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guixia Ding
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huandan Yang
- Department of Nephrology, Xuzhou Children's Hospital, Xuzhou, China
| | - Mei Han
- Department of Nephrology, Children's Hospital of Dalian Medical University, Dalian, China
| | - Zhimin Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Li
- Department of Pediatric Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Qiuye Zhang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Lin
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Impaired NEPHRIN localization in kidney organoids derived from nephrotic patient iPS cells. Sci Rep 2021; 11:3982. [PMID: 33597637 PMCID: PMC7890052 DOI: 10.1038/s41598-021-83501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Mutations in the NPHS1 gene, which encodes NEPHRIN, cause congenital nephrotic syndrome, resulting from impaired slit diaphragm (SD) formation in glomerular podocytes. We previously reported NEPHRIN and SD abnormalities in the podocytes of kidney organoids generated from patient-derived induced pluripotent stem cells (iPSCs) with an NPHS1 missense mutation (E725D). However, the mechanisms underlying the disease may vary depending on the mutations involved, and thus generation of iPSCs from multiple patients is warranted. Here we established iPSCs from two additional patients with different NPHS1 mutations and examined the podocyte abnormalities in kidney organoids derived from these cells. One patient had truncating mutations, and NEPHRIN was undetectable in the resulting organoids. The other patient had a missense mutation (R460Q), and the mutant NEPHRIN in the organoids failed to accumulate on the podocyte surface to form SD precursors. However, the same mutant protein behaved normally when overexpressed in heterologous cells, suggesting that NEPHRIN localization is cell context-dependent. The localization of another SD-associated protein, PODOCIN, was impaired in both types of mutant organoids in a cell domain-specific manner. Thus, the new iPSC lines and resultant kidney organoids will be useful resources for dissecting the disease mechanisms, as well as for drug development for therapies.
Collapse
|
14
|
Egerman MA, Wong JS, Runxia T, Mosoyan G, Chauhan K, Reyes-Bahamonde J, Anandakrishnan N, Wong NJ, Bagiella E, Salem F, Meliambro K, Li H, Azeloglu EU, Coca SG, Campbell KN, Raij L. Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease. FASEB J 2020; 34:16191-16204. [PMID: 33070369 PMCID: PMC7686123 DOI: 10.1096/fj.202000413r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
Urinary plasminogen/plasmin, or plasmin (ogen) uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin (ogen) as a "second hit" in kidney disease progression has yet to have been demonstrated in vivo. Additionally, association between plasmin (ogen) uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin (ogen) uria. In a glomerular disease biorepository cohort (n = 128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin (ogen) uria for correlations with kidney outcomes. In cultured human podocytes, plasminogen treatment was associated with decreased focal adhesion marker expression with rescue by amiloride. Increased glomerular plasmin (ogen) was found in PAN rats and focal segmental glomerulosclerosis (FSGS) patients. PAN nephropathy was associated with increases in plasmin (ogen) uria and proteinuria. Amiloride was protective against PAN-induced glomerular injury, reducing CD36 scavenger receptor expression and oxidative stress. In patients, we found associations between plasmin (ogen) uria and edema status as well as eGFR. Our study demonstrates a role for plasmin (ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of the largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin (ogen) uria and estimated glomerular filtration rate (eGFR). Together, these findings suggest a role for plasmin (ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.
Collapse
Affiliation(s)
- Marc A. Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Jenny S. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Tian Runxia
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Nicholas J. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Emilia Bagiella
- Center for Biostatistics, Department of Population health Science and Policy, Icahn School of Medicine at Mount Sinai
| | - Fadi Salem
- Department of Pathology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| |
Collapse
|
15
|
Tokhmafshan F, Dickinson K, Akpa MM, Brasell E, Huertas P, Goodyer PR. A no-nonsense approach to hereditary kidney disease. Pediatr Nephrol 2020; 35:2031-2042. [PMID: 31807928 DOI: 10.1007/s00467-019-04394-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
Abstract
The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.
Collapse
Affiliation(s)
- Fatima Tokhmafshan
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Kyle Dickinson
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada.,Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Murielle M Akpa
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Emma Brasell
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Paul R Goodyer
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada. .,Department of Experimental Medicine, McGill University, Montreal, Canada. .,Department of Human Genetics, McGill University, Montreal, Canada. .,Department of Pediatrics, McGill University, Montreal, Canada.
| |
Collapse
|
16
|
Boyer O, Bérody S. Congenital nephrotic syndrome: is early aggressive treatment needed?-No. Pediatr Nephrol 2020; 35:1991-1996. [PMID: 32462257 DOI: 10.1007/s00467-020-04556-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/27/2022]
Abstract
The management of infants with congenital nephrotic syndrome (CNS) is very challenging as they are prone to severe complications such as hemodynamic disturbances, infections, thromboses, and impaired growth, and most will develop end-stage kidney disease (ESKD) within a few years. Since the seventies, an "aggressive" approach, including daily albumin infusions, early nephrectomies, dialysis, and transplantation, has dramatically improved survival and morbidity. More recent case-note reviews have reported successful conservative treatment (using optimized nutrition, complication prophylaxis, and delayed renal replacement therapy), which led to similarly good outcomes and low complication rates. This questions the indications for early preemptive bilateral nephrectomy and dialysis given the mortality and morbidity rates in dialysis in infants and their life-long management with possible repeated transplantations. Two large series provide the most recent evidences supporting the conservative management: firstly, at least 55% children with CNS are not spontaneously in ESKD at the age of 2 years; secondly, albumin tapering/discontinuation and hospital discharge are possible before nephrectomy; and lastly, CNS complication rates are similar in case of preemptive nephrectomies or conservative care. Until now, no clear genotype-phenotype correlation has been identified to guide clinical management. Taken together, these data support the safety of conservative care until ESKD in a subset of patients with CNS.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Centre de Référence du Syndrome Néphrotique Idiopathique de l'enfant et l'adulte, Hôpital Necker - Enfants Malades, APHP, Inserm U1163, Institut Imagine, Université de Paris, Paris, France.
| | - Sandra Bérody
- Unité de Soins Intensifs et Réanimation Néonatale, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France
| |
Collapse
|
17
|
Yıldız G, Torun Bayram M, Soylu A, Kavukçu S. A novel NPHS1 mutation associated with temporary elevation of maternal serum alfa-fetoprotein and late onset of proteinuria. Int Urol Nephrol 2020; 53:391-392. [PMID: 32944892 DOI: 10.1007/s11255-020-02645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Gizem Yıldız
- Department of Pediatric Nephrology, Dokuz Eylül University Medical Faculty, Balçova, 35340, Izmir, Turkey
| | - Meral Torun Bayram
- Department of Pediatric Nephrology, Dokuz Eylül University Medical Faculty, Balçova, 35340, Izmir, Turkey
| | - Alper Soylu
- Department of Pediatric Nephrology and Rheumatology, Dokuz Eylül University Medical Faculty, Izmir, Turkey.
| | - Salih Kavukçu
- Department of Pediatric Nephrology and Rheumatology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| |
Collapse
|
18
|
Kwiatkowska E, Stefańska K, Zieliński M, Sakowska J, Jankowiak M, Trzonkowski P, Marek-Trzonkowska N, Kwiatkowski S. Podocytes-The Most Vulnerable Renal Cells in Preeclampsia. Int J Mol Sci 2020; 21:ijms21145051. [PMID: 32708979 PMCID: PMC7403979 DOI: 10.3390/ijms21145051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia (PE) is a disorder that affects 3–5% of normal pregnancies. It was believed for a long time that the kidney, similarly to all vessels in the whole system, only sustained endothelial damage. The current knowledge gives rise to a presumption that the main role in the development of proteinuria is played by damage to the podocytes and their slit diaphragm. The podocyte damage mechanism in preeclampsia is connected to free VEGF and nitric oxide (NO) deficiency, and an increased concentration of endothelin-1 and oxidative stress. From national cohort studies, we know that women who had preeclampsia in at least one pregnancy carried five times the risk of developing end-stage renal disease (ESRD) when compared to women with physiological pregnancies. The focal segmental glomerulosclerosis (FSGS) is the dominant histopathological lesion in women with a history of PE. The kidney’s podocytes are not subject to replacement or proliferation. Podocyte depletion exceeding 20% resulted in FSGS, which is a reason for the later development of ESRD. In this review, we present the mechanism of kidney (especially podocytes) injury in preeclampsia. We try to explain how this damage affects further changes in the morphology and function of the kidneys after pregnancy.
Collapse
Affiliation(s)
- Ewa Kwiatkowska
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Correspondence:
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Z.); (J.S.); (M.J.); (P.T.)
| | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Z.); (J.S.); (M.J.); (P.T.)
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Z.); (J.S.); (M.J.); (P.T.)
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.Z.); (J.S.); (M.J.); (P.T.)
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science Cancer Immunology Group, University of Gdansk, 80-822 Gdańsk, Poland;
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| |
Collapse
|
19
|
Dufek S, Holtta T, Trautmann A, Ylinen E, Alpay H, Ariceta G, Aufricht C, Bacchetta J, Bakkaloglu SA, Bayazit A, Cicek RY, Dursun I, Duzova A, Ekim M, Iancu D, Jankauskiene A, Klaus G, Paglialonga F, Pasini A, Printza N, Said Conti V, do Sameiro Faria M, Schmitt CP, Stefanidis CJ, Verrina E, Vidal E, Vondrak K, Webb H, Zampetoglou A, Bockenhauer D, Edefonti A, Shroff R. Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol Dial Transplant 2020; 34:1369-1377. [PMID: 30215773 DOI: 10.1093/ndt/gfy165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Management of children with congenital nephrotic syndrome (CNS) is challenging. Bilateral nephrectomies followed by dialysis and transplantation are practiced in most centres, but conservative treatment may also be effective. METHODS We conducted a 6-year review across members of the European Society for Paediatric Nephrology Dialysis Working Group to compare management strategies and their outcomes in children with CNS. RESULTS Eighty children (50% male) across 17 tertiary nephrology units in Europe were included (mutations in NPHS1, n = 55; NPHS2, n = 1; WT1, n = 9; others, n = 15). Excluding patients with mutations in WT1, antiproteinuric treatment was given in 42 (59%) with an increase in S-albumin in 70% by median 6 (interquartile range: 3-8) g/L (P < 0.001). Following unilateral nephrectomy, S-albumin increased by 4 (1-8) g/L (P = 0.03) with a reduction in albumin infusion dose by 5 (2-9) g/kg/week (P = 0.02). Median age at bilateral nephrectomies (n = 29) was 9 (7-16) months. Outcomes were compared between two groups of NPHS1 patients: those who underwent bilateral nephrectomies (n = 25) versus those on conservative management (n = 17). The number of septic or thrombotic episodes and growth were comparable between the groups. The response to antiproteinuric treatment, as well as renal and patient survival, was independent of NPHS1 mutation type. At final follow-up (median age 34 months) 20 (80%) children in the nephrectomy group were transplanted and 1 died. In the conservative group, 9 (53%) remained without dialysis, 4 (24%; P < 0.001) were transplanted and 2 died. CONCLUSION An individualized, stepwise approach with prolonged conservative management may be a reasonable alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations. Further prospective studies are needed to define indications for unilateral nephrectomy.
Collapse
Affiliation(s)
- Stephanie Dufek
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tuula Holtta
- Department of Pediatric Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Agnes Trautmann
- Center for Pediatric & Adolescent Medicine, Heidelberg, Germany
| | - Elisa Ylinen
- Department of Pediatric Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harika Alpay
- School of Medicine, Marmara University, Istanbul, Turkey
| | - Gema Ariceta
- Hospital MaternoInfantil de la Vall d'Hebron, Barcelona, Spain
| | | | | | - Sevcan A Bakkaloglu
- Department of Pediatric Nephrology, Gazi University Hospital, Ankara, Turkey
| | - Aysun Bayazit
- Department of Pediatric Nephrology, Cukurova University, Adana, Turkey
| | | | - Ismail Dursun
- Department of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Turkey
| | | | - Daniela Iancu
- Center for Nephrology, University College London, London, UK
| | | | | | - Fabio Paglialonga
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Pasini
- Azienda Ospedaliero-Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| | - Nikoleta Printza
- Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | | - Enrico Vidal
- Department of Pediatrics, University Hospital of Padova, Padova, Italy
| | - Karel Vondrak
- Pediatric Nephrology, University Hospital Motol, Prague, Czech Republic
| | - Hazel Webb
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Detlef Bockenhauer
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Gribouval O, Boyer O, Knebelmann B, Karras A, Dantal J, Fourrage C, Alibeu O, Hogan J, Dossier C, Tête MJ, Antignac C, Servais A. APOL1 risk genotype in European steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis patients of different African ancestries. Nephrol Dial Transplant 2020; 34:1885-1893. [PMID: 29992269 DOI: 10.1093/ndt/gfy176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/03/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Apolipoprotein L1 (APOL1) risk variants are strongly associated with sporadic focal segmental glomerulosclerosis (FSGS) in populations with African ancestry. We determined the frequency of G1/G2 variants in steroid-resistant nephrotic syndrome (SRNS)/FSGS patients with African or French West Indies ancestry in France and its relationships with other SRNS genes. METHODS In a cohort of 152 patients (139 families), the APOL1 risk variants were genotyped by direct Sanger sequencing and pathogenic mutations were screened by next-generation sequencing with a panel including 35 SRNS genes. RESULTS The two risk allele [high-risk (HR)] genotypes were found in 43.1% (66/152) of subjects compared with 18.9% (106/562) in a control population (P < 0.0001): 33 patients homozygous for APOL1 G1 alleles, 4 homozygous for G2 and 29 compound heterozygous for G1 and G2. Compared with patients in the low-risk (LR) group, patients in the HR group were more likely to originate from the French West Indies than from Africa [45/66 (68.2%) versus 30/86 (34.9%); P < 0.0001]. There were more familial cases in the HR group [27 (41.5%) versus 8 (11.4%); P < 0.0001]. However, causative mutations in monogenic SRNS genes were found in only 1 patient in the HR group compared with 16 patients (14 families) in the LR group (P = 0.0006). At diagnosis, patients in the HR group without other mutations were more often adults [35 (53.8%) versus 19 (27.1%); P = 0.003] and had a lower estimated glomerular filtration rate (78.9 versus 98.8 mL/min/1.73 m2; P = 0.02). CONCLUSIONS The HR genotype is frequent in FSGS patients with African ancestry in our cohort, especially in those originating from the West Indies, and confer a poor renal prognosis. It is usually not associated with other causative mutations in monogenic SRNS genes.
Collapse
Affiliation(s)
- Olivier Gribouval
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France
| | - Olivia Boyer
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France.,Pediatric Nephrology Department, Necker Hospital, APHP, Paris, France
| | - Bertrand Knebelmann
- Nephrology and Transplantation Department, Necker Hospital, APHP, Paris, France
| | - Alexandre Karras
- Nephrology Department, European Georges Pompidou Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jacques Dantal
- Nephrology Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Cécile Fourrage
- Bioinformatic Platform, Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivier Alibeu
- Genomic Platform, Inserm UMR1163, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Julien Hogan
- Pediatric Nephrology Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Dossier
- Pediatric Nephrology Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Josèphe Tête
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France
| | - Corinne Antignac
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France.,Genetic Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aude Servais
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France.,Nephrology and Transplantation Department, Necker Hospital, APHP, Paris, France
| |
Collapse
|
21
|
Serum IgG Level and IgG/IgM Ratio on Admission Predict Steroid-Resistant Response in Vietnamese Children with Idiopathic Nephrotic Syndrome. Nephrourol Mon 2019. [DOI: 10.5812/numonthly.93248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Zhuo L, Huang L, Yang Z, Li G, Wang L. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC MEDICAL GENETICS 2019; 20:111. [PMID: 31216994 PMCID: PMC6585123 DOI: 10.1186/s12881-019-0845-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is still one of the common causes of refractory nephrotic syndrome. Nephrin, encoded by podocyte-specific NPHS1 gene, participated in the pathogenesis of FSGS. The sites of NPHS1 mutations in FSGS is not clarified very well. In this study, we investigated the specific mutations of NPHS1 gene in Chinese patients with sporadic FSGS. METHODS A total of 309 patients with sporadic FSGS were collected and screened for NPHS1 mutations by second-generation sequencing. The variants were compared with those extracted from 2504 healthy controls in the 1000 Genomes Project. The possible pathogenic roles of missense variants were predicted by three different software. We also compared these candidate causal mutations with those summarized from the previous studies. RESULTS Thirty-two genetic mutations of NPHS1 gene were identified in FSGS patients, including 12 synonymous mutations, 17 missense mutations, 1 splicing mutation, and 2 intron mutations, of which c.G3315A (p.S1105S) was the most common variant (261/309). A novel missense mutation c.G2638 T (p.V880F) and a novel splicing mutation 35830957 C > T were identified in FSGS patients. The frequencies of the four synonymous mutations (c.C294T [p.I98I], c.C2223T [p.T741 T], c.C2289T [p.V763 V], c.G3315A [p.S1105S]) were much higher in FSGS patients than in controls. The frequencies of the four missense mutations (c.G349A [p.E117K], c.G1339A [p.E447K], c.G1802C [p.G601A], c.C2398T [p.R800C]) were much higher and one (c.A3230G [p.N1077S]) was lower in FSGS patients than in controls. Five missense mutations, c.C616A (p.P206T), c.G1802C (p.G601A), c.C2309T (p.P770L), c.G2869C (p.V957 L), and c.C3274T (p.R1092C), were predicted to be pathogenic mutations by software analysis. CONCLUSIONS NPHS1 gene mutations were quite common in sporadic FSGS patients. We strongly recommend mutation analysis of the NPHS1 gene in the clinical management of FSGS patients.
Collapse
Affiliation(s)
- Ling Zhuo
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China
| | - Lulin Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China.
| | - Li Wang
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China
| |
Collapse
|
23
|
Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol 2019; 34:751-762. [PMID: 29502161 PMCID: PMC6424945 DOI: 10.1007/s00467-018-3921-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease.
Collapse
Affiliation(s)
- Priya Outtandy
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Robert Kleta
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK.
| | - Detlef Bockenhauer
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
24
|
Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019; 34:195-210. [PMID: 29181713 PMCID: PMC6311200 DOI: 10.1007/s00467-017-3838-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a common cause of chronic kidney disease in childhood and has a significant risk of rapid progression to end-stage renal disease. The identification of over 50 monogenic causes of SRNS has revealed dysfunction in podocyte-associated proteins in the pathogenesis of proteinuria, highlighting their essential role in glomerular function. Recent technological advances in high-throughput sequencing have enabled indication-driven genetic panel testing for patients with SRNS. The availability of genetic testing, combined with the significant phenotypic variability of monogenic SRNS, poses unique challenges for clinicians when directing genetic testing. This highlights the need for clear clinical guidelines that provide a systematic approach for mutational screening in SRNS. The likelihood of identifying a causative mutation is inversely related to age at disease onset and is increased with a positive family history or the presence of extra-renal manifestations. An unequivocal molecular diagnosis could allow for a personalised treatment approach with weaning of immunosuppressive therapy, avoidance of renal biopsy and provision of accurate, well-informed genetic counselling. Identification of novel causative mutations will continue to unravel the pathogenic mechanisms of glomerular disease and provide new insights into podocyte biology and glomerular function.
Collapse
|
25
|
Cooper CJ, Dutta NT, Martin CE, Piscione TD, Thorner PS, Jones N. Characterization of a novel disease-associated mutation within NPHS1 and its effects on nephrin phosphorylation and signaling. PLoS One 2018; 13:e0203905. [PMID: 30212551 PMCID: PMC6136785 DOI: 10.1371/journal.pone.0203905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022] Open
Abstract
Mutations in the transmembrane protein nephrin (encoded by NPHS1) underlie nearly half of all cases of congenital nephrotic syndrome (CNS), which is caused by aberrations in the blood filtering function of glomerular podocytes. Nephrin directly contributes to the structure of the filtration barrier, and it also serves as a signaling scaffold in podocytes, undergoing tyrosine phosphorylation on its cytoplasmic tail to recruit intracellular effector proteins. Nephrin phosphorylation is lost in several human and experimental models of glomerular disease, and genetic studies have confirmed its importance in maintenance of the filtration barrier. To date, however, the effect of CNS-associated NPHS1 variants on nephrin phosphorylation remains to be determined, which hampers genotype-phenotype correlations. Here, we have characterized a novel nephrin sequence variant, A419T, which is expressed along with C623F in a patient presenting with CNS. Nephrin localization is altered in kidney biopsies, and we further demonstrate reduced surface expression and ER retention of A419T and C623F in cultured cells. Moreover, we show that both mutations impair nephrin tyrosine phosphorylation, and they exert dominant negative effects on wildtype nephrin signaling. Our findings thus reveal that missense mutations in the nephrin extracellular region can impact nephrin signaling, and they uncover a potential pathomechanism to explain the spectrum of clinical severity seen with mild NPHS1 mutations.
Collapse
Affiliation(s)
- C. James Cooper
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nikkita T. Dutta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Tino D. Piscione
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul S. Thorner
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| |
Collapse
|
26
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
27
|
Weng Z, Shang Y, Ji Z, Ye F, Lin L, Zhang R, Zhu J. Structural Basis of Highly Specific Interaction between Nephrin and MAGI1 in Slit Diaphragm Assembly and Signaling. J Am Soc Nephrol 2018; 29:2362-2371. [PMID: 30006415 PMCID: PMC6115659 DOI: 10.1681/asn.2017121275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The slit diaphragm is a specialized adhesion junction between opposing podocytes, establishing the final filtration barrier that prevents passage of proteins from the capillary lumen into the urinary space. Nephrin, the key structural and signaling adhesion molecule expressed in the slit diaphragm, contains an evolutionally conserved, atypical PDZ-binding motif (PBM) reported to bind to a variety of proteins in the slit diaphragm. Several mutations in NPHS1 (the gene encoding nephrin) that result in nephrin lacking an intact PBM are associated with glomerular diseases. However, the molecular basis of nephrin-PBM-mediated protein complexes is still unclear. METHODS Using a combination of biochemic, biophysic, and cell biologic approaches, we systematically investigated the interactions between nephrin-PBM and PDZ domain-containing proteins in the slit diaphragm. RESULTS We found that nephrin-PBM specifically binds to one member of the membrane-associated guanylate kinase family of scaffolding proteins, MAGI1, but not to another, MAGI2. The complex structure of MAGI1-PDZ3/nephrin-PBM reveals that the Gly at the -3 position of nephrin-PBM is the determining feature for MAGI1-PDZ3 recognition, which sharply contrasts with the typical PDZ/PBM binding mode. A single gain-of-function mutation within MAGI2 enabled nephrin-PBM binding. In addition, using our structural analysis, we developed a highly efficient inhibitory peptide capable of specifically blocking the nephrin/MAGI1 interaction. CONCLUSIONS MAGI1 interacts with nephrin-PBM with exquisite specificity. A newly developed, potent inhibitory peptide that blocks this interaction may be useful for future functional investigations in vivo. Our findings also provide possible explanations for the diseases caused by NPHS1 mutations.
Collapse
Affiliation(s)
- Zhuangfeng Weng
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China;,School of Life Science and Technology, ShanghaiTech University, Shanghai, China; and
| | - Yuan Shang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and
| | - Zeyang Ji
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lin Lin
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China;,School of Life Science and Technology, ShanghaiTech University, Shanghai, China; and
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Fan J, Fu R, Ren F, He J, Wang S, Gou M. A case report of CRB2 mutation identified in a Chinese boy with focal segmental glomerulosclerosis. Medicine (Baltimore) 2018; 97:e12362. [PMID: 30212996 PMCID: PMC6156060 DOI: 10.1097/md.0000000000012362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Focal segmental glomerulosclerosis (FSGS) is a common disease resulting in end-stage renal disease. The incidence of FSGS is increasing in Western countries. The clinical manifestations include proteinuria, hypoproteinemia, oedema, and hypertension. Single-gene heritable mutations are considered to be the source of FSGS pathogenicity according to recent in-depth studies on the pathogenesis. Here, we first reported the case of a Chinese boy whose histology presented with FSGS caused by a compound heterozygous mutation. PATIENT CONCERNS A 7-year-old Chinese boy was repeatedly admitted to our hospital for fever, cough, and proteinuria since he was 1.6 years old. DIAGNOSES FSGS was identified by renal biopsy. Whole exome sequencing (WES) showed that a novel mutation of crumbs homolog 2 (CRB2) was identified in a Chinese boy with FSGS. INTERVENTIONS Patient was treated with low-dose corticosteroid and mycophenolate mofetil for maintenance therapy. OUTCOMES At last follow-up, protein (+∼++) was observed in his urinalysis. LESSONS We identified a novel mutation of CRB2 in a Chinese boy with FSGS that had never been described in a previous report. These findings suggested that mutations in recessive disease genes are more frequent among early-onset disease.
Collapse
|
29
|
Hermle T, Schneider R, Schapiro D, Braun DA, van der Ven AT, Warejko JK, Daga A, Widmeier E, Nakayama M, Jobst-Schwan T, Majmundar AJ, Ashraf S, Rao J, Finn LS, Tasic V, Hernandez JD, Bagga A, Jalalah SM, El Desoky S, Kari JA, Laricchia KM, Lek M, Rehm HL, MacArthur DG, Mane S, Lifton RP, Shril S, Hildebrandt F. GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. J Am Soc Nephrol 2018; 29:2123-2138. [PMID: 29959197 PMCID: PMC6065084 DOI: 10.1681/asn.2017121312] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of CKD. The discovery of monogenic causes of SRNS has revealed specific pathogenetic pathways, but these monogenic causes do not explain all cases of SRNS. METHODS To identify novel monogenic causes of SRNS, we screened 665 patients by whole-exome sequencing. We then evaluated the in vitro functional significance of two genes and the mutations therein that we discovered through this sequencing and conducted complementary studies in podocyte-like Drosophila nephrocytes. RESULTS We identified conserved, homozygous missense mutations of GAPVD1 in two families with early-onset NS and a homozygous missense mutation of ANKFY1 in two siblings with SRNS. GAPVD1 and ANKFY1 interact with the endosomal regulator RAB5. Coimmunoprecipitation assays indicated interaction between GAPVD1 and ANKFY1 proteins, which also colocalized when expressed in HEK293T cells. Silencing either protein diminished the podocyte migration rate. Compared with wild-type GAPVD1 and ANKFY1, the mutated proteins produced upon ectopic expression of GAPVD1 or ANKFY1 bearing the patient-derived mutations exhibited altered binding affinity for active RAB5 and reduced ability to rescue the knockout-induced defect in podocyte migration. Coimmunoprecipitation assays further demonstrated a physical interaction between nephrin and GAPVD1, and immunofluorescence revealed partial colocalization of these proteins in rat glomeruli. The patient-derived GAPVD1 mutations reduced nephrin-GAPVD1 binding affinity. In Drosophila, silencing Gapvd1 impaired endocytosis and caused mistrafficking of the nephrin ortholog. CONCLUSIONS Mutations in GAPVD1 and probably in ANKFY1 are novel monogenic causes of NS. The discovery of these genes implicates RAB5 regulation in the pathogenesis of human NS.
Collapse
Affiliation(s)
- Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amelie T van der Ven
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laura S Finn
- Department of Pathology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Velibor Tasic
- Department of Pediatric Nephrology, Medical Faculty Skopje, University Children's Hospital, Skopje, Macedonia
| | - Joel D Hernandez
- Department of Pediatric Nephrology, Providence Sacred Heart Medical Center and Children's Hospital, Spokane, Washington
| | - Arvind Bagga
- Division of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Kristen M Laricchia
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Monkol Lek
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Heidi L Rehm
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Daniel G MacArthur
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
30
|
Zhao X, Hwang DY, Kao HY. The Role of Glucocorticoid Receptors in Podocytes and Nephrotic Syndrome. NUCLEAR RECEPTOR RESEARCH 2018; 5. [PMID: 30417008 PMCID: PMC6224173 DOI: 10.11131/2018/101323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glucocorticoid receptor (GC), a founding member of the nuclear hormone receptor superfamily, is a glucocorticoid-activated transcription factor that regulates gene expression and controls the development and homeostasis of human podocytes. Synthetic glucocorticoids are the standard treatment regimens for proteinuria (protein in the urine) and nephrotic syndrome (NS) caused by kidney diseases. These include minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN) and immunoglobulin A nephropathy (IgAN) or subsequent complications due to diabetes mellitus or HIV infection. However, unwanted side effects and steroid-resistance remain major issues for their long-term use. Furthermore, the mechanism by which glucocorticoids elicit their renoprotective activity in podocyte and glomeruli is poorly understood. Podocytes are highly differentiated epithelial cells that contribute to the integrity of kidney glomerular filtration barrier. Injury or loss of podocytes leads to proteinuria and nephrotic syndrome. Recent studies in multiple experimental models have begun to explore the mechanism of GC action in podocytes. This review will discuss progress in our understanding of the role of glucocorticoid receptor and glucocorticoids in podocyte physiology and their renoprotective activity in nephrotic syndrome.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Daw-Yang Hwang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
31
|
Cil O, Perwad F. Monogenic Causes of Proteinuria in Children. Front Med (Lausanne) 2018; 5:55. [PMID: 29594119 PMCID: PMC5858124 DOI: 10.3389/fmed.2018.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
Glomerular disease is a common cause for proteinuria and chronic kidney disease leading to end-stage renal disease requiring dialysis or kidney transplantation in children. Nephrotic syndrome in children is diagnosed by the presence of a triad of proteinuria, hypoalbuminemia, and edema. Minimal change disease is the most common histopathological finding in children and adolescents with nephrotic syndrome. Focal segmental sclerosis is also found in children and is the most common pathological finding in patients with monogenic causes of nephrotic syndrome. Current classification system for nephrotic syndrome is based on response to steroid therapy as a majority of patients develop steroid sensitive nephrotic syndrome regardless of histopathological diagnosis or the presence of genetic mutations. Recent studies investigating the genetics of nephrotic syndrome have shed light on the pathophysiology and mechanisms of proteinuria in nephrotic syndrome. Gene mutations have been identified in several subcellular compartments of the glomerular podocyte and play a critical role in mitochondrial function, actin cytoskeleton dynamics, cell-matrix interactions, slit diaphragm, and podocyte integrity. A subset of genetic mutations are known to cause nephrotic syndrome that is responsive to immunosuppressive therapy but clinical data are limited with respect to renal prognosis and disease progression in a majority of patients. To date, more than 50 genes have been identified as causative factors in nephrotic syndrome in children and adults. As genetic testing becomes more prevalent and affordable, we expect rapid advances in our understanding of mechanisms of proteinuria and genetic diagnosis will help direct future therapy for individual patients.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| | - Farzana Perwad
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
32
|
Bérody S, Heidet L, Gribouval O, Harambat J, Niaudet P, Baudouin V, Bacchetta J, Boudaillez B, Dehennault M, de Parscau L, Dunand O, Flodrops H, Fila M, Garnier A, Louillet F, Macher MA, May A, Merieau E, Monceaux F, Pietrement C, Rousset-Rouvière C, Roussey G, Taque S, Tenenbaum J, Ulinski T, Vieux R, Zaloszyc A, Morinière V, Salomon R, Boyer O. Treatment and outcome of congenital nephrotic syndrome. Nephrol Dial Transplant 2018; 34:458-467. [DOI: 10.1093/ndt/gfy015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sandra Bérody
- Hôpital Necker-Enfants malades, Néphrologie pédiatrique, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes-Sorbonne Paris-Cité, Paris, France
| | - Laurence Heidet
- Hôpital Necker-Enfants malades, Néphrologie pédiatrique, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes-Sorbonne Paris-Cité, Paris, France
- Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Centre de référence du syndrome néphrotique idiopathique de l'enfant et de l'adulte, Hôpital Necker-Enfants Malades, Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| | | | - Jérome Harambat
- Centre Hospitalier Universitaire de Bordeaux, Néphrologie pédiatrique, Bordeaux, France
| | - Patrick Niaudet
- Hôpital Necker-Enfants malades, Néphrologie pédiatrique, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes-Sorbonne Paris-Cité, Paris, France
- Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Centre de référence du syndrome néphrotique idiopathique de l'enfant et de l'adulte, Hôpital Necker-Enfants Malades, Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| | - Veronique Baudouin
- Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Centre de référence du syndrome néphrotique idiopathique de l'enfant et de l'adulte, Hôpital Necker-Enfants Malades, Paris, France
- Hôpital Universitaire Robert Debré, Néphrologie pédiatrique, Paris, France
| | | | | | | | | | - Olivier Dunand
- CHU Felix Guyon, Pédiatrie, Saint-Denis, La Reunion, France
| | | | - Marc Fila
- Centre Hospitalier Regional Universitaire de Montpellier, Néphrologie pédiatrique, Montpellier, France
| | - Arnaud Garnier
- Centre Hospitalier Universitaire de Toulouse, Néphrologie pédiatrique, Toulouse, France
| | | | - Marie-Alice Macher
- Hôpital Universitaire Robert Debré, Néphrologie pédiatrique, Paris, France
| | - Adrien May
- Centre Hospitalier Sud Francilien, Pédiatrie, Corbeil-Essonnes, France
| | | | | | | | | | - Gwenaëlle Roussey
- Centre Hospitalier Universitaire de Nantes, Néphrologie pédiatrique, Nantes, France
| | - Sophie Taque
- Centre Hospitalier Universitaire de Rennes, Pédiatrie, Rennes, France
| | - Julie Tenenbaum
- Centre Hospitalier Regional Universitaire de Montpellier, Néphrologie pédiatrique, Montpellier, France
| | - Tim Ulinski
- Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Centre de référence du syndrome néphrotique idiopathique de l'enfant et de l'adulte, Hôpital Necker-Enfants Malades, Paris, France
- Hôpital Armand-Trousseau, Néphrologie pédiatrique, Paris, France
| | - Rachel Vieux
- Centre Hospitalier Universitaire de Nancy, Pédiatrie, Nancy, France
| | | | | | - Rémi Salomon
- Hôpital Necker-Enfants malades, Néphrologie pédiatrique, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes-Sorbonne Paris-Cité, Paris, France
- Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Centre de référence du syndrome néphrotique idiopathique de l'enfant et de l'adulte, Hôpital Necker-Enfants Malades, Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| | - Olivia Boyer
- Hôpital Necker-Enfants malades, Néphrologie pédiatrique, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes-Sorbonne Paris-Cité, Paris, France
- Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Centre de référence du syndrome néphrotique idiopathique de l'enfant et de l'adulte, Hôpital Necker-Enfants Malades, Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| |
Collapse
|
33
|
Zhang H, Wang F, Liu X, Zhong X, Yao Y, Xiao H. Steroid-resistant nephrotic syndrome caused by co-inheritance of mutations at NPHS1 and ADCK4 genes in two Chinese siblings. Intractable Rare Dis Res 2017; 6:299-303. [PMID: 29259860 PMCID: PMC5735285 DOI: 10.5582/irdr.2017.01037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hereditary nephrotic syndrome often presents with steroid-resistance and onset within the first year of life. Mutations in genes highly expressed in podocytes have been found in two thirds of these patients, especially NPHS1 and NPHS2 among at least 29 genetic causes that have been discovered. We reported two siblings with steroid-resistant nephrotic syndrome caused by co-inheritance of mutations at NPHS1 (c.1339G>A, p.E447K) and ACDK4 (c.748G>C, p.D250H) genes. The siblings presented with steroid-resistant nephrotic syndrome and pathological lesions of focal segmental glomerulosclerosis (FSGS), while the elder sister also developed hypertension, renal failure and cardiac dysfunction.
Collapse
Affiliation(s)
- Hongwen Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatric, Peking University First Hospital, Beijing, China
- Address correspondence to: Dr. Huijie Xiao, Department of Pediatric, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China. E-mail:
| |
Collapse
|
34
|
Rinschen MM, Hoppe AK, Grahammer F, Kann M, Völker LA, Schurek EM, Binz J, Höhne M, Demir F, Malisic M, Huber TB, Kurschat C, Kizhakkedathu JN, Schermer B, Huesgen PF, Benzing T. N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton. J Am Soc Nephrol 2017; 28:2867-2878. [PMID: 28724775 DOI: 10.1681/asn.2016101119] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/08/2017] [Indexed: 11/03/2022] Open
Abstract
Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in maintaining the integrity of podocytes and the glomerular filtration barrier of the kidney. We applied a novel proteomics technology that enables proteome-wide identification, mapping, and quantification of protein N-termini to comprehensively characterize cleaved podocyte proteins in the glomerulus in vivo We found evidence that defined proteolytic cleavage results in various proteoforms of important podocyte proteins, including those of podocin, nephrin, neph1, α-actinin-4, and vimentin. Quantitative mapping of N-termini demonstrated perturbation of protease action during podocyte injury in vitro, including diminished proteolysis of α-actinin-4. Differentially regulated protease substrates comprised cytoskeletal proteins as well as intermediate filaments. Determination of preferential protease motifs during podocyte damage indicated activation of caspase proteases and inhibition of arginine-specific proteases. Several proteolytic processes were clearly site-specific, were conserved across species, and could be confirmed by differential migration behavior of protein fragments in gel electrophoresis. Some of the proteolytic changes discovered in vitro also occurred in two in vivo models of podocyte damage (WT1 heterozygous knockout mice and puromycin aminonucleoside-treated rats). Thus, we provide direct and systems-level evidence that the slit diaphragm and podocyte cytoskeleton are regulated targets of proteolytic modification, which is altered upon podocyte damage.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Ann-Kathrin Hoppe
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Florian Grahammer
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Martin Kann
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Linus A Völker
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Eva-Maria Schurek
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Julie Binz
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Martin Höhne
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Milena Malisic
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Tobias B Huber
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany; and
| | - Christine Kurschat
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Bernhard Schermer
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany;
| | - Thomas Benzing
- Department II of Internal Medicine, .,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Guaragna MS, Cleto TL, Souza ML, Lutaif ACGB, de Castro LCG, Penido MGMG, Maciel-Guerra AT, Belangero VMS, Guerra-Junior G, De Mello MP. NPHS1 gene mutations confirm congenital nephrotic syndrome in four Brazilian cases: A novel mutation is described. Nephrology (Carlton) 2017; 21:753-7. [PMID: 26560236 DOI: 10.1111/nep.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023]
Abstract
AIM Autosomal recessive mutations in NPHS1 gene are a common cause of congenital nephrotic syndrome (CNS). The disorder is characterized by massive proteinuria that manifests in utero or in the neonatal period during the first 3 months of life. NPHS1 encodes nephrin, a member of the immunoglobulin family of cell adhesion molecules and the main protein expressed at the renal slit diaphragm. Currently, there are approximately 250 mutations described in the NPHS1 gene distributed among all nephrin domains. The main objective of this study was to perform the analysis of the NPHS1 gene in patients with congenital nephrotic syndrome in order to determine the molecular cause of the disease. METHODS Direct sequencing of NPHS1 gene in four children was performed. RESULTS Each patient was heterozygous for two pathogenic mutations disclosing the molecular cause of the disease in 100% of the cases. We identified six different mutations, consisting of one in-frame deletion, one frameshift, and four missense substitutions. The p.Val736Met mutation that is described here for the first time was considered pathogenic by different mutation predictive algorithms. Regardless of the type of mutation, three patients had a bad outcome and died CONCLUSIONS Despite the small size of the cohort, this study contributed to the increasing number of deleterious mutations in the NPHS1 gene by describing a new mutation. Also, since we identified NPHS1 pathogenic mutations as the cause of the disease in all cases analyzed, it might be a frequent cause of CNS in the South Eastern region of Brazil, although the analysis of a larger sample is required to obtain more indicative epidemiological data.
Collapse
Affiliation(s)
- Mara S Guaragna
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Sao Paulo, Brazil
| | - Thaís Lira Cleto
- Nephrology Center of University Hospital Pedro Ernesto, Rio de Janeiro, Brazil
| | - Marcela Lopes Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Sao Paulo, Brazil
| | - Anna Cristina G B Lutaif
- Pediatric Nephrology, Department of Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | - Andréa T Maciel-Guerra
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Vera M S Belangero
- Pediatric Nephrology, Department of Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Gil Guerra-Junior
- Interdisciplinary study group of determination and sex differentiation, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil.,Pediatric Research Center, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil.,Pediatric Endocrinology, Pediatric Department, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Maricilda P De Mello
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Sao Paulo, Brazil
| |
Collapse
|
36
|
Computational analysis of nsSNPs of NPHS1 gene and their effect on protein structural stability. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
37
|
Prohibitin Signaling at the Kidney Filtration Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:563-575. [PMID: 28551807 DOI: 10.1007/978-3-319-55330-6_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The kidney filtration barrier consists of three well-defined anatomic layers comprising a fenestrated endothelium, the glomerular basement membrane (GBM) and glomerular epithelial cells, the podocytes. Podocytes are post-mitotic and terminally differentiated cells with primary and secondary processes. The latter are connected by a unique cell-cell contact, the slit diaphragm. Podocytes maintain the GBM and seal the kidney filtration barrier to prevent the onset of proteinuria. Loss of prohibitin-1/2 (PHB1/2) in podocytes results not only in a disturbed mitochondrial structure but also in an increased insulin/IGF-1 signaling leading to mTOR activation and a detrimental metabolic switch. As a consequence, PHB-knockout podocytes develop proteinuria and glomerulosclerosis and eventually loss of renal function. In addition, experimental evidence suggests that PHB1/2 confer additional, extra-mitochondrial functions in podocytes as they localize to the slit diaphragm and thereby stabilize the unique intercellular contact between podocytes required to maintain an effective filtration barrier.
Collapse
|
38
|
Timing of renal replacement therapy does not influence survival and growth in children with congenital nephrotic syndrome caused by mutations in NPHS1: data from the ESPN/ERA-EDTA Registry. Pediatr Nephrol 2016; 31:2317-2325. [PMID: 27761660 DOI: 10.1007/s00467-016-3517-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS) of the Finnish type, NPHS1, is the most severe form of CNS. Outcomes of renal replacement therapy (RRT) in NPHS1 patients in Europe were analysed using data from the ESPN/ERA-EDTA Registry. As NPHS1 is most prevalent in Finland and the therapeutic approach differs from that in many other countries, we compared outcomes in Finnish and other European patients. METHODS NPHS1 mutations were confirmed in 170 children with CNS who initiated RRT (dialysis or renal transplantation) between 1991 and 2012. Finnish (n = 66) and non-Finnish NPHS1 patients (n = 104) were compared with respect to treatment policy, age at first RRT and renal transplantation (RTX), patient and graft survival, estimated glomerular filtration rate (eGFR) and growth. Age-matched patients with congenital anomalies of the kidney and urinary tract (CAKUT) served as controls. RESULTS Finnish NPHS1 patients were significantly younger than non-Finnish patients, both at the start of RRT and at the time of RTX. We found similar overall 5-year patient survival on RRT (91 %) and graft survival (89 %) in both NPHS1 groups and CAKUT controls. At the start of RRT, height standard deviation score (SDS) was higher in Finnish patients than in non-Finnish patients (mean [95 % CI]: -1.31 [-2.13 to -0.49] and -3.0 [-4.22 to -1.91], p < 0.01 respectively), but not at 5 years of age. At 5 years of age height and body mass index (BMI) SDS were similar to those of CAKUT controls. CONCLUSIONS Overall, 5-year patient and graft survival of both Finnish and non-Finnish NPHS1 patients on RRT were excellent and comparable with CAKUT patients with equally early RRT onset and was independent of the timing of RRT initiation and RTX.
Collapse
|
39
|
Ni J, Bao S, Johnson RI, Zhu B, Li J, Vadaparampil J, Smith CM, Campbell KN, Grahammer F, Huber TB, He JC, D'Agati VD, Chan A, Kaufman L. MAGI-1 Interacts with Nephrin to Maintain Slit Diaphragm Structure through Enhanced Rap1 Activation in Podocytes. J Biol Chem 2016; 291:24406-24417. [PMID: 27707879 PMCID: PMC5114397 DOI: 10.1074/jbc.m116.745026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
MAGI-1 is a multidomain cytosolic scaffolding protein that in the kidney is specifically located at the podocyte slit diaphragm, a specialized junction that is universally injured in proteinuric diseases. There it interacts with several essential molecules, including nephrin and neph1, which are required for slit diaphragm formation and as an intracellular signaling hub. Here, we show that diminished MAGI-1 expression in cultured podocytes reduced nephrin and neph1 membrane localization and weakened tight junction integrity. Global magi1 knock-out mice, however, demonstrated normal glomerular histology and function into adulthood. We hypothesized that a second mild but complementary genetic insult might induce glomerular disease susceptibility in these mice. To identify such a gene, we utilized the developing fly eye to test for functional complementation between MAGI and its binding partners. In this way, we identified diminished expression of fly Hibris (nephrin) or Roughest (neph1) as dramatically exacerbating the effects of MAGI depletion. Indeed, when these combinations were studied in mice, the addition of nephrin, but not neph1, heterozygosity to homozygous deletion of MAGI-1 resulted in spontaneous glomerulosclerosis. In cultured podocytes, MAGI-1 depletion reduced intercellular contact-induced Rap1 activation, a pathway critical for proper podocyte function. Similarly, magi1 knock-out mice showed diminished glomerular Rap1 activation, an effect dramatically enhanced by concomitant nephrin haploinsufficiency. Finally, combined overexpression of MAGI-1 and nephrin increased Rap1 activation, but not when substituting a mutant MAGI-1 that cannot bind nephrin. We conclude that the interaction between nephrin and MAGI-1 regulates Rap1 activation in podocytes to maintain long term slit diaphragm structure.
Collapse
Affiliation(s)
- Jie Ni
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029,; the Division of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China 150001
| | - Sujin Bao
- the Saint James School of Medicine, Saint Vincent and the Grenadines
| | - Ruth I Johnson
- the Biology Department, Wesleyan University, Middletown, Connecticut, 06459
| | - Bingbing Zhu
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029,; the Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China 200062
| | - Jianhua Li
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Justin Vadaparampil
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Christopher M Smith
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kirk N Campbell
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Florian Grahammer
- the Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tobias B Huber
- the Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany,; the BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany,; FRIAS, Freiburg Institute for Advanced Studies and Center for Systems Biology (ZBSA), Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - John C He
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Vivette D D'Agati
- the Department of Pathology, Columbia University Medical Center, New York, New York 10032, and
| | - Andrew Chan
- the School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lewis Kaufman
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029,.
| |
Collapse
|
40
|
Novel NPHS2 variant in patients with familial steroid-resistant nephrotic syndrome with early onset, slow progression and dominant inheritance pattern. Clin Exp Nephrol 2016; 21:677-684. [DOI: 10.1007/s10157-016-1331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/22/2016] [Indexed: 12/01/2022]
|
41
|
Wang JJ, Mao JH. The etiology of congenital nephrotic syndrome: current status and challenges. World J Pediatr 2016; 12:149-58. [PMID: 26961288 DOI: 10.1007/s12519-016-0009-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS), defined as heavy proteinuria, hypoalbuminemia, hyperlipidemia and edema presenting in the first 0-3 months of life, may be caused by congenital syphilis, toxoplasmosis, or congenital viral infections (such as cytomegalovirus). However, the majority of CNS cases are caused by monogenic defects of structural proteins that form the glomerular filtration barrier in the kidneys. Since 1998, an increasing number of genetic defects have been identified for their involvements in the pathogenesis of CNS, including NPHS1, NPHS2, WT1, PLCE1, and LAMB2. DATA SOURCES We searched databases such as PubMed, Elsevier and Wanfang with the following key words: congenital nephrotic syndrome, proteinuria, infants, neonate, congenital infection, mechanism and treatment; and we selected those publications written in English that we judged to be relevant to the topic of this review. RESULTS Based on the data present in the literature, we reviewed the following topics: 1) Infection associated CNS including congenital syphilis, congenital toxoplasmosis, and congenital cytomegalovirus infection; 2) genetic CNS including mutation of NPHS1 (Nephrin), NPHS2 (Podocin), WT1, LAMB2 (Laminin-β2), PLCE1 (NPHS3); 3) Other forms of CNS including maternal systemic lupus erythematosus, mercury poisoning, renal vein thrombosis, neonatal alloimmunization against neutral endopeptidase. CONCLUSION At present, the main challenge in CNS is to identify the cause of disease for individual patients. To make a definitive diagnosis, with the exclusion of infection-related CNS and maternal-associated disorders, pathology, family history, inheritance mode, and other accompanying congenital malformations are sometimes, but not always, useful indicators for diagnosing genetic CNS. Next-generation sequencing would be a more effective method for diagnosing genetic CNS in some patients, however, there are still some challenges with next-generation sequencing that need to be resolved in the future.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China. .,Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
42
|
Büscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, Kemper MJ, Tönshoff B, Hoyer PF, Konrad M, Weber S. Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2015; 11:245-53. [PMID: 26668027 DOI: 10.2215/cjn.07370715] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/30/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Treatment of congenital nephrotic syndrome (CNS) and steroid-resistant nephrotic syndrome (SRNS) is demanding, and renal prognosis is poor. Numerous causative gene mutations have been identified in SRNS that affect the renal podocyte. In the era of high-throughput sequencing techniques, patients with nongenetic SRNS frequently escape the scientific interest. We here present the long-term data of the German CNS/SRNS Follow-Up Study, focusing on the response to cyclosporin A (CsA) in patients with nongenetic versus genetic disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Cross-sectional and longitudinal clinical data were collected from 231 patients with CNS/SRNS treated at eight university pediatric nephrology units with a median observation time of 113 months (interquartile range, 50-178). Genotyping was performed systematically in all patients. RESULTS The overall mutation detection rate was high at 57% (97% in CNS and 41% in SRNS); 85% of all mutations were identified by the analysis of three single genes only (NPHS1, NPHS2, and WT1), accounting for 92% of all mutations in patients with CNS and 79% of all mutations in patients with SRNS. Remission of the disease in nongenetic SRNS was observed in 78% of patients after a median treatment period of 2.5 months; 82% of nongenetic patients responded within 6 months of therapy, and 98% of patients with nongenetic SRNS and CsA-induced complete remission (normalbuminemia and no proteinuria) maintained a normal renal function. Genetic SRNS, on the contrary, is associated with a high rate of ESRD in 66% of patients. Only 3% of patients with genetic SRNS experienced a complete remission and 16% of patients with genetic SRNS experienced a partial remission after CsA therapy. CONCLUSIONS The efficacy of CsA is high in nonhereditary SRNS, with an excellent prognosis of renal function in the large majority of patients. CsA should be given for a minimum period of 6 months in these patients with nongenetic SRNS. In genetic SRNS, response to CsA was low and restricted to exceptional patients.
Collapse
Affiliation(s)
- Anja K Büscher
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Anette Melk
- Pediatric Nephrology, Hanover Medical School, Hanover, Germany
| | - Julia Hoefele
- Center for Human Genetics and Laboratory Medicine Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany
| | - Birgitta Kranz
- Pediatric Nephrology, University Children's Hospital, Munster, Germany
| | | | - Sabrina Baig
- Pediatric Nephrology, Hanover Medical School, Hanover, Germany
| | | | | | - Lutz T Weber
- Pediatric Nephrology, University Children's Hospital Cologne, Cologne, Germany
| | - Markus J Kemper
- Pediatric Nephrology, University Children´s Hospital Hamburg, Hamburg, Germany; and
| | - Burkhard Tönshoff
- Department of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Peter F Hoyer
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Martin Konrad
- Pediatric Nephrology, University Children's Hospital, Munster, Germany
| | - Stefanie Weber
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany;
| | | |
Collapse
|
43
|
Guaragna MS, Lutaif ACGB, Piveta CSC, Souza ML, de Souza SR, Henriques TB, Maciel-Guerra AT, Belangero VMS, Guerra-Junior G, De Mello MP. NPHS2 mutations account for only 15% of nephrotic syndrome cases. BMC MEDICAL GENETICS 2015; 16:88. [PMID: 26420286 PMCID: PMC4589073 DOI: 10.1186/s12881-015-0231-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/15/2015] [Indexed: 01/27/2023]
Abstract
Background Nephrotic syndrome is traditionally classified on the basis of the response to standard steroid treatment. Mutations in more than 24 genes have been associated with nephrotic syndrome in children, although the great majority of steroid-resistant cases have been attributed to mutations in three main genes: NPHS1, NPHS2 and WT1. The aims of this study were to identify mutations in these genes more frequently reported as mutated and to characterize each variation using different in silico prediction algorithms in order to understand their biological functions. Methods We performed direct sequence analysis of exons 8 and 9 of WT1, 8 exons of NPHS2 and 29 exons of NPHS1, including NPHS2 and NPHS1 intron–exon boundary sequences, as well as 700 bp of the 5′ UTR from both genes in 27 steroid-resistant patients aged between 3 months and 18 years. Results Analysis of the NPHS2 gene revealed four missense mutations, one frameshift mutation and three variations in the 5′ UTR. Four patients presented compound heterozygosis, and four other patients presented one heterozygous alteration only. WT1 and NPHS1 gene analysis did not reveal any mutations. Discussion This is the first study focusing on genetics of SRNS in Brazilian children. Identification of mutations is important because it could influence physicians’ decision on patient treatment, as patients carrying mutations can be spared the side effects of immunosuppressive therapy and ultimately could be considered for kidney transplantation from a living donor. Conclusions After molecular analysis of the genes more frequently reported as mutated in 27 steroid-resistant nephrotic syndrome patients, we identified NPHS2 mutations confirming the hereditary character of the kidney disease in only 14.8 % of patients. Therefore, the next step is to perform a next generation sequencing based analysis of glomeluropathy-related panel of genes for the remaining patients in order to search for mutations in other genes related to steroid-resistant nephrotic syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0231-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mara Sanches Guaragna
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Anna Cristina G B Lutaif
- Nefrologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Cristiane S C Piveta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil. .,Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Marcela L Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Suéllen R de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Taciane B Henriques
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Andréa T Maciel-Guerra
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil. .,Grupo Interdisciplinar de Estudos da Determinação e Diferenciação do Sexo, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Vera M S Belangero
- Nefrologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Gil Guerra-Junior
- Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil. .,Grupo Interdisciplinar de Estudos da Determinação e Diferenciação do Sexo, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil. .,Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Maricilda P De Mello
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| |
Collapse
|
44
|
Cil O, Besbas N, Duzova A, Topaloglu R, Peco-Antić A, Korkmaz E, Ozaltin F. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol 2015; 30:1279-87. [PMID: 25720465 DOI: 10.1007/s00467-015-3058-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS) and infantile nephrotic syndrome (INS) are caused primarily by mutations in genes that encode structural and regulatory proteins of the glomerular filtration barrier. The aim of this study was to determine genotype-phenotype correlations and prognosis in patients with CNS and INS. METHODS NPHS1, NPHS2, LAMB2 and the eighth and ninth exons of WT1 were sequenced in 80 and 22 patients with CNS and INS, respectively. Genotype-phenotype correlations and survival were evaluated. RESULTS Causative mutations were identified in 64.7 % of patients, of which NPHS1 mutations were the most common (37.4 %). The mutation detection rate was twofold higher in CNS patients than in INS patients (72.5 vs. 36.2 %). The most commonly mutated gene in CNS patients was NPHS1 (46.3 %) versus NPHS2 (13.6 %) and WT1 (13.6 %) in INS patients. NPHS2 mutations, female patients with NPHS1 mutations, and NPHS1 mutations affecting the transmembrane or intracellular domains of nephrin were associated with longer survival. CONCLUSIONS Based on our present findings, the likelihood of identification of a genetic cause decreases with increasing age at diagnosis. The underlying genetic abnormality should be identified as early as possible, as this knowledge will facilitate clinicians in their prognostic prediction and enable patients to receive appropriate genetic counseling.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Slavotinek A, Kaylor J, Pierce H, Cahr M, DeWard S, Schneidman-Duhovny D, Alsadah A, Salem F, Schmajuk G, Mehta L. CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am J Hum Genet 2015; 96:162-9. [PMID: 25557780 DOI: 10.1016/j.ajhg.2014.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022] Open
Abstract
We report five fetuses and a child from three families who shared a phenotype comprising cerebral ventriculomegaly and echogenic kidneys with histopathological findings of congenital nephrosis. The presenting features were greatly elevated maternal serum alpha-fetoprotein (MSAFP) or amniotic fluid alpha-fetoprotein (AFAFP) levels or abnormalities visualized on ultrasound scan during the second trimester of pregnancy. Exome sequencing revealed deleterious sequence variants in Crumbs, Drosophila, Homolog of, 2 (CRB2) consistent with autosomal-recessive inheritance. Two fetuses with cerebral ventriculomegaly and renal microcysts were compound heterozygotes for p.Asn800Lys and p.Trp759Ter, one fetus with renal microcysts was a compound heterozygote for p.Glu643Ala and p.Asn800Lys, and one child with cerebral ventriculomegaly, periventricular heterotopias, echogenic kidneys, and renal failure was homozygous for p.Arg633Trp in CRB2. Examination of the kidneys in one fetus showed tubular cysts at the corticomedullary junction and diffuse effacement of the epithelial foot processes and microvillous transformation of the renal podocytes, findings that were similar to those reported in congenital nephrotic syndrome, Finnish type, that is caused by mutations in nephrin (NPHS1). Loss of function for crb2b and nphs1 in Danio rerio were previously shown to result in loss of the slit diaphragms of the podocytes, leading to the hypothesis that nephrosis develops from an inability to develop a functional glomerular barrier. We conclude that the phenotype associated with CRB2 mutations is pleiotropic and that the condition is an important consideration in the evaluation of high MSAFP/AFAFP where a renal cause is suspected.
Collapse
|
47
|
Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014; 21:422-5. [PMID: 25168831 DOI: 10.1053/j.ackd.2014.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome can be caused by rare highly penetrant mutations in number of genes. FSGS can follow both recessive and dominant inheritance patterns. In general, recessive forms present early, whereas the autosomal dominant forms present in adolescence or adulthood. Many of the genes found to be mutated in FSGS and nephrotic syndrome patients encode proteins essential for normal podocyte structure and/or function. An exception appears to be APOL1, which harbors common variants responsible for the high rate of FSGS and other nephropathies in people of recent African ancestry. Familial FSGS should be regarded as part of a spectrum of inherited glomerulopathies where the precise histologic presentation may depend on the age of onset, function of the responsible gene and gene products, and other factors.
Collapse
|
48
|
Novel and known nephrin gene (NPHS1) mutations in two Greek cases with congenital nephrotic syndrome including a complex genotype. J Genet 2014; 92:577-81. [PMID: 24371179 DOI: 10.1007/s12041-013-0290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Bonomo JA, Ng MCY, Palmer ND, Keaton JM, Larsen CP, Hicks PJ, Langefeld CD, Freedman BI, Bowden DW. Coding variants in nephrin (NPHS1) and susceptibility to nephropathy in African Americans. Clin J Am Soc Nephrol 2014; 9:1434-40. [PMID: 24948143 DOI: 10.2215/cjn.00290114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Presumed genetic risk for diabetic and nondiabetic end stage renal disease is strong in African Americans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Exome sequencing data from African Americans with type 2 diabetic end stage renal disease and nondiabetic, non-nephropathy controls in the T2D-GENES study (Discovery, n=529 patients and n=535 controls) were evaluated, focusing on missense variants in NPHS1. Associated variants were then evaluated in independent type 2 diabetic end stage renal disease (Replication, n=1305 patients and n=760 controls), nondiabetic end stage renal disease (n=1705), and type 2 diabetes-only, non-nephropathy samples (n=503). All participants were recruited from dialysis facilities and internal medicine clinics across the southeastern United States from 1991 to present. Additional NPHS1 missense variants were identified from exome sequencing resources, genotyped, and sequence kernel association testing was then performed. RESULTS Initial analysis identified rs35238405 (T233A; minor allele frequency=0.0096) as associated with type 2 diabetic end stage renal disease (adjustment for admixture P=0.042; adjustment for admixture+APOL1 P=0.080; odds ratio, 2.89 and 2.36, respectively); with replication in independent type 2 diabetic end stage renal disease samples (P=0.018; odds ratio, 4.30) and nondiabetic end stage renal disease samples (P=0.016; odds ratio, 4.48). In a combined analysis (all patients with end stage renal disease versus all controls), T233A was associated with all-cause end stage renal disease (P=0.0038; odds ratio, 2.82; n=3270 patients and n=1187 controls). A P-value of <0.001 was obtained after adjustment for admixture and APOL1 in sequence kernel association testing. Two additional variants (H800R and Y1174H) were nominally associated with protection from end stage renal disease (P=0.036; odds ratio, 0.44; P=0.0084; odds ratio, 0.040, respectively) in the locus-wide single-variant association tests. CONCLUSIONS Coding variants in NPHS1 are associated with both risk for and protection from common forms of nephropathy in African Americans.
Collapse
Affiliation(s)
- Jason A Bonomo
- Departments of Molecular Medicine and Translational Science, Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Maggie C Y Ng
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Biochemistry
| | - Nicholette D Palmer
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Biochemistry
| | - Jacob M Keaton
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | | | - Pamela J Hicks
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | | | - Carl D Langefeld
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Biostatistical Sciences, and
| | | | - Donald W Bowden
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Biochemistry,
| |
Collapse
|
50
|
Lovric S, Fang H, Vega-Warner V, Sadowski CE, Gee HY, Halbritter J, Ashraf S, Saisawat P, Soliman NA, Kari JA, Otto EA, Hildebrandt F. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2014; 9:1109-16. [PMID: 24742477 DOI: 10.2215/cjn.09010813] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVES In steroid-resistant nephrotic syndrome (SRNS), >21 single-gene causes are known. However, mutation analysis of all known SRNS genes is time and cost intensive. This report describes a new high-throughput method of mutation analysis using a PCR-based microfluidic technology that allows rapid simultaneous mutation analysis of 21 single-gene causes of SRNS in a large number of individuals. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study screened individuals with SRNS; samples were submitted for mutation analysis from international sources between 1996 and 2012. For proof of principle, a pilot cohort of 48 individuals who harbored known mutations in known SRNS genes was evaluated. After improvements to the method, 48 individuals with an unknown cause of SRNS were then examined in a subsequent diagnostic study. The analysis included 16 recessive SRNS genes and 5 dominant SRNS genes. A 10-fold primer multiplexing was applied, allowing PCR-based amplification of 474 amplicons in 21 genes for 48 DNA samples simultaneously. Forty-eight individuals were indexed in a barcode PCR, and high-throughput sequencing was performed. All disease-causing variants were confirmed via Sanger sequencing. RESULTS The pilot study identified the genetic cause of disease in 42 of 48 (87.5%) of the affected individuals. The diagnostic study detected the genetic cause of disease in 16 of 48 (33%) of the affected individuals with a previously unknown cause of SRNS. Seven novel disease-causing mutations in PLCE1 (n=5), NPHS1 (n=1), and LAMB2 (n=1) were identified in <3 weeks. Use of this method could reduce costs to 1/29th of the cost of Sanger sequencing. CONCLUSION This highly parallel approach allows rapid (<3 weeks) mutation analysis of 21 genes known to cause SRNS at a greatly reduced cost (1/29th) compared with traditional mutation analysis techniques. It detects mutations in about 33% of childhood-onset SRNS cases.
Collapse
Affiliation(s)
- Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Humphrey Fang
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Virginia Vega-Warner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Carolin E Sadowski
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pawaree Saisawat
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University and Egyptian Group of Orphan Diseases, Cairo, Egypt
| | - Jameela A Kari
- Department of Pediatrics, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; and
| | - Edgar A Otto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | |
Collapse
|