1
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Chang CH, Lee CC, Chen YC, Fan PC, Chu PH, Chu LJ, Yu JS, Chen HW, Yang CW, Chen YT. Identification of Endothelial Cell Protein C Receptor by Urinary Proteomics as Novel Prognostic Marker in Non-Recovery Kidney Injury. Int J Mol Sci 2024; 25:2783. [PMID: 38474029 DOI: 10.3390/ijms25052783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Acute kidney injury is a common and complex complication that has high morality and the risk for chronic kidney disease among survivors. The accuracy of current AKI biomarkers can be affected by water retention and diuretics. Therefore, we aimed to identify a urinary non-recovery marker of acute kidney injury in patients with acute decompensated heart failure. We used the isobaric tag for relative and absolute quantification technology to find a relevant marker protein that could divide patients into control, acute kidney injury with recovery, and acute kidney injury without recovery groups. An enzyme-linked immunosorbent assay of the endothelial cell protein C receptor (EPCR) was used to verify the results. We found that the EPCR was a usable marker for non-recovery renal failure in our setting with the area under the receiver operating characteristics 0.776 ± 0.065; 95%CI: 0.648-0.905, (p < 0.001). Further validation is needed to explore this possibility in different situations.
Collapse
Affiliation(s)
- Chih-Hsiang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Pei-Chun Fan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiao-Wei Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Ting Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Dominguez JH, Xie D, Dominguez JM, Kelly KJ. Role of coagulation in persistent renal ischemia following reperfusion in an animal model. Am J Physiol Renal Physiol 2022; 323:F590-F601. [PMID: 36007891 PMCID: PMC9602917 DOI: 10.1152/ajprenal.00162.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic acute kidney injury is common, deadly, and accelerates the progression of chronic kidney disease, yet has no specific therapy. After ischemia, reperfusion is patchy with early and persistent impairment in regional renal blood flow and cellular injury. We tested the hypothesis that intrarenal coagulation results in sustained renal ischemia following reperfusion, using a well-characterized model. Markedly decreased, but heterogeneous, microvascular plasma flow with microthrombi was found postischemia by intravital microscopy. Widespread tissue factor expression and fibrin deposition were also apparent. Clotting was accompanied by complement activation and inflammation. Treatment with exosomes derived from renal tubular cells or with the fibrinolytic urokinase, given 24 h postischemia when renal failure was established, significantly improved microvascular flow, coagulation, serum creatinine, and histological evidence of injury. These data support the hypothesis that intrarenal clotting occurs early and the resultant sustained ischemia is a critical determinant of renal failure following ischemia; they demonstrate that the coagulation abnormalities are amenable to therapy and that therapy results in improvement in both function and postischemic inflammation.NEW & NOTEWORTHY Ischemic renal injury carries very high morbidity and mortality, yet has no specific therapy. We found markedly decreased, heterogeneous microvascular plasma flow, tissue factor induction, fibrin deposition, and microthrombi after renal ischemia-reperfusion using a well-characterized model. Renal exosomes or the fibrinolytic urokinase, administered after renal failure was established, improved microvascular flow, coagulation, renal function, and histology. Data demonstrate that intrarenal clotting results in sustained ischemia amenable to therapy that improves both function and postischemic inflammation.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| | - Danhui Xie
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K. J. Kelly
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| |
Collapse
|
4
|
Dou X, Yan D, Ma Z, Gao N, Shan A. Sodium butyrate alleviates LPS-induced kidney injury via inhibiting TLR2/4 to regulate rBD2 expression. J Food Biochem 2022; 46:e14126. [PMID: 35322444 DOI: 10.1111/jfbc.14126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
Defensins represent an integral part of the innate immune system to ward off potential pathogens. The study used a rat model to investigate mechanisms by which sodium butyrate (NaB) regulates β-defensin to inhibit lipopolysaccharide (LPS)-induced nephrotoxicity. We found that NaB alleviated LPS-induced renal structural damage, as judged by reduced renal lesions and improved glomerular vascular structure. In addition, elevated levels of indicators of kidney damage creatinine and blood urine nitrogen, inflammatory mediators TNF-α, and IL-6 dropped after NaB administration. Rat β-defensin 2 (rBD2), as estimated by mRNA level, was significantly higher in LPS-treated kidneys, whereas the changes of rBD2 reduced in NaB-treated kidneys. In addition, NaB alleviated LPS-induced increase in TLRs mRNA expression. Mechanistically, the present study indicates that NaB has nephroprotective activity resulting from modulation of TLR2/4 to regulate rBD2 expression hence curbing inflammation. PRACTICAL APPLICATIONS: In practice, adding NaB to diet can improve animal performance. Our results suggest that dietary supplementation of NaB increases animal feed intake and improves the body's defense ability to relieve inflammation caused by bacteria. Especially in the age of resistance prohibition, sodium butyrate can partially replace antibiotics to induce the expression of body defensin. It may become a health care product to enhance the body's immunity.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Di Yan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ziwen Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Sriwastva MK, Kunjunni R, Andrabi M, Prasad K, Saxena R, Subbiah V. Neuroprotective Effects of Activated Protein C Involve the PARP/AIF Pathway against Oxygen-Glucose Deprivation in SH-SY5Y Cells. Brain Sci 2020; 10:brainsci10120959. [PMID: 33321687 PMCID: PMC7764138 DOI: 10.3390/brainsci10120959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Protein C, a member of the zymogen family of serine proteases in plasma, is one of the several vitamin K dependent glycoproteins known to induce anti-apoptotic activity. However, the target molecule involved in the mechanism needs to be investigated. We sought to investigate the pathways involved in the anti-apoptotic role of activated protein C (APC) on oxygen-glucose deprivation (OGD) induced ischemic conditions in in-vitro SH-SY5Y cells. SH-SY5Y cells were exposed to OGD in an airtight chamber containing 95% N2 and 5% CO2 and media deprived of glucose for 4 h following 24 h of reoxygenation. The cell toxicity, viability, expression of receptors such as endothelial cell protein C receptor (EPCR), protease-activated receptor (PAR)1, PAR3, and apoptosis-related proteins B-cell lymphoma 2 (BCL-2), BCL-2-like protein 4 (Bax), Poly [ADP-ribose] polymerase-1 (PARP-1) were assessed. Administration of APC decreased the cellular injury when compared to the OGD exposed group in a dose-dependent manner and displayed increased expression of PAR-1, PAR-3, and EPCR. The APC treatment leads to a reduction in PARP-1 expression and cleavage and apoptosis-inducing factor (AIF) expression. The reduction of caspase-3 activity and PARP-1 and AIF expression following APC administration results in restoring mitochondrial function with decreased cellular injury and apoptosis. Our results suggested that APC has potent protective effects against in-vitro ischemia in SH-SY5Y cells by modulating mitochondrial function.
Collapse
Affiliation(s)
- Mukesh Kumar Sriwastva
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi 110029, India; (R.K.); (M.A.); (V.S.)
- Correspondence: ; Tel.: +91-112659-4488
| | - Remesh Kunjunni
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi 110029, India; (R.K.); (M.A.); (V.S.)
| | - Mutahar Andrabi
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi 110029, India; (R.K.); (M.A.); (V.S.)
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Renu Saxena
- Department of Hematology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Vivekanandhan Subbiah
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi 110029, India; (R.K.); (M.A.); (V.S.)
| |
Collapse
|
6
|
Activated Protein C in Cutaneous Wound Healing: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20040903. [PMID: 30791425 PMCID: PMC6412604 DOI: 10.3390/ijms20040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Independent of its well-known anticoagulation effects, activated protein C (APC) exhibits pleiotropic cytoprotective properties. These include anti-inflammatory actions, anti-apoptosis, and endothelial and epithelial barrier stabilisation. Such beneficial effects have made APC an attractive target of research in a plethora of physiological and pathophysiological processes. Of note, the past decade or so has seen the emergence of its roles in cutaneous wound healing-a complex process involving inflammation, proliferation and remodelling. This review will highlight APC's functions and mechanisms, and detail its pre-clinical and clinical studies on cutaneous wound healing.
Collapse
|
7
|
Liu J, Han Z, Chen G, Li Y, Zhang J, Xu J, van Zijl PCM, Zhang S, Liu G. CEST MRI of sepsis-induced acute kidney injury. NMR IN BIOMEDICINE 2018; 31:e3942. [PMID: 29897643 DOI: 10.1002/nbm.3942] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat /S0 ) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and - 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat /S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and - 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1 , T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Han
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guoli Chen
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shuixing Zhang
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
8
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
9
|
van ’t Veer C, Roelofs J, Gerlitz B, Grinnell B, Levi M, der Poll T, Schouten M. Recombinant activated protein C attenuates coagulopathy and inflammation when administered early in murine pneumococcal pneumonia. Thromb Haemost 2017; 106:1189-96. [DOI: 10.1160/th11-06-0438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/17/2011] [Indexed: 02/04/2023]
Abstract
SummaryRecombinant human activated protein C (APC), which has both anticoagulant and anti-inflammatory properties, improves survival of patients with severe sepsis. This beneficial effect is especially apparent in patients with pneumococcal pneumonia. Earlier treatment with APC in sepsis has been associated with a better therapeutic response as compared to later treatment. In a mouse model it was recently confirmed that recombinant murine (rm-)APC decreases coagulation activation and improves survival in pneumococcal pneumonia; however, APC did not impact on the inflammatory response. The aim of this study was to determine the effect of APC treatment instigated early in infection on activation of coagulation and inflammation after induction of pneumococcal pneumonia. Mice were infected intranasally with viable S. pneumoniae. Mice were treated with rm-APC (125 μg) or vehicle intraperitoneally 12 hours after infection and were sacrificed after 20 hours, after which blood and organs were harvested for determination of bacterial outgrowth, coagulation activation and inflammatory markers. In this early treatment model, rm-APC treatment inhibited pulmonary and systemic activation of coagulation as reflected by lower levels of throm-bin-antithrombin complexes and D-dimer. Moreover, rm-APC reduced the levels of a large number of cytokines and chemokines in the lung. When administered early in pneumococcal pneumonia, rm-APC inhibits systemic and pulmonary activation of coagulation and moreover exerts various anti-inflammatory effects in the lung.
Collapse
|
10
|
Flaumenhaft R, De Ceunynck K. Targeting PAR1: Now What? Trends Pharmacol Sci 2017; 38:701-716. [PMID: 28558960 PMCID: PMC5580498 DOI: 10.1016/j.tips.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Protease-activated receptors (PARs) are a ubiquitously expressed class of G-protein-coupled receptors (GPCRs) that enable cells to respond to proteases in the extracellular environment in a nuanced and dynamic manner. PAR1 is the archetypal family member and has been the object of large-scale drug development programs since the 1990s. Vorapaxar and drotrecogin-alfa are approved PAR1-targeted therapeutics, but safety concerns have limited the clinical use of vorapaxar and questions regarding the efficacy of drotrecogin-alfa led to its withdrawal from the market. New understanding of mechanisms of PAR1 function, discovery of improved strategies for modifying PAR1 function, and identification of novel indications for PAR1 modulators have provided new opportunities for therapies targeting PAR1. In this review, we critically evaluate prospects for the next generation of PAR1-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit Care Med 2017; 44:e897-903. [PMID: 27058465 DOI: 10.1097/ccm.0000000000001735] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The histopathologic changes associated with septic acute kidney injury are poorly understood, in part, because of the lack of biopsy data in humans. Animal models of septic acute kidney injury may help define such changes. Therefore, we performed a systematic review of the histopathologic changes found in modern experimental septic acute kidney injury models. DATA SOURCES MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, and PubMed (from January 2007 to February 2015). STUDY SELECTION We reviewed experimental studies reporting findings on the histopathology of contemporary experimental septic acute kidney injury. DATA EXTRACTION We focused on the presence or the absence of acute tubular necrosis, tubular cell apoptosis, and other nonspecific findings. DATA SYNTHESIS We identified 102 studies in 1,059 animals. Among the 1,059 animals, 53 (5.0%) did not have any renal histopathologic changes, but acute tubular necrosis was found in 184 (17.4%). The prevalence of acute tubular necrosis was not related to animal size or model of sepsis and was only found in models with low cardiac output and decreased renal blood flow (p < 0.0001). Only 21 studies (170 animals) assessed the prevalence of tubular cell apoptosis, which was reported in 158 animals (92.9%). The prevalence of tubular cell apoptosis was significantly higher in studies using small animals (p < 0.0001) and in peritonitis models (p < 0.0001). Simultaneous acute tubular necrosis and tubular cell apoptosis was rare (55 animals [32.4%]) and only seen with decreased cardiac output and renal blood flow. Nonspecific changes (vacuolization of tubular cells, loss of brush border, and tubular cell swelling) were each observed in 423 (39.9%), 250 (23.6%) and 243 (22.9%) animals, respectively. CONCLUSIONS In models of experimental septic acute kidney injury in contemporary articles, acute tubular necrosis was relatively uncommon and, when present, reflected the presence of an associated low cardiac output or low renal blood flow syndrome. Tubular cell apoptosis seemed frequent in the few studies in which it was investigated. Nonspecific morphologic changes, however, were the most common histopathologic findings.
Collapse
|
12
|
Griffin B, Murphy M. A Friend in Need: Activated Protein C Stabilizes YB-1 during Renal Ischemia Reperfusion Injury. J Am Soc Nephrol 2015; 26:2605-7. [PMID: 26015454 DOI: 10.1681/asn.2015040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Brenda Griffin
- Department of Renal Medicine, Cork University Hospital, Wilton, Cork, Ireland; and
| | - Madeline Murphy
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Dong W, Wang H, Shahzad K, Bock F, Al-Dabet MM, Ranjan S, Wolter J, Kohli S, Hoffmann J, Dhople VM, Zhu C, Lindquist JA, Esmon CT, Gröne E, Gröne HJ, Madhusudhan T, Mertens PR, Schlüter D, Isermann B. Activated Protein C Ameliorates Renal Ischemia-Reperfusion Injury by Restricting Y-Box Binding Protein-1 Ubiquitination. J Am Soc Nephrol 2015; 26:2789-99. [PMID: 26015455 DOI: 10.1681/asn.2014080846] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the leading cause of ARF. A pathophysiologic role of the coagulation system in renal IRI has been established, but the functional relevance of thrombomodulin (TM)-dependent activated protein C (aPC) generation and the intracellular targets of aPC remain undefined. Here, we investigated the role of TM-dependent aPC generation and therapeutic aPC application in a murine renal IRI model and in an in vitro hypoxia and reoxygenation (HR) model using proximal tubular cells. In renal IRI, endogenous aPC levels were reduced. Genetic or therapeutic reconstitution of aPC efficiently ameliorated renal IRI independently of its anticoagulant properties. In tubular cells, cytoprotective aPC signaling was mediated through protease activated receptor-1- and endothelial protein C receptor-dependent regulation of the cold-shock protein Y-box binding protein-1 (YB-1). The mature 50 kD form of YB-1 was required for the nephro- and cytoprotective effects of aPC in vivo and in vitro, respectively. Reduction of mature YB-1 and K48-linked ubiquitination of YB-1 was prevented by aPC after renal IRI or tubular HR injury. aPC preserved the interaction of YB-1 with the deubiquitinating enzyme otubain-1 and maintained expression of otubain-1, which was required to reduce K48-linked YB-1 ubiquitination and to stabilize the 50 kD form of YB-1 after renal IRI and tubular HR injury. These data link the cyto- and nephroprotective effects of aPC with the ubiquitin-proteasome system and identify YB-1 as a novel intracellular target of aPC. These insights may provide new impetus for translational efforts aiming to restrict renal IRI.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | - Hongjie Wang
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Department of Molecular Genetics, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Fabian Bock
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | | | - Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | - Juliane Wolter
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | - Juliane Hoffmann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | - Vishnu Mukund Dhople
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Cheng Zhu
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, and
| | | | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Elisabeth Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Herman-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, and
| | - Dirk Schlüter
- Institute of Microbiology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty,
| |
Collapse
|
14
|
Gupta KK, Donahue DL, Sandoval-Cooper MJ, Castellino FJ, Ploplis VA. Abrogation of plasminogen activator inhibitor-1-vitronectin interaction ameliorates acute kidney injury in murine endotoxemia. PLoS One 2015; 10:e0120728. [PMID: 25799354 PMCID: PMC4370643 DOI: 10.1371/journal.pone.0120728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/06/2015] [Indexed: 01/20/2023] Open
Abstract
Sepsis-induced acute kidney injury (AKI) contributes to the high mortality and morbidity in patients. Although the pathogenesis of AKI during sepsis is poorly understood, it is well accepted that plasminogen activator inhibitor-1 (PAI-1) and vitronectin (Vn) are involved in AKI. However, the functional cooperation between PAI-1 and Vn in septic AKI has not been completely elucidated. To address this issue, mice were utilized lacking either PAI-1 (PAI-1−/−) or expressing a PAI-1-mutant (PAI-1R101A/Q123K) in which the interaction between PAI-1 and Vn is abrogated, while other functions of PAI-1 are retained. It was found that both PAI-1−/− and PAI-1R101A/Q123K mice are associated with decreased renal dysfunction, apoptosis, inflammation, and ERK activation as compared to wild-type (WT) mice after LPS challenge. Also, PAI-1−/− mice showed attenuated fibrin deposition in the kidneys. Furthermore, a lack of PAI-1 or PAI-1-Vn interaction was found to be associated with an increase in activated Protein C (aPC) in plasma. These results demonstrate that PAI-1, through its interaction with Vn, exerts multiple deleterious mechanisms to induce AKI. Therefore, targeting of the PAI-1-Vn interaction in kidney represents an appealing therapeutic strategy for the treatment of septic AKI by not only altering the fibrinolytic capacity but also regulating PC activity.
Collapse
Affiliation(s)
- Kamlesh K Gupta
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mayra J Sandoval-Cooper
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
15
|
Chen W, Carvalho LPD, Chan MY, Kini RM, Kang TS. Fasxiator, a novel factor XIa inhibitor from snake venom, and its site-specific mutagenesis to improve potency and selectivity. J Thromb Haemost 2015; 13:248-61. [PMID: 25418421 DOI: 10.1111/jth.12797] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bleeding remains a major limitation of standard anticoagulant drugs that target the extrinsic and common coagulation pathways. Recently, intrinsic coagulation factors are increasingly being investigated as alternative targets for developing anticoagulant drugs with lower bleeding risk. OBJECTIVES Goals were to (i) identify novel anticoagulants selectively targeting intrinsic coagulation pathway and (ii) characterize and further improve the properties of the identified anticoagulants. METHODS AND RESULTS We have isolated and sequenced a specific factor XIa (FXIa) inhibitor, henceforth named Fasxiator, from the venom of the banded krait snake, Bungarus fasciatus. It is a Kunitz-type protease inhibitor that prolonged activated partial thromboplastin time without significant effects on prothrombin time. Fasxiator was recombinantly expressed (rFasxiator), purified, and characterized to be a slow-type inhibitor of FXIa that exerts its anticoagulant activities (doubled activated partial thromboplastin time at ~ 3 μmol L(-1) ) by selectively inhibiting human FXIa in in vitro assays. A series of mutants were subsequently generated to improve the potency and selectivity of recombinant rFasxiator. rFasxiatorN17R,L19E showed the best balance between potency (IC50 ~ 1 nmol L(-1) ) and selectivity (> 100 times). rFasxiatorN17R,L19E is a competitive slow-type inhibitor of FXIa (Ki = 0.86 nmol L(-1) ), possesses anticoagulant activity that is ~ 10 times stronger in human plasma than in murine plasma, and prolonged the occlusion time of mice carotid artery in FeCl3 -induced thrombosis models. CONCLUSION We have isolated an exogenous FXIa specific inhibitor, engineered it to improve its potency by ~ 1000 times and demonstrated its in vitro and in vivo efficacy. These proof-of-principle data supported the further development of Fasxiator as a novel anticoagulant candidate.
Collapse
Affiliation(s)
- W Chen
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Mosnier LO, Zlokovic BV, Griffin JH. Cytoprotective-selective activated protein C therapy for ischaemic stroke. Thromb Haemost 2014; 112:883-92. [PMID: 25230930 DOI: 10.1160/th14-05-0448] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Despite years of research and efforts to translate stroke research to clinical therapy, ischaemic stroke remains a major cause of death, disability, and diminished quality of life. Primary and secondary preventive measures combined with improved quality of care have made significant progress. However, no novel drug for ischaemic stroke therapy has been approved in the past decade. Numerous studies have shown beneficial effects of activated protein C (APC) in rodent stroke models. In addition to its natural anticoagulant functions, APC conveys multiple direct cytoprotective effects on many different cell types that involve multiple receptors including protease activated receptor (PAR) 1, PAR3, and the endothelial protein C receptor (EPCR). Application of molecular engineered APC variants with altered selectivity profiles to rodent stroke models demonstrated that the beneficial effects of APC primarily require its cytoprotective activities but not its anticoagulant activities. Extensive basic, preclinical, and clinical research provided a compelling rationale based on strong evidence for translation of APC therapy that has led to the clinical development of the cytoprotective-selective APC variant, 3K3A-APC, for ischaemic stroke. Recent identification of non-canonical PAR1 and PAR3 activation by APC that give rise to novel tethered-ligands capable of inducing biased cytoprotective signalling as opposed to the canonical signalling provides a mechanistic explanation for how APC-mediated PAR activation can selectively induce cytoprotective signalling pathways. Collectively, these paradigm-shifting discoveries provide detailed insights into the receptor targets and the molecular mechanisms for neuroprotection by cytoprotective-selective 3K3A-APC, which is currently a biologic drug in clinical trials for ischaemic stroke.
Collapse
Affiliation(s)
- Laurent O Mosnier
- Laurent O. Mosnier, PhD, Department of Molecular and Experimental Medicine (MEM-180), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA, Tel.: +1 858 784 2227, Fax: +1 858 784 2243, E-mail:
| | | | | |
Collapse
|
18
|
Bock F, Shahzad K, Vergnolle N, Isermann B. Activated protein C based therapeutic strategies in chronic diseases. Thromb Haemost 2014; 111:610-7. [PMID: 24652581 DOI: 10.1160/th13-11-0967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Activated protein C (aPC) is a natural anticoagulant and a potent anti-inflammatory and cytoprotective agent. At the expense of increased bleeding risk aPC has been used - with some success - in sepsis. The design of cytoprotective-selective aPC variants circumvents this limitation of increased bleeding, reviving the interest in aPC as a therapeutic agent. Emerging studies suggest that aPC`s beneficial effects are not restricted to acute illness, but likewise relevant in chronic diseases, such as diabetic nephropathy, neurodegeneration or wound healing. Epigenetic regulation of gene expression, reduction of oxidative stress, and regulation of ROS-dependent transcription factors are potential mechanisms of sustained cytoprotective effects of aPC in chronic diseases. Given the available data it seems questionable whether a unifying mechanism of aPC dependent cytoprotection in acute and chronic diseases exists. In addition, the signalling pathways employed by aPC are tissue and cell specific. The mechanistic insights gained from studies exploring aPC`s effects in various diseases may hence lay ground for tissue and disease specific therapeutic approaches. This review outlines recent investigations into the mechanisms and consequences of long-term modulation of aPC-signalling in models of chronic diseases.
Collapse
Affiliation(s)
| | | | | | - Berend Isermann
- Berend Isermann, MD, Otto-von-Guericke-University Magdeburg, Institute of Clinical Pathology and Pathobiochemistry, Leipziger Str. 44, D-39120 Magdeburg, Germany, Tel.: +49 391 67 13900, Fax: +49 391 67 13902, E-mail: ;
| |
Collapse
|
19
|
Activated Protein C Improves Macrovascular and Microvascular Reactivity in Human Severe Sepsis and Septic Shock. Shock 2013; 40:512-8. [DOI: 10.1097/shk.0000000000000060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Almac E, Johannes T, Bezemer R, Mik EG, Unertl KE, Groeneveld ABJ, Ince C. Activated protein C ameliorates impaired renal microvascular oxygenation and sodium reabsorption in endotoxemic rats. Intensive Care Med Exp 2013; 1:24. [PMID: 26266793 PMCID: PMC4796218 DOI: 10.1186/2197-425x-1-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Introduction We aimed to test whether continuous recombinant human activated protein C (APC) administration would be able to protect renal oxygenation and function during endotoxemia in order to provide more insight into the role of coagulation and inflammation in the development of septic acute kidney injury. Methods In anesthetized, mechanically ventilated Wistar rats, endotoxemia was induced by lipopolysaccharide administration (10 mg/kg i.v. over 30 min). One hour later, the rats received fluid resuscitation with 0 (LPS + FR group; n = 8), 10 (APC10 group; n = 8), or 100 (APC100 group; n = 8) μg/kg/h APC for 2 h. Renal microvascular oxygenation in the cortex and medulla were measured using phosphorimetry, and renal creatinine clearance rate and sodium reabsorption were measured as indicators of renal function. Statistical significance of differences between groups was tested using two-way ANOVA with Bonferroni post hoc tests. Results APC did not have notable effects on systemic and renal hemodynamic and oxygenation variables or creatinine clearance. The changes in renal microvascular oxygenation in both the cortex (r = 0.66; p < 0.001) and medulla (r = 0.80; p < 0.001) were correlated to renal sodium reabsorption. Conclusion Renal sodium reabsorption is closely correlated to renal microvascular oxygenation during endotoxemia. In this study, fluid resuscitation and APC supplementation were not significantly effective in protecting renal microvascular oxygenation and renal function. The specific mechanisms responsible for these effects of APC warrant further study. Electronic supplementary material The online version of this article (doi:10.1186/2197-425X-1-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emre Almac
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
21
|
Kuiper JW, Vaschetto R, Della Corte F, Plötz FB, Groeneveld ABJ. Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release--just theory or a causal relationship? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:228. [PMID: 21884646 PMCID: PMC3387589 DOI: 10.1186/cc10282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the current literature on the molecular mechanisms involved in the pathogenesis of acute kidney injury induced by plasma mediators released by mechanical ventilation. A comprehensive literature search in the PubMed database was performed and articles were identified that showed increased plasma levels of mediators where the increase was solely attributable to mechanical ventilation. A subsequent search revealed articles delineating the potential effects of each mediator on the kidney or kidney cells. Limited research has focused specifically on the relationship between mechanical ventilation and acute kidney injury. Only a limited number of plasma mediators has been implicated in mechanical ventilation-associated acute kidney injury. The number of mediators released during mechanical ventilation is far greater and includes pro- and anti-inflammatory mediators, but also mediators involved in coagulation, fibrinolysis, cell adhesion, apoptosis and cell growth. The potential effects of these mediators is pleiotropic and include effects on inflammation, cell recruitment, adhesion and infiltration, apoptosis and necrosis, vasoactivity, cell proliferation, coagulation and fibrinolysis, transporter regulation, lipid metabolism and cell signaling. Most research has focused on inflammatory and chemotactic mediators. There is a great disparity of knowledge of potential effects on the kidney between different mediators. From a theoretical point of view, the systemic release of several mediators induced by mechanical ventilation may play an important role in the pathophysiology of acute kidney injury. However, evidence supporting a causal relationship is lacking for the studied mediators.
Collapse
Affiliation(s)
- Jan Willem Kuiper
- Department of Pediatric Intensive Care, VUmc Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Kinsey GR, Okusa MD. Pathogenesis of acute kidney injury: foundation for clinical practice. Am J Kidney Dis 2011; 58:291-301. [PMID: 21530035 PMCID: PMC3144267 DOI: 10.1053/j.ajkd.2011.02.385] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
The pathogenesis of acute kidney injury (AKI) is complex, involving such factors as vasoconstriction, leukostasis, vascular congestion, cell death, and abnormal immune modulators and growth factors. Many targeted clinical therapies have failed, are inconclusive, or have yet to be tested. Given the complexity of the pathogenesis of AKI, it may be naive to expect that one therapeutic intervention would have success. Some examples of detrimental processes that can be blocked in preclinical models to improve kidney function and survival are apoptotic cell death in tubular epithelial cells, complement-mediated immune system activation, and impairment of cellular homeostasis and metabolism. Modalities with the potential to decrease morbidity and mortality in patients with AKI include vasodilators, growth factors, anti-inflammatory agents, and cell-based therapies. Pharmacologic agents that target these diverse pathways are being used clinically for other indications. Using combinatorial approaches in future clinical trials may improve our ability to prevent and treat AKI.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
23
|
Burruss S, Andakyan A, Romanov S, Semiletova N, Cryer H. Effect of protein C gene mutation on coagulation and inflammation in hemorrhagic shock. J Surg Res 2011; 175:18-23. [PMID: 21962741 DOI: 10.1016/j.jss.2011.06.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/16/2011] [Accepted: 06/22/2011] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Trauma patients are at high risk of complications and death from coagulopathy and inflammatory organ failure. Recent evidence implicates protein C (PC) as a key mediator of this process. We hypothesized that a mutation in the PC gene would ameliorate the inflammatory and coagulopathic response to hemorrhagic shock (HS) and resuscitation. METHODS FHH wild type and PC mutant rats underwent controlled hemorrhage for 120 min with 70% of blood volume removed. Rats were resuscitated with Ringers lactate (2x shed blood volume) and shed blood. Animals were sacrificed 4 h post-HS. Controls were untreated naïve rats. RESULTS AST and NFkB lung protein levels were elevated similarly in both WT and mutants compared with naïve rats. Plasma fibrinogen levels decreased significantly with progression of HS compared with baseline (BL) levels and returned towards normal 4 h after resuscitation. PC activity was similar in both groups at BL (0.5 ± 0.08 versus 0.6 ± 0.14; P = 0.14) and decreased from BL by 53% ± 24% in WT (P =0.08), by 67% ± 11% in mutants (P = 0.03) at sacrifice, and was not different between groups (P = 0.29). CONCLUSIONS Our model of HS and resuscitation produced a hypocoaguable, hyperinflammatory state with increased levels of NFkB and decreased levels of fibrinogen and PC levels. The mutated PC did not appear to alter these responses in our model of HS and resuscitation.
Collapse
Affiliation(s)
- Sigrid Burruss
- Department of Surgery, University of California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Acute kidney injury (AKI) as a consequence of ischemia is a common clinical event leading to unacceptably high morbidity and mortality, development of chronic kidney disease (CKD), and transition from pre-existing CKD to end-stage renal disease. Data indicate a close interaction between the many cell types involved in the pathophysiology of ischemic AKI, which has critical implications for the treatment of this condition. Inflammation seems to be the common factor that links the various cell types involved in this process. In this Review, we describe the interactions between these cells and their response to injury following ischemia. We relate these events to patients who are at high risk of AKI, and highlight the characteristics that might predispose these patients to injury. We also discuss how therapy targeting specific cell types can minimize the initial and subsequent injury following ischemia, thereby limiting the extent of acute changes and, hopefully, long-term structural and functional alterations to the kidney.
Collapse
|
25
|
Maybauer MO, Maybauer DM, Fraser JF, Szabo C, Westphal M, Kiss L, Horvath EM, Nakano Y, Herndon DN, Traber LD, Traber DL. Recombinant human activated protein C attenuates cardiovascular and microcirculatory dysfunction in acute lung injury and septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R217. [PMID: 21110850 PMCID: PMC3220026 DOI: 10.1186/cc9342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/15/2010] [Accepted: 11/26/2010] [Indexed: 12/19/2022]
Abstract
Introduction This prospective, randomized, controlled, experimental animal study looks at the effects of recombinant human activated protein C (rhAPC) on global hemodynamics and microcirculation in ovine acute lung injury (ALI) and septic shock, resulting from smoke inhalation injury. Methods Twenty-one sheep (37 ± 2 kg) were operatively prepared for chronic study and randomly allocated to either the sham, control, or rhAPC group (n = 7 each). The control and rhAPC groups were subjected to insufflation of four sets of 12 breaths of cotton smoke followed by instillation of live Pseudomonas aeruginosa into both lung lobes, according to an established protocol. Healthy sham animals were not subjected to the injury and received only four sets of 12 breaths of room air and instillation of the vehicle (normal saline). rhAPC (24 μg/kg/hour) was intravenously administered from 1 hour post injury until the end of the 24-hour experiment. Regional microvascular blood flow was analyzed using colored microspheres. All sheep were mechanically ventilated with 100% oxygen, and fluid resuscitated with lactated Ringer's solution to maintain hematocrit at baseline levels. Results The rhAPC-associated reduction in heart malondialdehyde (MDA) and heart 3-nitrotyrosine (a reliable indicator of tissue injury) levels occurred parallel to a significant increase in mean arterial pressure and to a significant reduction in heart rate and cardiac output compared with untreated controls that showed a typical hypotensive, hyperdynamic response to the injury (P < 0.05). In addition, rhAPC significantly attenuated the changes in microvascular blood flow to the trachea, kidney, and spleen compared with untreated controls (P < 0.05 each). Blood flow to the ileum and pancreas, however, remained similar between groups. The cerebral blood flow as measured in cerebral cortex, cerebellum, thalamus, pons, and hypothalamus, was significantly increased in untreated controls, due to a loss of cerebral autoregulation in septic shock. rhAPC stabilized cerebral blood flow at baseline levels, as in the sham group. Conclusions We conclude that rhAPC stabilized cardiovascular functions and attenuated the changes in visceral and cerebral microcirculation in sheep suffering from ALI and septic shock by reduction of cardiac MDA and 3-nitrotyrosine.
Collapse
Affiliation(s)
- Marc O Maybauer
- Department of Anesthesiology, Investigational Intensive Care Unit, The University of Texas Medical Branch and Shriners Burns Hospital for Children, 301 University Blvd, Galveston, TX 77555-0591, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Intensive care offers a standard of monitoring, intervention, and organ support that cannot be readily delivered in a general ward. Its expansion in the past few decades, including the creation of emergency and outreach teams, emphasises that intensive care has an increasingly prominent role within the hospital. Although outcomes are clearly improving, intensive care remains a nascent specialty in which we are still learning how to harness a powerful ability to manipulate physiology, biochemistry, and immunology to achieve best outcomes for the patient. The results of many multicentre studies have not lent support to, or have even confounded, expectations, drawing attention to several issues related to patient heterogeneity, trial design, and elucidation of underlying pathophysiological processes. However, these results have generated constructive introspection and reappraisal of treatments and management strategies that have benefited the patient. In addition to the medical, financial, and logistical challenges in the future, exciting opportunities will arise as new developments in diagnostic tests, therapeutic interventions, and technology are used to exploit an increasing awareness of how critical illness should be managed.
Collapse
|
27
|
Bae JS, Kim IS, Rezaie AR. Thrombin down-regulates the TGF-beta-mediated synthesis of collagen and fibronectin by human proximal tubule epithelial cells through the EPCR-dependent activation of PAR-1. J Cell Physiol 2010; 225:233-9. [PMID: 20506163 DOI: 10.1002/jcp.22249] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human proximal tubule (HK-2) cells are commonly used as cellular models to understand the mechanism by which inflammatory mediators cause renal injury. It has been observed that thrombin stimulates the expression of TGF-beta, extracellular matrix (ECM) proteins and proinflammatory cytokines by HK-2 cells. These in vitro responses correlate well with the pathology of glomerular and tubular diseases observed in acute renal injury. HK-2 cells express PAR-1 and the thrombin activation of this receptor has been reported to up-regulate the TGF-beta-mediated expression of ECM proteins, suggesting a possible pathogenic role for PAR-1 signaling by thrombin in acute renal injury. On the other hand, several recent studies have indicated that activated protein C plays a renoprotective role, thus inhibiting the inflammatory responses and attenuating renal injury, presumably by activating the same cell surface receptor. In this study, we show that HK-2 cells express endothelial protein C receptor (EPCR) and that the occupancy of this receptor by protein C switches the signaling specificity of thrombin so that the activation of PAR-1 by thrombin inhibits the TNF-alpha-mediated synthesis of IL-6 and IL-8 and down-regulates the TGF-beta-mediated expression of ECM proteins. These results suggest a possible protective role for EPCR in acute kidney injury.
Collapse
Affiliation(s)
- Jong-Sup Bae
- Department of Herbal Pharmaceutical Engineering, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsangbuk-do, Republic of Korea.
| | | | | |
Collapse
|
28
|
Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore P, Oudemans-van Straaten HM, Ronco C, Schetz MRC, Woittiez AJ. Prevention of acute kidney injury and protection of renal function in the intensive care unit. Expert opinion of the Working Group for Nephrology, ESICM. Intensive Care Med 2010; 36:392-411. [PMID: 19921152 DOI: 10.1007/s00134-009-1678-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 08/13/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acute renal failure on the intensive care unit is associated with significant mortality and morbidity. OBJECTIVES To determine recommendations for the prevention of acute kidney injury (AKI), focusing on the role of potential preventative maneuvers including volume expansion, diuretics, use of inotropes, vasopressors/vasodilators, hormonal interventions, nutrition, and extracorporeal techniques. METHOD A systematic search of the literature was performed for studies using these potential protective agents in adult patients at risk for acute renal failure/kidney injury between 1966 and 2009. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, and use of potentially nephrotoxic drugs and radiocontrast media. Where possible the following endpoints were extracted: creatinine clearance, glomerular filtration rate, increase in serum creatinine, urine output, and markers of tubular injury. Clinical endpoints included the need for renal replacement therapy, length of stay, and mortality. Studies are graded according to the international Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) group system. CONCLUSIONS AND RECOMMENDATIONS Several measures are recommended, though none carries grade 1A. We recommend prompt resuscitation of the circulation with special attention to providing adequate hydration whilst avoiding high-molecular-weight hydroxy-ethyl starch (HES) preparations, maintaining adequate blood pressure using vasopressors in vasodilatory shock. We suggest specific vasodilators [corrected] under strict hemodynamic control, sodium bicarbonate for emergency procedures administering contrast media, and periprocedural hemofiltration in severe chronic renal insufficiency undergoing coronary intervention. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s00134-009-1678-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Joannidis
- Medical Intensive Care Unit, Department of Internal Medicine I, Medical University Innsbruck, Anichstasse 31, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
LaRosa SP. Activated protein C for H1N1 influenza? More work to do! CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:156. [PMID: 20497609 PMCID: PMC2911698 DOI: 10.1186/cc8994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An animal model of H1N1 influenza demonstrates that this infection is associated with pulmonary and systemic activation of coagulation and impairment of fibrinolysis in addition to systemic inflammation and intense neutrophil influx into the lung. Activated protein C attenuates coagulation activation and restores fibrinolytic capacity but has little effect on inflammation or survival from this infection. This animal model points to a profound inflammatory state developing in H1N1 infection that impacts mortality. Additional modifications to the model and the type and amount of activated protein C dosing will provide the data to determine the possible use of activated protein C as a therapy in human H1N1 infection.
Collapse
Affiliation(s)
- Steven P LaRosa
- Division of Infectious Disease, Rhode Island Hospital, Alpert School of Medicine, Brown University, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
30
|
Schouten M, Sluijs KFVD, Gerlitz B, Grinnell BW, Roelofs JJTH, Levi MM, van 't Veer C, van der Poll T. Activated protein C ameliorates coagulopathy but does not influence outcome in lethal H1N1 influenza: a controlled laboratory study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R65. [PMID: 20398279 PMCID: PMC2887187 DOI: 10.1186/cc8964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/25/2010] [Accepted: 04/14/2010] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Influenza accounts for 5 to 10% of community-acquired pneumonias and is a major cause of mortality. Sterile and bacterial lung injuries are associated with procoagulant and inflammatory derangements in the lungs. Activated protein C (APC) is an anticoagulant with anti-inflammatory properties that exert beneficial effects in models of lung injury. We determined the impact of lethal influenza A (H1N1) infection on systemic and pulmonary coagulation and inflammation, and the effect of recombinant mouse (rm-) APC here on. METHODS Male C57BL/6 mice were intranasally infected with a lethal dose of a mouse adapted influenza A (H1N1) strain. Treatment with rm-APC (125 microg intraperitoneally every eight hours for a maximum of three days) or vehicle was initiated 24 hours after infection. Mice were euthanized 48 or 96 hours after infection, or observed for up to nine days. RESULTS Lethal H1N1 influenza resulted in systemic and pulmonary activation of coagulation, as reflected by elevated plasma and lung levels of thrombin-antithrombin complexes and fibrin degradation products. These procoagulant changes were accompanied by inhibition of the fibrinolytic response due to enhanced release of plasminogen activator inhibitor type-1. Rm-APC strongly inhibited coagulation activation in both plasma and lungs, and partially reversed the inhibition of fibrinolysis. Rm-APC temporarily reduced pulmonary viral loads, but did not impact on lung inflammation or survival. CONCLUSIONS Lethal influenza induces procoagulant and antifibrinolytic changes in the lung which can be partially prevented by rm-APC treatment.
Collapse
Affiliation(s)
- Marcel Schouten
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Salgado DR, Favory R, Backer DD. Microcirculatory assessment in daily clinical practice - not yet ready but not too far! EINSTEIN-SAO PAULO 2010; 8:107-16. [DOI: 10.1590/s1679-45082010rw1311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 12/27/2009] [Indexed: 01/20/2023] Open
Abstract
ABSTRACT Shock is characterized by an alteration in tissue perfusion that may lead to tissue hypoxia. Recent guidelines recommend aggressive and early resuscitation therapy, but mortality rate is still unacceptably high. Unfortunately, traditional clinical surrogates used to guide resuscitation therapy poorly correlate with microcirculatory blood flow, a key determinant of tissue perfusion. New techniques that directly assess microcirculatory perfusion at the bedside have emerged as a complement to traditional macrohemodynamic parameters. These techniques have been supported by several studies showing microcirculatory alterations in different clinical settings. In addition, these microcirculatory alterations are related with outcome and persist regardless of arterial pressure normalization, being a better predictor of organ dysfunction and mortality than global hemodynamic and laboratory parameters. These findings allowed the concept of “microcirculatory-goal directed therapy”, which is now in its preliminary phase, as the impact of many interventions still needs to be assessed. Finally, microcirculation assessment has also been explored in other medical fields such as perioperative, systemic arterial hypertension, heart failure, and hyperviscosity syndromes. In this review, we shortly present the characteristics of microcirculation and the main determinants of capillary blood flow, and we discuss advantages and limitations of some recently available techniques to evaluate microcirculation at the bedside, and how they could be useful for the general clinician in daily practice.
Collapse
Affiliation(s)
| | - Raphaël Favory
- Université Libre de Bruxelles, Belgium; Université Lille 2, France
| | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Alterations of the renal microcirculation can promote the development of acute kidney injury through the interlinked occurrence of renal hypoxia and activation of inflammatory pathways. This review focuses on the recent advances in this area, and discusses the possible therapeutic interventions that might be derived from these insights. RECENT FINDINGS Endothelial injury acts as a primary event leading to renal hypoxia with disturbances in nitric oxide pathways playing a major role. The unbalanced homeostasis between nitric oxide, reactive oxygen species and renal oxygenation forms a major component of the microcirculatory dysfunction. Furthermore, injury leads to leukocyte-endothelial interaction that exacerbates renal hypoxia at a microcirculatory level. SUMMARY Knowledge of the pathophysiological mechanisms of acute kidney injury emphasizes the importance of the role of the microcirculation in its development. Preventive and therapeutic approach should be based on restoring the homeostasis between nitric oxide, reactive oxygen species and renal oxygenation.
Collapse
|
33
|
Park SW, Chen SWC, Kim M, D'Agati VD, Lee HT. Human activated protein C attenuates both hepatic and renal injury caused by hepatic ischemia and reperfusion injury in mice. Kidney Int 2009; 76:739-50. [PMID: 19625989 DOI: 10.1038/ki.2009.255] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatic ischemia and reperfusion (IR) injury is a major clinical problem often leading to acute kidney injury characterized by early endothelial cell apoptosis, subsequent neutrophil infiltration, proximal tubule necrosis/inflammation, impaired vascular permeability, and disintegration of the proximal tubule filamentous actin cytoskeleton. Activated protein C is a major physiological anticoagulant with anti-inflammatory and anti-apoptotic activities in endothelial cells. Here we tested if activated protein C would attenuate hepatic and renal injury caused by hepatic ischemia and reperfusion. Both liver and kidney injury were significantly reduced when activated protein C was given immediately before and 2 h after liver reperfusion, in that there was reduced renal endothelial and hepatocyte apoptosis, as well as reduced hepatic and renal tubular necrosis. Further, the administration of activated protein C also reduced the expression of several pro-inflammatory genes, liver and kidney filamentous-actin degradation, and neutrophil infiltration, and resulted in better preservation of vascular permeability of both the liver and kidney than is normally seen after liver ischemia and reperfusion. These protective effects of activated protein C were due to protease-activated receptor-1 modulation since administration of a selective receptor antagonist dose-dependently inhibited its ameliorative effects in both organs after liver ischemia and reperfusion. Our results suggest the powerful multi-organ protective effects of activated protein C may improve outcome in those patients at significant risk of developing acute kidney injury following liver ischemia and reperfusion during transplantation.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032-3784, USA
| | | | | | | | | |
Collapse
|
34
|
Heyman SN, Rosen S, Rosenberger C. Animal models of renal dysfunction: acute kidney injury. Expert Opin Drug Discov 2009; 4:629-41. [DOI: 10.1517/17460440902946389] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|