1
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2024:10.1007/s00467-024-06479-2. [PMID: 39373868 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
McCoy MD, Sarasua SM, DeLuca JM, Davis S, Rogers RC, Phelan K, Boccuto L. Genetics of kidney disorders in Phelan-McDermid syndrome: evidence from 357 registry participants. Pediatr Nephrol 2024; 39:749-760. [PMID: 37733098 DOI: 10.1007/s00467-023-06146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder caused by SHANK3 pathogenic variants or chromosomal rearrangements affecting the chromosome 22q13 region. Previous research found that kidney disorders, primarily congenital anomalies of the kidney and urinary tract, are common in people with PMS, yet research into candidate genes has been hampered by small study sizes and lack of attention to these problems. METHODS We used a cohort of 357 people from the Phelan-McDermid Syndrome Foundation International Registry to investigate the prevalence of kidney disorders in PMS using a cross-sectional design and to identify 22q13 genes contributing to these disorders. RESULTS Kidney disorders reported included vesicoureteral reflux (n = 37), hydronephrosis (n = 36), dysplastic kidneys (n = 19), increased kidney size (n = 19), polycystic kidneys (15 cases), and kidney stones (n = 4). Out of 315 subjects with a 22q13 deletion, 101 (32%) had at least one kidney disorder, while only one out of 42 (2%) individuals with a SHANK3 pathogenic variant had a kidney disorder (increased kidney size). We identified two genomic regions that were significantly associated with having a kidney disorder with the peak associations observed near positions approximately 5 Mb and 400 Kb from the telomere. CONCLUSIONS The candidate genes for kidney disorders include FBLN1, WNT7B, UPK3A, CELSR1, and PLXNB2. This study demonstrates the utility of patient registries for uncovering genetic contributions to rare diseases. Future work should focus on functional studies for these genes to assess their potential pathogenic contribution to the different subsets of kidney disorders.
Collapse
Affiliation(s)
- Megan D McCoy
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | - Sara M Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA.
| | - Jane M DeLuca
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | - Stephanie Davis
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | | | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, 33916, USA
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
3
|
Kutyrlo IE, Leviashvili ZG, Batrakov DD, Savenkova ND. Follow-up of children and adolescents with congenital anomalies of the kidneys and urinary tract, associated with rare hereditary syndromes. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-68-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of the study was to evaluate the course and outcome in chronic kidney disease of congenital anomalies of the kidneys and urinary tract (CAKUT) associated with rare hereditary syndromes in children and adolescents, and to compare the results with literature data. The results of a follow-up study of the course and outcome in chronic kidney disease with syndromal congenital anomalies of the kidneys and urinary tract in rare hereditary syndromes (Pierson, Fraser 1 type, Renal hypodysplasia/ aplasia 3 type, Schuurs– Hoeómakers, CHARGE, Lowe, Renal-Coloboma, VACTERL association) and chromosomal abnormalities (Shereshevsky—Terner monosomia 45) are presented. In 4 out of 9 children and adolescents with congenital anomalies of the kidneys and urinary tract with rare hereditary syndromes, the formation of chronic kidney disease was established.
Collapse
Affiliation(s)
- I. E. Kutyrlo
- Saint Petersburg State Pediatric Medical University; City Polyclinic No. 114; Children’s Polyclinic Department No. 70
| | | | | | | |
Collapse
|
4
|
Bartik ZI, Sillén U, Djos A, Lindholm A, Fransson S. Whole exome sequencing identifies KIF26B, LIFR and LAMC1 mutations in familial vesicoureteral reflux. PLoS One 2022; 17:e0277524. [PMID: 36417404 PMCID: PMC9683562 DOI: 10.1371/journal.pone.0277524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary nature is well recognised. However, despite decades of research, the aetiological factors are poorly understood and the genetic background has been elucidated in only a minority of cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-exome sequencing in 13 large families with at least three affected cases. A large proportion of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the entire families confirmed the following findings in three genes in three families: frameshift LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases but did not segregate with disease in families. In all, we demonstrate a likely causal gene variant in 23% of the families. Whole-exome sequencing technology in combination with a segregation study of the whole family is a useful tool when it comes to understanding pathogenesis and improving molecular diagnostics of this highly heterogeneous malformation.
Collapse
Affiliation(s)
- Zsuzsa I. Bartik
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Sillén
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lindholm
- Department of Paediatrics, County Hospital Ryhov, Jönköping, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
5
|
The term CAKUT has outlived its usefulness: the case for the prosecution. Pediatr Nephrol 2022; 37:2785-2791. [PMID: 35575937 PMCID: PMC9489548 DOI: 10.1007/s00467-022-05576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
CAKUT stands for Congenital Anomalies of the Kidney and Urinary Tract, and the acronym first appeared in a review article published in 1998. Since then, CAKUT has become a familiar term encountered in the medical literature, especially in nephrology journals. I reason that the term CAKUT was conceived as not a simple description of various diseases, but more as shorthand for a bold conceptual package that linked the occurrence of diverse types of anatomical malformations with insights from genetic and developmental biology research. Moreover, the angiotensin II receptor type 2 was seen as a paradigmatic molecule in the pathobiology of CAKUT. I contend that the acronym, while appearing as an intellectually good idea at the time it was conceived, has outlived its usefulness. To reach these conclusions, I focus on the complex of research observations that led to the theory behind CAKUT, and then question whether these scientific foundations still stand firm. In addition, it is noted that not all clinicians have adopted the acronym, and I speculate why this is the case. I proceed to demonstrate that there is an incompatibility between the semantic meaning of CAKUT and the diseases for which the term was originally conceived. Instead, I suggest the acronym UTM, standing for Urinary Tract Malformation, is a simpler and less ambiguous one to use. Finally, I contend that the continued use of the acronym is a regressive step for the disciplines of nephrology and urology, taking us back two centuries when all kidney diseases were simply called Bright's disease.
Collapse
|
6
|
Bartik Z, Sillén U, Östensson M, Fransson S, Djos A, Sjöberg R, Martinsson T. A genome‑wide scan to locate regions associated with familial vesicoureteral reflux. Exp Ther Med 2021; 23:92. [PMID: 34976134 PMCID: PMC8674978 DOI: 10.3892/etm.2021.11015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/06/2021] [Indexed: 11/05/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a congenital malformation carrying a high risk of recurrent urinary tract infections (UTI) and, at worst, chronic renal failure. Familial clustering implies a genetic etiology, but studies during the past few decades have demonstrated a causal gene variant in <10% of patients with VUR. The aim of the present study was to search for fully or partially shared ancestral haplotypes in 14 families from south-western Sweden with at least three affected members. High-density single nucleotide polymorphism microarray was used for genotyping prior to analysis with a compatibility matching method developed in-house, and the analysis of copy number variations (CNV). No single unique haplotype was revealed to be shared by the families, thereby excluding a common ancestry and founder mutations as a probable cause of VUR. After evaluation of haplotypes shared by subsets of families, a haplotype shared by nine families was found to be of particular interest. This haplotype, located at chromosomal region 4q21.21, harbours two tentative candidate genes (bone morphogenetic protein 3 and fibroblast growth factor 5), both expressed in metanephros and with known functions during nephrogenesis. As to CNV, only one family had a specific CNV shared by all affected members. This was a focal deletion at 5q31.1 including follistatin-like 4, a gene without a previous known connection to VUR. These data demonstrated the genetic heterogeneity of VUR and indicated that an interaction of environmental and genetic factors, including non-coding and epigenetic regulators, all contribute to the complexity of VUR.
Collapse
Affiliation(s)
- Zsuzsa Bartik
- Department of Pediatric Surgery, Pediatric Uronephrology Center, The Queen Silvia Children's Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE‑41685 Gothenburg, Sweden
| | - Ulla Sillén
- Department of Pediatric Surgery, Pediatric Uronephrology Center, The Queen Silvia Children's Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE‑41685 Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Rosmarie Sjöberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| |
Collapse
|
7
|
Anslow MJ, Bodnar AJ, Cerqueira DM, Bushnell D, Shrom BE, Sims-Lucas S, Bates CM, Ho J. Increased rates of vesicoureteral reflux in mice from deletion of Dicer in the peri-Wolffian duct stroma. Pediatr Res 2020; 88:382-390. [PMID: 32015493 PMCID: PMC7396288 DOI: 10.1038/s41390-020-0788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Vesicoureteral reflux (VUR), backflow of urine into the kidney, is associated with urinary tract infections and chronic kidney disease. Integrity of the vesicoureteral junction (VUJ), where reflux occurs, is determined largely by proper induction of the ureteric bud from the Wolffian duct. Induction is modulated by signals from the surrounding peri-Wolffian duct stroma. We evaluated whether miRNAs in the peri-Wolffian duct stroma are necessary for proper ureteric induction, VUJ formation, and suppression of VUR. METHODS We generated a mouse with loss of miRNAs in the peri-Wolffian duct stroma. We evaluated embryos for ureteric bud induction defects and expression of genes that regulate induction. We performed cystograms to assess for reflux and assessed VUJs in postnatal mice. RESULTS Mutant embryos had cranially displaced ureteric bud induction sites vs. controls. We observed no changes in expression of genes known to regulate induction. While mutants were early postnatal lethal, they had high rates of VUR vs. controls. Mutant VUJs that refluxed had low inserting ureters and shortened intravesicular tunnels vs. non-refluxing mice. CONCLUSIONS We found that miRNAs in the peri-Wolffian duct stroma are required for normal ureteric bud induction, VUJ formation, and prevention of VUR.
Collapse
Affiliation(s)
- Melissa J. Anslow
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA,Corresponding author: Dr. Melissa Anslow, Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Ave, Pittsburgh, Pennsylvania 1522441, USA, Phone: 412-692-7808,
| | - Andrew J. Bodnar
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA
| | - Débora M. Cerqueira
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA
| | - Daniel Bushnell
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA
| | - Brynn E. Shrom
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Missouri University of Science and Technology, Rolla, MO
| | - Sunder Sims-Lucas
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA
| | - Carlton M. Bates
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA
| | - Jacqueline Ho
- Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
8
|
Liang D, McHugh KM, Brophy PD, Shaikh N, Manak JR, Andrews P, Hakker I, Wang Z, Schwaderer AL, Hains DS. DNA copy number variations in children with vesicoureteral reflux and urinary tract infections. PLoS One 2019; 14:e0220617. [PMID: 31404082 PMCID: PMC6690579 DOI: 10.1371/journal.pone.0220617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/19/2019] [Indexed: 11/18/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a complex, heritable disorder. Genome-wide linkage analyses of families affected by VUR have revealed multiple genomic loci linked to VUR. These loci normally harbor a number of genes whose biologically functional variant is yet to be identified. DNA copy number variations (CNVs) have not been extensively studied at high resolution in VUR patients. In this study, we performed array comparative genomic hybridization (aCGH) on a cohort of patients with a history of both VUR and urinary tract infection (UTI) with the objective of identifying genetic variations responsible for VUR and/or UTI susceptibility. UTI/VUR-associated CNVs were identified by aCGH results from the 192 Randomized Intervention for Children With Vesicoureteral Reflux (RIVUR) patients compared to 683 controls. Rare, large CNVs that are likely pathogenic and lead to VUR development were identified using stringent analysis criteria. Because UTI is a common affliction with multiple risk factors, we utilized standard analysis to identify potential disease-modifying CNVs that can contribute to UTI risk. Gene ontology analysis identified that CNVs in innate immunity and development genes were enriched in RIVUR patients. CNVs affecting innate immune genes may contribute to UTI susceptibility in VUR patients and may provide the first step in assisting clinical medicine in determining adverse outcome risk in children with VUR.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Kirk M. McHugh
- Division of Anatomy, The Ohio State University, Columbus, OH, United States of America
| | - Pat D. Brophy
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Nader Shaikh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J. Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Inessa Hakker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Andrew L. Schwaderer
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States of America
| | - David S. Hains
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States of America
| |
Collapse
|
9
|
Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, Yue WW, Schaefer F, Weber S, Henriksson R, Stuart HM, Hedman H, Newman WG, Woolf AS. Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int 2019; 95:1138-1152. [PMID: 30885509 PMCID: PMC6481288 DOI: 10.1016/j.kint.2018.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
Mutations in leucine-rich-repeats and immunoglobulin-like-domains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder. Mice with homozygous targeted Lrig2 mutations had urinary defects resembling those found in urofacial syndrome. There was no anatomical blockage of the outflow tract, consistent with a functional bladder outlet obstruction. Transcriptome analysis revealed differential expression of 12 known transcripts in addition to Lrig2, including 8 with established roles in neurobiology. Mice with homozygous mutations in either Lrig2 or Hpse2 had increased nerve density within the body of the urinary bladder and decreased nerve density around the urinary outflow tract. In a sample of 155 children with chronic kidney disease and urinary symptoms, we discovered novel homozygous missense LRIG2 variants that were predicted to be pathogenic in 2 individuals with non-syndromic bladder outlet obstruction. These observations provide evidence that a peripheral neuropathy is central to the pathobiology of functional bladder outlet obstruction in urofacial syndrome, and emphasize the importance of LRIG2 and heparanase 2 for nerve patterning in the urinary tract.
Collapse
Affiliation(s)
- Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| | - Emma N Hilton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Subir Singh
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Michael J Randles
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Natalie J Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karl Chopra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Riccardo Coletta
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Zunera Bajwa
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Robert J Hall
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Stefanie Weber
- Pediatric Nephrology, University-Children's Hospital Marburg, Philipps-University Marburg, Germany
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Regional Cancer Center Stockholm/Gotland, Stockholm, Sweden
| | - Helen M Stuart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
10
|
Woolf AS, Lopes FM, Ranjzad P, Roberts NA. Congenital Disorders of the Human Urinary Tract: Recent Insights From Genetic and Molecular Studies. Front Pediatr 2019; 7:136. [PMID: 31032239 PMCID: PMC6470263 DOI: 10.3389/fped.2019.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the urethra. The tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing it at low pressure inside the bladder which intermittently and completely voids urine through the urethra. Congenital diseases of these structures can lead to a range of diseases sometimes associated with fetal losses or kidney failure in childhood and later in life. In some of these disorders, parts of the urinary tract are severely malformed. In other cases, the organs appear grossly intact yet they have functional deficits that compromise health. Human studies are beginning to indicate monogenic causes for some of these diseases. Here, the implicated genes can encode smooth muscle, neural or urothelial molecules, or transcription factors that regulate their expression. Furthermore, certain animal models are informative about how such molecules control the development and functional differentiation of the urinary tract. In future, novel therapies, including those based on gene transfer and stem cell technologies, may be used to treat these diseases to complement conventional pharmacological and surgical clinical therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Parisa Ranjzad
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Tham MS, Smyth IM. Cellular and molecular determinants of normal and abnormal kidney development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e338. [DOI: 10.1002/wdev.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ming S. Tham
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
- Department of Biochemistry and Molecular Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| |
Collapse
|
12
|
Genome-wide linkage and association study implicates the 10q26 region as a major genetic contributor to primary nonsyndromic vesicoureteric reflux. Sci Rep 2017; 7:14595. [PMID: 29097723 PMCID: PMC5668427 DOI: 10.1038/s41598-017-15062-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
Vesicoureteric reflux (VUR) is the commonest urological anomaly in children. Despite treatment improvements, associated renal lesions – congenital dysplasia, acquired scarring or both – are a common cause of childhood hypertension and renal failure. Primary VUR is familial, with transmission rate and sibling risk both approaching 50%, and appears highly genetically heterogeneous. It is often associated with other developmental anomalies of the urinary tract, emphasising its etiology as a disorder of urogenital tract development. We conducted a genome-wide linkage and association study in three European populations to search for loci predisposing to VUR. Family-based association analysis of 1098 parent-affected-child trios and case/control association analysis of 1147 cases and 3789 controls did not reveal any compelling associations, but parametric linkage analysis of 460 families (1062 affected individuals) under a dominant model identified a single region, on 10q26, that showed strong linkage (HLOD = 4.90; ZLRLOD = 4.39) to VUR. The ~9Mb region contains 69 genes, including some good biological candidates. Resequencing this region in selected individuals did not clearly implicate any gene but FOXI2, FANK1 and GLRX3 remain candidates for further investigation. This, the largest genetic study of VUR to date, highlights the 10q26 region as a major genetic contributor to VUR in European populations.
Collapse
|
13
|
Życzkowski M, Żywiec J, Nowakowski K, Paradysz A, Grzeszczak W, Gumprecht J. Estimation of the relationship between the polymorphisms of selected genes: ACE, AGTR1, TGFβ1 and GNB3 with the occurrence of primary vesicoureteral reflux. Int Urol Nephrol 2016; 49:387-397. [PMID: 27988909 PMCID: PMC5321692 DOI: 10.1007/s11255-016-1483-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Etiopathogenesis of VUR is composite and not fully understood. Many data indicate the importance of genetic predisposition. The aim of this study was to establish the relationship of selected polymorphisms: 14094 polymorphism of the ACE, polymorphism rs1800469 of TGFβ-1, rs5443 gene polymorphism of the GNB3 and receptor gene polymorphism rs5186 type 1 AGTR1 with the occurrence of the primary vesicoureteral reflux. MATERIAL The study included 190 children: 90 with the primary VUR confirmed with the voiding cystourethrogram and excluded secondary VUR and a control group of 100 children without a history of the diseases of the genitourinary tract. METHODS The study was planned in the scheme: "tested case versus control." Genomic DNA was isolated from the leukocytes of peripheral blood samples. The results were statistically analyzed in the Statistica 10 using χ 2 test and analysis of the variance Anova. RESULTS Any of the four studied polymorphisms showed no difference in the distribution of genotypes between patients with primary vesicoureteral reflux and the control group. In patients with VUR and TT genotype polymorphism rs5443 GNB3 gene, the glomerular filtration rate was significantly higher than in patients with genotype CC or CT. CONCLUSIONS (1) No relationship was found between the studied polymorphisms (14094 ACE gene, rs1800469 gene TGFβ1, GNB3 gene rs5443, rs5186 AGTR1 gene) and the occurrence of primary vesicoureteral reflux. (2) TT genotype polymorphism rs5443 GNB3 gene may be a protective factor for the improved renal function in patients with primary vesicoureteral reflux in patients with genotype CC or CT.
Collapse
Affiliation(s)
- Marcin Życzkowski
- Department of Urology, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Żywiec
- Department of Internal Medicine, Diabetology and Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Nowakowski
- Department of Urology, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland.
| | - Andrzej Paradysz
- Department of Urology, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Władyslaw Grzeszczak
- Department of Internal Medicine, Diabetology and Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
Liu J, Sun L, Shen Q, Wu X, Xu H. New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon. BMC Nephrol 2016; 17:98. [PMID: 27460642 PMCID: PMC4962383 DOI: 10.1186/s12882-016-0308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruption of ROBO2 in humans causes vesicoureteral reflux (VUR)/congenital anomalies of the kidney and urinary tract (CAKUT). PiggyBac (PB) is a DNA transposon, and its insertion often reduces-but does not eliminate-gene expression. The Robo2 insertion mutant exhibited non-dilating VUR, ureteropelvic junction obstruction (UPJO) not found in reported models. We studied the incidence and outcomes of VUR/CAKUT in this mutant and explored the relationship between Robo2 gene expression and the occurrence and severity of VUR/CAKUT. METHODS The urinary systems of newborn mutants were evaluated via Vevo 770 micro-ultrasound. Some of the normal animals-and all of the abnormal animals-were followed to adulthood and tested for VUR. Urinary obstruction experiments were performed on mice with hydronephrosis. The histology of the kidney and ureter was examined by light microscopy and transmission electron microscopy. Robo2 (PB/PB) mice were crossed with Hoxb7/myr-Venus mice to visualize the location of the ureters relative to the bladder. RESULTS In Robo2 (PB/PB) mice, PB insertion led to an approximately 50 % decrease in Robo2 gene expression. The most common (27.07 %, 62/229) abnormality was non-dilating VUR, and no statistically significant differences were found between age groups. Approximately 6.97 % displayed ultrasound-detectable CAKUT, and these mice survived to adulthood without improvement. No severe CAKUT were found in Robo2 (PB/+) mice. The refluxing ureters showed disorganized smooth muscle fibers, reduced muscle cell populations, intercellular edema and intracytoplasmic vacuoles in smooth muscle cells. Both UPJ and UVJ muscle defects were noted in Robo2 (PB/PB) mice. CONCLUSIONS Robo2 (PB/PB) mice is the first Robo2-deficient mouse model to survive to adulthood while displaying non-dilating VUR, UPJO, and multiple ureters with blind endings. The genetic background of these mutants may influence the penetrance and severity of the CAKUT phenotypes. VUR and other CAKUT found in this mutant had little chance of spontaneous resolution, and this requires careful follow-up. We reported for the first time that the non-dilated refluxing ureters showed disorganized smooth muscle fibers and altered smooth muscle cell structure, more accurately mimicking the characteristics of human cases. Future studies are required to test the role of Robo2 in the ureteric smooth muscle.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Li Sun
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Qian Shen
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Xu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China.
| |
Collapse
|
15
|
ROBO2 gene variants in children with primary nonsyndromic vesicoureteral reflux with or without renal hypoplasia/dysplasia. Pediatr Res 2016; 80:72-6. [PMID: 27002985 DOI: 10.1038/pr.2016.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Primary nonsyndromic vesicoureteral reflux (VUR) and VUR with renal hypoplasia/dysplasia (VUR-RHD) are common congenital anomalies of the kidney and urinary tract (CAKUT). Sequence variations of the ROBO2 gene were investigated in children with nonsyndromic VUR or VUR-RHD. METHODS Single-strand conformation polymorphism (SSCP) electrophoresis or multiple restriction fragment SSCP (MRF-SSCP), followed occasionally by direct sequencing, was used to screen 103 patients and 200 controls for nucleotide changes. Gene polymorphisms and transposable elements were investigated using bioinformatics. RESULTS Two single-nucleotide polymorphisms were detected: IVS1-53 and IVS5-31. The frequency of A allele of IVS1-53G>A did not differ significantly between patients and controls. IVS1-53 does not affect mRNA splicing according to in silico analysis. IVS5-31A>G substitution was found in one patient, reported here for the first time in VUR. In silico results demonstrated alteration in two serine/arginine-rich (SR) protein-binding sites and two additional acceptor sites. The ROBO2 gene sequence was found to contain 25.9% transposable elements. CONCLUSION ROBO2 variants were not found to be associated with nonsyndromic VUR or VUR-RHD, providing further evidence for genetic heterogeneity. The role of transposable elements in ROBO2 gene expression in CAKUT needs further investigation since they are generally considered to be mutagens.
Collapse
|
16
|
Nino F, Ilari M, Noviello C, Santoro L, Rätsch IM, Martino A, Cobellis G. Genetics of Vesicoureteral Reflux. Curr Genomics 2016; 17:70-9. [PMID: 27013925 PMCID: PMC4780477 DOI: 10.2174/1389202916666151014223507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 12/13/2022] Open
Abstract
Vesicoureteral reflux (VUR) is the retrograde passage of urine from the bladder to the upper urinary tract. It is the most common congenital urological anomaly affecting 1-2% of children and 30-40% of patients with urinary tract infections. VUR is a major risk factor for pyelonephritic scarring and chronic renal failure in children. It is the result of a shortened intravesical ureter with an enlarged or malpositioned ureteric orifice. An ectopic embryonal ureteric budding development is implicated in the pathogenesis of VUR, which is a complex genetic developmental disorder. Many genes are involved in the ureteric budding formation and subsequently in the urinary tract and kidney development. Previous studies demonstrate an heterogeneous genetic pattern of VUR. In fact no single major locus or gene for primary VUR has been identified. It is likely that different forms of VUR with different genetic determinantes are present. Moreover genetic studies of syndromes with associated VUR have revealed several possible candidate genes involved in the pathogenesis of VUR and related urinary tract malformations. Mutations in genes essential for urinary tract morphogenesis are linked to numerous congenital syndromes, and in most of those VUR is a feature. The Authors provide an overview of the developmental processes leading to the VUR. The different genes and signaling pathways controlling the embryonal urinary tract development are analyzed. A better understanding of VUR genetic bases could improve the management of this condition in children.
Collapse
Affiliation(s)
- F Nino
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - M Ilari
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - C Noviello
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - L Santoro
- Clinics of Pediatrics - Pediatric Nephrology Unit - Salesi Children s Hospital - Universit Politecnica delle Marche - Ancona, Italy
| | - I M Rätsch
- Clinics of Pediatrics - Pediatric Nephrology Unit - Salesi Children s Hospital - Universit Politecnica delle Marche - Ancona, Italy
| | - A Martino
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - G Cobellis
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| |
Collapse
|
17
|
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) refer to a spectrum of structural renal malformations and are the leading cause of end-stage renal disease in children. The genetic diagnosis of CAKUT has proven to be challenging due to genetic and phenotypic heterogeneity and incomplete genetic penetrance. Monogenic causes of CAKUT have been identified using different approaches, including single gene screening, and gene panel and whole exome sequencing. The majority of the identified mutations, however, lack substantial evidence to support a pathogenic role in CAKUT. Copy number variants or single nucleotide variants that are associated with CAKUT have also been identified. Numerous studies support the influence of epigenetic and environmental factors on kidney development and the natural history of CAKUT, suggesting that the pathogenesis of this syndrome is multifactorial. In this Review we describe the current knowledge regarding the genetic susceptibility underlying CAKUT and the approaches used to investigate the genetic basis of CAKUT. We outline the associated environmental risk factors and epigenetic influences on CAKUT and discuss the challenges and strategies used to fully address the involvement and interplay of these factors in the pathogenesis of the disease.
Collapse
|
18
|
The significance of Pax2 expression in the ureter epithelium of children with vesicoureteric reflux. Hum Pathol 2015; 46:963-70. [DOI: 10.1016/j.humpath.2015.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 11/19/2022]
|
19
|
Stuart HM, Roberts NA, Hilton EN, McKenzie EA, Daly SB, Hadfield KD, Rahal JS, Gardiner NJ, Tanley SW, Lewis MA, Sites E, Angle B, Alves C, Lourenço T, Rodrigues M, Calado A, Amado M, Guerreiro N, Serras I, Beetz C, Varga RE, Silay MS, Darlow JM, Dobson MG, Barton DE, Hunziker M, Puri P, Feather SA, Goodship JA, Goodship THJ, Lambert HJ, Cordell HJ, Saggar A, Kinali M, Lorenz C, Moeller K, Schaefer F, Bayazit AK, Weber S, Newman WG, Woolf AS. Urinary tract effects of HPSE2 mutations. J Am Soc Nephrol 2014; 26:797-804. [PMID: 25145936 DOI: 10.1681/asn.2013090961] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS.
Collapse
Affiliation(s)
- Helen M Stuart
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | | | - Sarah B Daly
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Kristen D Hadfield
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Jeffery S Rahal
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | | | - Simon W Tanley
- Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Malcolm A Lewis
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Emily Sites
- Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Brad Angle
- Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Cláudia Alves
- Genetica Med. e Diagnostico Pre-Natal, Prof. Sergio Castedo, S.A., Porto, Portugal
| | - Teresa Lourenço
- Department of Medical Genetics, Hospital de Dona Estefânia, Lisboa, Portugal
| | - Márcia Rodrigues
- Department of Medical Genetics, Hospital de Dona Estefânia, Lisboa, Portugal
| | - Angelina Calado
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Marta Amado
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Nancy Guerreiro
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Inês Serras
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | | | - Rita-Eva Varga
- Faculty of Life Sciences and Faculty of Life Sciences and
| | - Mesrur Selcuk Silay
- Department of Urology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - John M Darlow
- National Centre for Medical Genetics and National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Mark G Dobson
- National Centre for Medical Genetics and National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - David E Barton
- National Centre for Medical Genetics and School of Medicine and Medical Sciences and
| | - Manuela Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Lambert
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anand Saggar
- Department of Clinical Genetics, St George's, University of London, London, United Kingdom
| | - Maria Kinali
- Department of Paediatric Neurology, Chelsea and Westminster Hospital and Imperial College London, and Bupa Cromwell Hospital, London, United Kingdom
| | | | - Christian Lorenz
- Department of Pediatric Surgery and Urology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Kristina Moeller
- Department of Pediatrics, Klinikum Links der Weser, Bremen, Germany
| | - Franz Schaefer
- Division of Paediatric Nephrology, Centre for Paediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Aysun K Bayazit
- Pediatric Nephrology, Cukurova University School of Medicine, Adana, Turkey; and
| | - Stefanie Weber
- Pediatrics II, University Children's Hospital Essen, Essen, Germany
| | - William G Newman
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom;
| |
Collapse
|
20
|
Springer A, Subramaniam R. Relevance of current guidelines in the management of VUR. Eur J Pediatr 2014; 173:835-43. [PMID: 24384795 DOI: 10.1007/s00431-013-2253-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED In recent years, there have been fundamental changes in the understanding of vesicoureteral reflux (VUR). This is reflected by current international guidelines that cover diagnosis, screening, and treatment of VUR. However, literature is still lacking and many questions are unsolved. In this article, we shortly review the important aspects of the current guidelines. Due to the lack of high-powered randomized controlled trials, guidelines often are based on an expert's opinion rather than evidence. In this review article, we address the controversies in the management of VUR; siblings and children with antenatally diagnosed hydronephrosis and the management of a patient with VUR. CONCLUSION With an individualized approach and patient risk stratification, the goal today must be to address the clinical problem, avoid unnecessary tests, and provide good quality of life for the patient and parents.
Collapse
Affiliation(s)
- Alexander Springer
- Department of Pediatric Surgery, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
21
|
Yang JO, Hwang S, Kim WY, Park SJ, Kim SC, Park K, Lee B. Identification of ethnically specific genetic variations in pan-asian ethnos. Genomics Inform 2014; 12:42-7. [PMID: 24748860 PMCID: PMC3990765 DOI: 10.5808/gi.2014.12.1.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 11/24/2022] Open
Abstract
Asian populations contain a variety of ethnic groups that have ethnically specific genetic differences. Ethnic variants may be highly relevant in disease and human differentiation studies. Here, we identified ethnically specific variants and then investigated their distribution across Asian ethnic groups. We obtained 58,960 Pan-Asian single nucleotide polymorphisms of 1,953 individuals from 72 ethnic groups of 11 Asian countries. We selected 9,306 ethnic variant single nucleotide polymorphisms (ESNPs) and 5,167 ethnic variant copy number polymorphisms (ECNPs) using the nearest shrunken centroid method. We analyzed ESNPs and ECNPs in 3 hierarchical levels: superpopulation, subpopulation, and ethnic population. We also identified ESNP- and ECNP-related genes and their features. This study represents the first attempt to identify Asian ESNP and ECNP markers, which can be used to identify genetic differences and predict disease susceptibility and drug effectiveness in Asian ethnic populations.
Collapse
Affiliation(s)
- Jin Ok Yang
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Sohyun Hwang
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Woo-Yeon Kim
- Bioinformatics Team, CSP R&D Center, Samsung SDS, Seoul 135-918, Korea
| | - Seong-Jin Park
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Sang Cheol Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-710, Korea
| | - Kiejung Park
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Byungwook Lee
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | | |
Collapse
|
22
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol 2014; 29:609-20. [PMID: 24061643 DOI: 10.1007/s00467-013-2616-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/26/2022]
Abstract
Failure of normal branching morphogenesis of the ureteric bud (UB), a key ontogenic process that controls organogenesis of the metanephric kidney, leads to congenital anomalies of the kidney and urinary tract (CAKUT), the leading cause of end-stage kidney disease in children. Recent studies have revealed a central role of the renin-angiotensin system (RAS), the cardinal regulator of blood pressure and fluid/electrolyte homeostasis, in the control of normal kidney development. Mice or humans with mutations in the RAS genes exhibit a spectrum of CAKUT which includes renal medullary hypoplasia, hydronephrosis, renal hypodysplasia, duplicated renal collecting system and renal tubular dysgenesis. Emerging evidence indicates that severe hypoplasia of the inner medulla and papilla observed in angiotensinogen (Agt)- or angiotensin (Ang) II AT 1 receptor (AT 1 R)-deficient mice is due to aberrant UB branching morphogenesis resulting from disrupted RAS signaling. Lack of the prorenin receptor (PRR) in the UB in mice causes reduced UB branching, resulting in decreased nephron endowment, marked kidney hypoplasia, urinary concentrating and acidification defects. This review provides a mechanistic rational supporting the hypothesis that aberrant signaling of the intrarenal RAS during distinct stages of metanephric kidney development contributes to the pathogenesis of the broad phenotypic spectrum of CAKUT. As aberrant RAS signaling impairs normal renal development, these findings advocate caution for the use of RAS inhibitors in early infancy and further underscore a need to avoid their use during pregnancy and to identify the types of molecular processes that can be targeted for clinical intervention.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA, 70112, USA,
| |
Collapse
|
23
|
Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease. Pediatr Nephrol 2014; 29:757-66. [PMID: 24500705 DOI: 10.1007/s00467-014-2761-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Vesicoureteric reflux (VUR) is a common congenital urinary tract defect that predisposes children to recurrent kidney infections. Kidney infections can result in renal scarring or reflux nephropathy defined by the presence of chronic tubulo-interstitial inflammation and fibrosis that is a frequent cause of end-stage renal failure. The discovery of mouse models with VUR and with reflux nephropathy has provided new opportunities to understand the pathogenesis of these conditions and may provide insight on the genes and the associated phenotypes that need to be examined in human studies.
Collapse
|
24
|
El Andalousi J, Murawski IJ, Capolicchio JP, El-Sherbiny M, Jednak R, Gupta IR. A single-center cohort of Canadian children with VUR reveals renal phenotypes important for genetic studies. Pediatr Nephrol 2013; 28:1813-9. [PMID: 23529638 DOI: 10.1007/s00467-013-2440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Many genes and loci have been reported in genetic studies of primary vesicoureteral reflux (VUR), but few have been reproduced in independent cohorts, perhaps because of phenotype heterogeneity. We phenotyped children with VUR who attended urology clinics so we could establish criteria to stratify patients based on the presence or absence of a renal malformation. METHODS History, chart review, and DNA were obtained for 200 children with VUR from 189 families to determine the grade of VUR, the mode of presentation, and the family history for each child. Kidney length measured on ultrasound (US) and technetium dimercaptosuccinic acid (DMSA) scans at the time of VUR diagnosis were used to establish the presence of a concurrent renal malformation and identify the presence of renal scarring. RESULTS There was an even distribution of girls and boys, and most patients were diagnosed following a urinary tract infection (UTI). Thirty-four percent of the children had severe VUR, and 25 % had undergone surgical correction. VUR is highly heritable, with 15 % of the families reporting multiple affected members. Most patients had normally formed kidneys as determined by US and DMSA imaging. Of the 93 patients who underwent DMSA imaging, 17 (18 %) showed scarring, 2 (2 %) showed scarring and diffuse reduction in uptake, and 13 (14 %) showed an isolated diffuse reduction in uptake. CONCLUSION Prospective long-term studies of patients with primary VUR combined with renal phenotyping using US and DMSA imaging are needed to establish the presence of a renal malformation. The majority of patients in our study had no renal malformation. This cohort is a new resource for genetic studies of children with primary VUR.
Collapse
Affiliation(s)
- Jasmine El Andalousi
- Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Darlow JM, Dobson MG, Darlay R, Molony CM, Hunziker M, Green AJ, Cordell HJ, Puri P, Barton DE. A new genome scan for primary nonsyndromic vesicoureteric reflux emphasizes high genetic heterogeneity and shows linkage and association with various genes already implicated in urinary tract development. Mol Genet Genomic Med 2013; 2:7-29. [PMID: 24498626 PMCID: PMC3907909 DOI: 10.1002/mgg3.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
Primary vesicoureteric reflux (VUR), the retrograde flow of urine from the bladder toward the kidneys, results from a developmental anomaly of the vesicoureteric valve mechanism, and is often associated with other urinary tract anomalies. It is the most common urological problem in children, with an estimated prevalence of 1–2%, and is a major cause of hypertension in childhood and of renal failure in childhood or adult life. We present the results of a genetic linkage and association scan using 900,000 markers. Our linkage results show a large number of suggestive linkage peaks, with different results in two groups of families, suggesting that VUR is even more genetically heterogeneous than previously imagined. The only marker achieving P < 0.02 for linkage in both groups of families is 270 kb from EMX2. In three sibships, we found recessive linkage to KHDRBS3, previously reported in a Somali family. In another family we discovered sex-reversal associated with VUR, implicating PRKX, for which there was weak support for dominant linkage in the overall data set. Several other candidate genes are suggested by our linkage or association results, and four of our linkage peaks are within copy-number variants recently found to be associated with renal hypodysplasia. Undoubtedly there are many genes related to VUR. Our study gives support to some loci suggested by earlier studies as well as suggesting new ones, and provides numerous indications for further investigations.
Collapse
Affiliation(s)
- J M Darlow
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - M G Dobson
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - R Darlay
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, United Kingdom
| | - C M Molony
- Merck & Co. Inc 1 Merck Drive, Whitehouse Station, New Jersey, 08889
| | - M Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Hospital Tallaght, Dublin, 24, Ireland
| | - A J Green
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; University College Dublin UCD School of Medicine and Medical Sciences, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - H J Cordell
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, United Kingdom
| | - P Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Hospital Tallaght, Dublin, 24, Ireland
| | - D E Barton
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; University College Dublin UCD School of Medicine and Medical Sciences, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| |
Collapse
|
26
|
Rasouly HM, Lu W. Lower urinary tract development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:307-42. [PMID: 23408557 PMCID: PMC3627353 DOI: 10.1002/wsbm.1212] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
27
|
Abstract
The mammalian ureter contains two main cell types: a multilayered water-tight epithelium called the urothelium, surrounded by smooth muscle layers that, by generating proximal to distal peristaltic waves, pump urine from the renal pelvis toward the urinary bladder. Here, we review the cellular mechanisms involved in the development of these tissues, and the molecules that control the process. We consider the relevance of these biologic findings for understanding the pathogenesis of human ureter malformations.
Collapse
Affiliation(s)
- Adrian S Woolf
- School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre and Manchester Children's Hospital, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
28
|
Onal B, Miao X, Ozonoff A, Bauer SB, Retik AB, Nguyen HT. Protective Locus Against Renal Scarring on Chromosome 11 in Affected Sib Pairs with Familial Vesicoureteral Reflux Identified by Single Nucleotide Polymorphism Linkage Analysis. J Urol 2012; 188:1467-73. [DOI: 10.1016/j.juro.2012.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 10/28/2022]
Affiliation(s)
- Bulent Onal
- Department of Urology, Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Urology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Xiaopeng Miao
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Al Ozonoff
- Clinical Research Program, Children's Hospital Boston, Boston, Massachusetts
| | - Stuart B. Bauer
- Department of Urology, Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alan B. Retik
- Department of Urology, Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hiep T. Nguyen
- Department of Urology, Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Renkema KY, Winyard PJ, Skovorodkin IN, Levtchenko E, Hindryckx A, Jeanpierre C, Weber S, Salomon R, Antignac C, Vainio S, Schedl A, Schaefer F, Knoers NVAM, Bongers EMHF. Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrol Dial Transplant 2012; 26:3843-51. [PMID: 22121240 DOI: 10.1093/ndt/gfr655] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the commonest cause of chronic kidney disease in children. Structural anomalies within the CAKUT spectrum include renal agenesis, kidney hypo-/dysplasia, multicystic kidney dysplasia, duplex collecting system, posterior urethral valves and ureter abnormalities. While most CAKUT cases are sporadic, familial clustering of CAKUT is common, emphasizing a strong genetic contribution to CAKUT origin. Animal experiments demonstrate that alterations in genes crucial for kidney development can cause experimental CAKUT, while expression studies implicate mislocalization and/or aberrant levels of the encoded proteins in human CAKUT. Further insight into the pathogenesis of CAKUT will improve strategies for early diagnosis, follow-up and treatment. Here, we outline a collaborative approach to identify and characterize novel factors underlying human CAKUT. This European consortium will share the largest collection of CAKUT patients available worldwide and undertake multidisciplinary research into molecular and genetic pathogenesis, with extension into translational studies to improve long-term patient outcomes.
Collapse
|
30
|
Congenital anomalies of the kidney and urinary tract: a genetic disorder? Int J Nephrol 2012; 2012:909083. [PMID: 22685656 PMCID: PMC3363415 DOI: 10.1155/2012/909083] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/21/2012] [Indexed: 02/07/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) occur in 3–6 per 1000 live births, account for the most cases of pediatric end-stage kidney disease (ESKD), and predispose an individual to hypertension and cardiovascular disease throughout life. Although CAKUTs are a part of many known syndromes, only few single-candidate causative genes have been implicated so far in nonsyndromic cases of human CAKUT. Evidence from mouse models supports the hypothesis that non-syndromic human CAKUT may be caused by single-gene defects. Because increasing numbers of children with CAKUT are surviving to adulthood, better understanding of the molecular pathogenesis of CAKUT, development of new strategies aiming at prevention of CAKUT, preservation of renal function, and avoidance of associated cardiovascular morbidity are needed. In this paper, we will focus on the knowledge derived from the study of syndromic and non-syndromic forms of CAKUT in humans and mouse mutants to discuss the role of genetic, epigenetic, and in utero environmental factors in the pathogenesis of non-syndromic forms of CAKUT in children with particular emphasis on the genetic contributions to CAKUT.
Collapse
|
31
|
Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS One 2012; 7:e31327. [PMID: 22558067 PMCID: PMC3338743 DOI: 10.1371/journal.pone.0031327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design, investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was genotyped in 207 cases and 554 controls. The 14 SNPs with p<0.005 were included in a follow-up study in 202 cases and 892 controls. Of the total cohort, ~50% showed a clear-cut primary VUR phenotype and ~25% had both a duplex collecting system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A). SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the genes of the ureteric budding pathway and the genetic susceptibility to primary VUR.
Collapse
|
32
|
Zhou TB, Lin N, Liu YG, Qin YH, Shao MB, Peng DD. Association of ACE I/D gene polymorphism with vesicoureteral reflux susceptibility in children: a meta-analysis. J Renin Angiotensin Aldosterone Syst 2012; 13:273-81. [PMID: 22396489 DOI: 10.1177/1470320312437892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China
| | - Na Lin
- Department of Pediatrics, The Affiliated Hospital of Medical College of Youjiang for Nationalities, Baise, China
| | - Yun-Guang Liu
- Department of Pediatrics, The Affiliated Hospital of Medical College of Youjiang for Nationalities, Baise, China
| | - Yuan-Han Qin
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China
| | - Ming-Bin Shao
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China
| | - Dan-Dan Peng
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China
| |
Collapse
|
33
|
Marchini GS, Onal B, Guo CY, Rowe CK, Kunkel L, Bauer SB, Retik AB, Nguyen HT. Genome gender diversity in affected sib-pairs with familial vesico-ureteric reflux identified by single nucleotide polymorphism linkage analysis. BJU Int 2011; 109:1709-14. [DOI: 10.1111/j.1464-410x.2011.10634.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Murawski IJ, Watt CL, Gupta IR. Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol 2011; 26:1513-22. [PMID: 21424527 DOI: 10.1007/s00467-011-1821-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
Vesico-ureteric reflux (VUR) is a common congenital urinary tract defect in which urine flows retrogradely from the bladder to the kidneys because of an abnormally formed uretero-vesical junction. It is associated with recurrent urinary tract infections, renal hypo/dysplasia, reflux nephropathy, hypertension, and end-stage renal disease. In humans, VUR is genetically and phenotypically heterogeneous, encompassing diverse renal and urinary tract phenotypes. To understand the significance of these phenotypes, we and others have used the mouse as a model organism and this has led to the identification of new candidate genes. Through careful phenotypic analysis of these models, a new understanding of the genetics and biology of VUR is now underway.
Collapse
Affiliation(s)
- Inga J Murawski
- Department of Human Genetics, Montreal Children's Hospital, McGill University, 2300 Tupper Street, Montreal, QC, H3Z 2Z3, Canada
| | | | | |
Collapse
|
35
|
Abstract
Primary vesicoureteral reflux (VUR) is the most common urological anomaly in children, affecting 1-2% of the pediatric population and 30-40% of children presenting with urinary tract infections (UTIs). Reflux-associated nephropathy is a major cause of childhood hypertension and chronic renal failure. The hereditary and familial nature of VUR is well recognized and several studies have reported that siblings of children with VUR have a higher incidence of reflux than the general pediatric population. Familial clustering of VUR implies that genetic factors have an important role in its pathogenesis, but no single major locus or gene for VUR has yet been identified and most researchers now acknowledge that VUR is genetically heterogeneous. Improvements in genome-scan techniques and continuously increasing knowledge of the genetic basis of VUR should help us to further understand its pathogenesis.
Collapse
|
36
|
Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 2011; 8:449-68. [PMID: 21750501 DOI: 10.1038/nrurol.2011.100] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A functional and well-balanced immune response is required to resist most infections. Slight dysfunctions in innate immunity can turn the 'friendly' host defense into an unpleasant foe and give rise to disease. Beneficial and destructive forces of innate immunity have been discovered in the urinary tract and mechanisms by which they influence the severity of urinary tract infections (UTIs) have been elucidated. By modifying specific aspects of the innate immune response to UTI, genetic variation either exaggerates the severity of acute pyelonephritis to include urosepsis and renal scarring or protects against symptomatic disease by suppressing innate immune signaling, as in asymptomatic bacteriuria (ABU). Different genes are polymorphic in patients prone to acute pyelonephritis or ABU, respectively, and yet discussions of UTI susceptibility in clinical practice still focus mainly on social and behavioral factors or dysfunctional voiding. Is it not time for UTIs to enter the era of molecular medicine? Defining why certain individuals are protected from UTI while others have severe, recurrent infections has long been difficult, but progress is now being made, encouraging new approaches to risk assessment and therapy in this large and important patient group, as well as revealing promising facets of 'good' versus 'bad' inflammation.
Collapse
Affiliation(s)
- Bryndís Ragnarsdóttir
- Section of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, 22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
37
|
Zaffanello M, Tardivo S, Cataldi L, Fanos V, Biban P, Malerba G. Genetic susceptibility to renal scar formation after urinary tract infection: a systematic review and meta-analysis of candidate gene polymorphisms. Pediatr Nephrol 2011; 26:1017-29. [PMID: 21116828 DOI: 10.1007/s00467-010-1695-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/20/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023]
Abstract
Identifying patients who may develop renal scarring after urinary tract infections (UTI) remains challenging, as clinical determinants explain only a portion of individual risk. An additional factor that likely affects risk is individual genetic variability. We searched for peer-reviewed articles from 1980 to December 2009 in electronic databases that reported results showing an association between gene polymorphims and renal scaring after UTI. Two independent researchers screened articles using predetermined criteria. Studies were assessed for methodological quality using an aggregate scoring system. The 18 studies ultimately included in the review had investigated 16 polymorphisms in nine genes in association with renal scarring formation after UTI. Based on the predetermined criteria for assessing the quality of the studies, 12 studies (67%) were identified as being of poor quality design. A meta-analysis of cumulative studies showed on association between renal scarring formation after UTI and the angiotensin converting enzyme insertion/deletion polymorphism [ACE I/D; recessive model for D allele; odds ratio (OR) 1.73, 95% confidence interval (CI) 1.09-2.74, P = 0.02] or transforming growth factor (TGF)-β1 c.-509 T > C polymorphism (dominant model for T allele; OR 2.24, 95% CI 1.34-3.76, P = 0.002). However, heterogeneity among studies was large, indicating a strong difference that cannot only be explained by differences in study design. The studies reviewed in this article support a modest involvement of the vasomotor and inflammatory genes in the development of renal scarring after UTIs. This review also shows that only few possible candidate genes have been investigated for an association with renal scarring, raising the hypothesis that some gene polymorphisms may exert their effects through an interaction with as yet uninvestigated factors that may be related to geographic and/or socio-economic differences.
Collapse
Affiliation(s)
- Marco Zaffanello
- Department of Life and Reproduction Sciences, Section of Pediatrics, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M. Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PLoS One 2011; 6:e21529. [PMID: 21731775 PMCID: PMC3123351 DOI: 10.1371/journal.pone.0021529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/31/2011] [Indexed: 12/19/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/−;Emx2+/− mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/−;Emx2+/− embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans.
Collapse
Affiliation(s)
- Sami K. Boualia
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Yaned Gaitan
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Inga Murawski
- Department of Pediatrics and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Robert Nadon
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Indra R. Gupta
- Department of Pediatrics and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
39
|
Lambert HJ, Stewart A, Gullett AM, Cordell HJ, Malcolm S, Feather SA, Goodship JA, Goodship THJ, Woolf AS. Primary, nonsyndromic vesicoureteric reflux and nephropathy in sibling pairs: a United Kingdom cohort for a DNA bank. Clin J Am Soc Nephrol 2011; 6:760-6. [PMID: 21441121 DOI: 10.2215/cjn.04580510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Primary vesicoureteric reflux (VUR) can coexist with reflux nephropathy (RN) and impaired renal function. VUR appears to be an inherited condition and is reported in approximately one third of siblings of index cases. The objective was to establish a DNA collection and clinical database from U.K. families containing affected sibling pairs for future VUR genetics studies. The cohort's clinical characteristics have been described. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Most patients were identified from tertiary pediatric nephrology centers; each family had an index case with cystography-proven primary, nonsyndromic VUR. Affected siblings had radiologically proven VUR and/or radiographically proven RN. RESULTS One hundred eighty-nine index cases identified families with an additional 218 affected siblings. More than 90% were <20 years at the study's end. Blood was collected and leukocyte DNA extracted from all 407 patients and from 189 mothers and 183 fathers. Clinical presentation was established in 122; 92 had urinary tract infections and 16 had abnormal antenatal renal scans. RN was radiologically proven in 223 patients. Four patients had been transplanted; none were on dialysis. In 174 others aged >1 year, estimated GFR (eGFR) was calculated. Five had eGFR 15 to 59 and 48 had eGFR 60 to 89 ml/min per 1.73 m(2). Values were lower in bilateral RN patients than in those with either unilateral or absent RN. CONCLUSIONS The large DNA collection from families with VUR and associated RN constitutes a resource for researchers exploring the most likely complex, genetic components predisposing to VUR and RN.
Collapse
Affiliation(s)
- Heather J Lambert
- Department of Paediatric Nephrology, Royal Victoria Infirmary, Newcastle NE1 4LP, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2011; 26:353-64. [PMID: 20798957 DOI: 10.1007/s00467-010-1629-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/08/2010] [Accepted: 07/13/2010] [Indexed: 01/08/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in 1 in 500 births and are a major cause of morbidity in children. Notably, CAKUT account for the most cases of pediatric end-stage renal disease and predispose the individual to hypertension and cardiovascular disease throughout life. Although some forms of CAKUT are a part of a syndrome or are associated with a positive family history, most cases of renal system anomalies are sporadic and isolated to the urinary tract. Broad phenotypic spectrum of CAKUT and variability in genotype-phenotype correlation indicate that pathogenesis of CAKUT is a complex process that depends on interplay of many factors. This review focuses on the genetic mechanisms (single-gene mutations, modifier genes) leading to renal system anomalies in humans and discusses emerging insights into the role of epigenetics, in utero environmental factors, and micro-RNAs (miRNAs) in the pathogenesis of CAKUT. Common gene networks that function in defined temporospatial fashion to orchestrate renal system morphogenesis are highlighted. Derangements in cellular, molecular, and morphogenetic mechanisms that direct normal renal system development are emphasized as a major cause of CAKUT. Integrated understanding of how morphogenetic process disruptions are linked to CAKUT will enable improved diagnosis, treatment, and prevention of congenital renal system anomalies and their consequences.
Collapse
|
41
|
|
42
|
Agrawal S, Agarwal S, Naik S. Genetic contribution and associated pathophysiology in end-stage renal disease. APPLICATION OF CLINICAL GENETICS 2010; 3:65-84. [PMID: 23776353 PMCID: PMC3681165 DOI: 10.2147/tacg.s7330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
End-stage renal disease (ESRD) or chronic kidney disease (CKD) is the terminal state of the kidney when its function has been permanently and irreversibly damaged. A wide variety of etiologies and pathological processes culminate in ESRD, and both environmental and genetic factors contribute to its development and progression. Various reports suggest that susceptibility to develop ESRD has a significant genetic component. These studies include familial aggregation studies, comparisons of incidence rates between different racial or ethnic populations, and segregation analysis. Genetic approaches have been used to identify genes that contribute to genetic susceptibility. Many studies have now been carried out assessing the contribution of specific “candidate genes”, which correlate with different functions that are involved in the renal pathogenesis. Independent studies for specific associated genes have frequently provided contradictory results. This may be due, in part, to the modest contribution to genetic susceptibility which these genes impart. With the availability of different genomewide association studies, chromosomal regions harboring novel, previously unrecognized, genes that may contribute to renal diseases have been recently reported. We have focused on different genetic studies conducted on ESRD and have discussed the strength and weaknesses of these studies. The nonmuscle myosin heavy chain 9 gene (MYH9) and renin–angiotensin system (RAS) have been discussed in detail.
Collapse
Affiliation(s)
- Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | |
Collapse
|
43
|
Hahn H. Genetics of kidney development: pathogenesis of renal anomalies. KOREAN JOURNAL OF PEDIATRICS 2010; 53:729-34. [PMID: 21189947 PMCID: PMC3004483 DOI: 10.3345/kjp.2010.53.7.729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 06/08/2010] [Accepted: 06/14/2010] [Indexed: 11/30/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) account for more than 50% of abdominal masses found in neonates and involve about 0.5% of all pregnancies. CAKUT has a major role in renal failure, and increasing evidence suggests that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adulthood. To understand the pathogenesis of human renal anomalies, understanding the development of kidney is important. Diverse anomalies of the kidney corresponding to defects at a particular stage of development have been documented recently; however, more research is required to understand the molecular networks underlying kidney development, and such an investigation will provide a clue to the therapeutic intervention for CAKUT.
Collapse
Affiliation(s)
- Hyewon Hahn
- Department of Pediatrics, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Daly SB, Urquhart JE, Hilton E, McKenzie EA, Kammerer RA, Lewis M, Kerr B, Stuart H, Donnai D, Long DA, Burgu B, Aydogdu O, Derbent M, Garcia-Minaur S, Reardon W, Gener B, Shalev S, Smith R, Woolf AS, Black GC, Newman WG. Mutations in HPSE2 cause urofacial syndrome. Am J Hum Genet 2010; 86:963-9. [PMID: 20560210 DOI: 10.1016/j.ajhg.2010.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.
Collapse
|
45
|
Murawski IJ, Maina RW, Malo D, Guay-Woodford LM, Gros P, Fujiwara M, Morgan K, Gupta IR. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int 2010; 78:269-78. [PMID: 20407478 DOI: 10.1038/ki.2010.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vesico-ureteric reflux is the most common congenital anomaly of the urinary tract, characterized by a defective uretero-vesical junction with retrograde urine flow from the bladder toward the kidneys. Because there is strong evidence for a genetic basis for some cases of vesico-ureteric reflux, we screened 11 inbred mouse strains for reflux and kidney size and identified one strain, C3H/HeJ, that has a 100 percent incidence of vesico-ureteric reflux with otherwise normal kidneys at birth. These mice are predisposed to reflux as a result of a defective uretero-vesical junction characterized by a short intravesical ureter. This defect results from a delay in urinary tract development initially manifested by a ureteric bud arising from a more caudal location along the mesonephric duct. In contrast, C57BL/6J mice (resistant to reflux at birth) have long intravesical ureters, normally positioned ureteric buds, and no delay in urinary tract development. Genome-wide and additional fine mapping of backcross mice, derived from C3H/HeJ and C57BL/6J crosses, identified a significant reflux susceptibility locus, Vurm1, on chromosome 12 (peak logarithm of the odds=7.39). The C3H/HeJ mouse is a model of vesico-ureteric reflux without renal malformation, and further characterization of this model will allow for the identification of a pathway important for urinary tract development, a finding that will serve as a model for the human disorder.
Collapse
Affiliation(s)
- Inga J Murawski
- Department of Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Adalat S, Bockenhauer D, Ledermann SE, Hennekam RC, Woolf AS. Renal malformations associated with mutations of developmental genes: messages from the clinic. Pediatr Nephrol 2010; 25:2247-55. [PMID: 20603712 PMCID: PMC2937138 DOI: 10.1007/s00467-010-1578-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/07/2010] [Accepted: 05/27/2010] [Indexed: 01/30/2023]
Abstract
Renal tract malformations (RTMs) account for about 40% of children with end-stage renal failure. RTMs can be caused by mutations of genes normally active in the developing kidney and lower renal tract. Moreover, some RTMs occur in the context of multi-organ malformation syndromes. For these reasons, and because genetic testing is becoming more widely available, pediatric nephrologists should work closely with clinical geneticists to make genetic diagnoses in children with RTMs, followed by appropriate family counseling. Here we highlight families with renal cysts and diabetes, renal coloboma and Fraser syndromes, and a child with microdeletion of chromosome 19q who had a rare combination of malformations. Such diagnoses provide families with often long-sought answers to the question "why was our child born with kidney disease". Precise genetic diagnoses will also help to define cohorts of children with RTMs for long-term clinical outcome studies.
Collapse
Affiliation(s)
- Shazia Adalat
- UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | - Detlef Bockenhauer
- UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | - Sarah E. Ledermann
- UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | - Raoul C. Hennekam
- Department of Pediatrics, University of Amsterdam, Amsterdam, The Netherlands
| | - Adrian S. Woolf
- University of Manchester and Manchester Children’s Hospital, Manchester, England ,Developmental and Regenerative Medicine Research Group, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|