1
|
Osaki Y, Manolopoulou M, Ivanova AV, Vartanian N, Mignemi MP, Kern J, Chen J, Yang H, Fogo AB, Zhang M, Robinson-Cohen C, Gewin LS. Blocking cell cycle progression through CDK4/6 protects against chronic kidney disease. JCI Insight 2022; 7:e158754. [PMID: 35730565 PMCID: PMC9309053 DOI: 10.1172/jci.insight.158754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute and chronic kidney injuries induce increased cell cycle progression in renal tubules. While increased cell cycle progression promotes repair after acute injury, the role of ongoing tubular cell cycle progression in chronic kidney disease is unknown. Two weeks after initiation of chronic kidney disease, we blocked cell cycle progression at G1/S phase by using an FDA-approved, selective inhibitor of CDK4/6. Blocking CDK4/6 improved renal function and reduced tubular injury and fibrosis in 2 murine models of chronic kidney disease. However, selective deletion of cyclin D1, which complexes with CDK4/6 to promote cell cycle progression, paradoxically increased tubular injury. Expression quantitative trait loci (eQTLs) for CCND1 (cyclin D1) and the CDK4/6 inhibitor CDKN2B were associated with eGFR in genome-wide association studies. Consistent with the preclinical studies, reduced expression of CDKN2B correlated with lower eGFR values, and higher levels of CCND1 correlated with higher eGFR values. CDK4/6 inhibition promoted tubular cell survival, in part, through a STAT3/IL-1β pathway and was dependent upon on its effects on the cell cycle. Our data challenge the paradigm that tubular cell cycle progression is beneficial in the context of chronic kidney injury. Unlike the reparative role of cell cycle progression following acute kidney injury, these data suggest that blocking cell cycle progression by inhibiting CDK4/6, but not cyclin D1, protects against chronic kidney injury.
Collapse
Affiliation(s)
- Yosuke Osaki
- Division of Nephrology and Hypertension, Department of Medicine, Washington University St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | - Alla V. Ivanova
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | | | - Justin Kern
- Division of Nephrology and Hypertension, Department of Medicine, Washington University St. Louis, St. Louis, Missouri, USA
| | - Jianchun Chen
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Agnes B. Fogo
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Mingzhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Washington University St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Medicine, Veterans Affairs Hospital, St. Louis VA, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Magalingam KB, Somanath SD, Md S, Haleagrahara N, Fu JY, Selvaduray KR, Radhakrishnan AK. Tocotrienols protect differentiated SH-SY5Y human neuroblastoma cells against 6-hydroxydopamine-induced cytotoxicity by ameliorating dopamine biosynthesis and dopamine receptor D2 gene expression. Nutr Res 2022; 98:27-40. [DOI: 10.1016/j.nutres.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022]
|
3
|
Campion CG, Verissimo T, Cossette S, Tremblay J. Does Subtelomeric Position of COMMD5 Influence Cancer Progression? Front Oncol 2021; 11:642130. [PMID: 33768002 PMCID: PMC7985453 DOI: 10.3389/fonc.2021.642130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The COMMD proteins are a family of ten pleiotropic factors which are widely conserved throughout evolution and are involved in the regulation of many cellular and physiological processes. COMMD proteins are mainly expressed in adult tissue and their downregulation has been correlated with tumor progression and poor prognosis in cancer. Among this family, COMMD5 emerged as a versatile modulator of tumor progression. Its expression can range from being downregulated to highly up regulated in a variety of cancer types. Accordingly, two opposing functions could be proposed for COMMD5 in cancer. Our studies supported a role for COMMD5 in the establishment and maintenance of the epithelial cell phenotype, suggesting a tumor suppressor function. However, genetic alterations leading to amplification of COMMD5 proteins have also been observed in various types of cancer, suggesting an oncogenic function. Interestingly, COMMD5 is the only member of this family that is located at the extreme end of chromosome 8, near its telomere. Here, we review some data concerning expression and role of COMMD5 and propose a novel rationale for the potential link between the subtelomeric position of COMMD5 on chromosome 8 and its contrasting functions in cancer.
Collapse
Affiliation(s)
- Carole G Campion
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Thomas Verissimo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Cossette
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Johanne Tremblay
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Wei J, Zhang J, Wang L, Jiang S, Fu L, Buggs J, Liu R. New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury. Am J Physiol Renal Physiol 2019; 317:F286-F295. [PMID: 31116604 PMCID: PMC6732455 DOI: 10.1152/ajprenal.00021.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) significantly increases the risk of development of chronic kidney disease (CKD), which is closely associated with the severity of AKI. However, the underlying mechanisms for the AKI to CKD transition remain unclear. Several animal models with AKI to CKD transition have been generated and widely used in research; however, none of them exhibit the typical changes in glomerular filtration rate or plasma creatinine, the hallmarks of CKD. In the present study, we developed a novel model with a typical phenotype of AKI to CKD transition in C57BL/6 mice. In this model, life-threatening ischemia-reperfusion injury was performed in one kidney, whereas the contralateral kidney was kept intact to maintain animal survival; then, after 2 wk of recovery, when the renal function of the injured kidney restored above the survival threshold, the contralateral intact kidney was removed. Animals of this two-stage unilateral ischemia-reperfusion injury model with pedicle clamping of 21 and 24 min exhibited an incomplete recovery from AKI and subsequent progression of CKD with characteristics of a progressive decline in glomerular filtration rate, increase in plasma creatinine, worsening of proteinuria, and deleterious histopathological changes, including interstitial fibrosis and glomerulosclerosis. In conclusion, a new model of the AKI to CKD transition was generated in C57BL/6 mice.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Liying Fu
- Tampa General Hospital , Tampa, Florida
| | | | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| |
Collapse
|
5
|
Campion CG, Zaoui K, Verissimo T, Cossette S, Matsuda H, Solban N, Hamet P, Tremblay J. COMMD5/HCaRG Hooks Endosomes on Cytoskeleton and Coordinates EGFR Trafficking. Cell Rep 2018; 24:670-684.e7. [DOI: 10.1016/j.celrep.2018.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
|
6
|
17β-Estradiol Accelerated Renal Tubule Regeneration in Male Rats After Ischemia/Reperfusion-Induced Acute Kidney Injury. Shock 2018; 46:158-63. [PMID: 26849629 DOI: 10.1097/shk.0000000000000586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ischemic/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI). Murine studies report that pretreatment with 17β-estradiol protects against AKI using multiple mechanisms, but how 17β-estradiol is involved in regenerating tubular cells is unknown. To visualize the kidney injury and repair, we used 17β-estradiol to treat rats with postischemic acute kidney injury. AKI was induced by clamping the renal pedicle for 90 minutes 2 weeks after a unilateral nephrectomy. Rats were treated with an intravenous injection of 17β-estradiol or vehicle immediately after reperfusion. Kidney injury was assessed by measuring biochemical and histopathological changes. Immunohistochemical staining of vimentin, proliferating cell nuclear antigen (PCNA), and E-cadherin were used to assess dedifferentiation, proliferation, and redifferentiation. Rats treated with 17β-estradiol had less kidney injury than did vehicle-treated rats post-IRI day 1. The number of PCNA-positive (PCNA) cells was significantly higher in post-IRI kidneys on day 1 in 17β-estradiol-treated rats. Moreover, vimentin and E-cadherin cells, which were interpreted as regeneration markers, were expressed earlier and significantly more copiously in 17β-estradiol-treated rats. We hypothesize that 17β-estradiol attenuates IRI-induced AKI by reducing inflammation and accelerating injured tubular cell regeneration.
Collapse
|
7
|
Matsuda H, Campion CG, Fujiwara K, Ikeda J, Cossette S, Verissimo T, Ogasawara M, Gaboury L, Saito K, Yamaguchi K, Takahashi S, Endo M, Fukuda N, Soma M, Hamet P, Tremblay J. HCaRG/COMMD5 inhibits ErbB receptor-driven renal cell carcinoma. Oncotarget 2017; 8:69559-69576. [PMID: 29050225 PMCID: PMC5642500 DOI: 10.18632/oncotarget.18012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/08/2017] [Indexed: 11/25/2022] Open
Abstract
Hypertension-related, calcium-regulated gene (HCaRG/COMMD5) is highly expressed in renal proximal tubules, where it contributes to the control of cell proliferation and differentiation. HCaRG accelerates tubular repair by facilitating re-differentiation of injured proximal tubular epithelial cells, thus improving mouse survival after acute kidney injury. Sustained hyper-proliferation and de-differentiation are important hallmarks of tumor progression. Here, we demonstrate that cancer cells overexpressing HCaRG maintain a more differentiated phenotype, while several of them undergo autophagic cell death. Its overexpression in mouse renal cell carcinomas led to smaller tumor size with less tumor vascularization in a homograft tumor model. Mechanistically, HCaRG promotes de-phosphorylation of the proto-oncogene erythroblastosis oncogene B (ErbB)2/HER2 and epigenetic gene silencing of epidermal growth factor receptor and ErbB3 via promoter methylation. Extracellular signal-regulated kinase, AKT and mammalian target of rapamycin which mediate ErbB-dowstream signaling pathways are inactivated by HCaRG expression. In addition, HCaRG is underexpressed in human renal cell carcinomas and more expressed in normal tissue adjacent to renal cell carcinomas of patients with favorable prognosis. Taken together, our data suggest a role for HCaRG in the inhibition of tumor progression as a natural inhibitor of the ErbB signals in cancer and as a potential prognostic marker for renal cell carcinomas.
Collapse
Affiliation(s)
- Hiroyuki Matsuda
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada, H3T 1J4
- Division of General Medicine, Department of Internal Medicine, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Carole G. Campion
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Internal Medicine, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Jin Ikeda
- Division of General Medicine, Department of Internal Medicine, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Suzanne Cossette
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
| | - Thomas Verissimo
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
| | - Maiko Ogasawara
- Division of General Medicine, Department of Internal Medicine, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Louis Gaboury
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Pavillon Marcelle-Coutu, Québec, Canada, H3T 1J4
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada, H3T 1J4
| | - Kosuke Saito
- Division of General Medicine, Department of Internal Medicine, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Kenya Yamaguchi
- Department of Urology, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Satoru Takahashi
- Department of Urology, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Morito Endo
- Faculty of Human Health Science, Hachinohe Gakuin University, Hachinohe, Aomori, Japan, 031-8588
| | - Noboru Fukuda
- University Research Center, Nihon University, Chiyoda-ku, Tokyo, Japan, 102-8251
| | - Masayoshi Soma
- Division of General Medicine, Department of Internal Medicine, Nihon University, Itabashi-ku, Tokyo, Japan, 173-8610
| | - Pavel Hamet
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada, H3T 1J4
| | - Johanne Tremblay
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada, H3T 1J4
| |
Collapse
|
8
|
Parsa A, Kanetsky PA, Xiao R, Gupta J, Mitra N, Limou S, Xie D, Xu H, Anderson AH, Ojo A, Kusek JW, Lora CM, Hamm LL, He J, Sandholm N, Jeff J, Raj DE, Böger CA, Bottinger E, Salimi S, Parekh RS, Adler SG, Langefeld CD, Bowden DW, Groop PH, Forsblom C, Freedman BI, Lipkowitz M, Fox CS, Winkler CA, Feldman HI. Genome-Wide Association of CKD Progression: The Chronic Renal Insufficiency Cohort Study. J Am Soc Nephrol 2017; 28:923-934. [PMID: 27729571 PMCID: PMC5328149 DOI: 10.1681/asn.2015101152] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 08/25/2016] [Indexed: 11/03/2022] Open
Abstract
The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P<1×10-6 for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P=5.42×10-7; replication P=0.039; combined P=7.42×10-9). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P=4.90×10-6). Similarly, rs931891 in LINC00923 associated with eGFR decline (P=1.44×10-4) in white patients without diabetes. In summary, SNPs in LINC00923, an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted.
Collapse
Affiliation(s)
- Afshin Parsa
- Division of Nephrology and
- Department of Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rui Xiao
- Department of Biostatistics and Epidemiology and
| | - Jayanta Gupta
- Department of Health Sciences, College of Health Professions and Social Work, Florida Gulf Coast University, Fort Myers, FL
| | | | - Sophie Limou
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute and Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | - Dawei Xie
- Department of Biostatistics and Epidemiology and
| | | | - Amanda Hyre Anderson
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akinlolu Ojo
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - John W Kusek
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Claudia M Lora
- Department of Medicine, Division of Nephrology, University of Illinois at Chicago, Chicago, Illinois
| | - L Lee Hamm
- Department of Medicine, Section of Nephrology, Tulane University, New Orleans, Louisiana
| | - Jiang He
- Department of Medicine, Section of Nephrology, Tulane University, New Orleans, Louisiana
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Janina Jeff
- Department of Medicine, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Dominic E Raj
- Department of Medicine, The George Washington University School of Medicine, Washington, DC
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Erwin Bottinger
- Department of Medicine, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Shabnam Salimi
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rulan S Parekh
- Division of Nephrology, Department of Pediatrics and Medicine, Hospital for Sick Children, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Sharon G Adler
- Department of Medicine, Division of Nephrology and Hypertension, Harbor-University of California, Los Angeles Medical Center, Los Angeles, California
| | | | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael Lipkowitz
- Department of Medicine, Georgetown University Medical Center, Washington, DC; and
| | - Caroline S Fox
- Division of Intramural Research, National Heart, Lung and Blood Institute's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts
| | | | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Hypertension-related, calcium-regulated gene (HCaRG/COMMD5) and kidney diseases: HCaRG accelerates tubular repair. J Nephrol 2014; 27:351-60. [PMID: 24515317 PMCID: PMC4104007 DOI: 10.1007/s40620-014-0054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Hypertension is a risk factor for renal impairment. While treatment of hypertension provides significant renal protection, there is still an unmet need requiring further exploration of additional pathogenetic mechanisms. We have found that the hypertension-related, calcium-regulated gene (HCaRG/COMMD5) is involved in renal repair. HCaRG is a small intracellular protein of 225 amino acids and its gene expression is negatively regulated by extracellular calcium concentrations. HCaRG is mostly expressed in the kidneys, with higher levels found in the spontaneously hypertensive rat than in normotensive rats. In an acute kidney injury model, HCaRG expression decreases immediately after injury but increases above baseline during the repair phase. In cell cultures, HCaRG has been shown to facilitate differentiation and to inhibit cell proliferation via p21 transactivation through the p53-independent signaling pathway. Induction of p21 independently of p53 is also observed in transgenic mice overexpressing HCaRG during the repair phase after ischemia/reperfusion injury, resulting in their improved renal function and survival with rapid re-differentiation of proximal tubular epithelial cells. In addition, transgenic mice recover rapidly from the inflammatory burst most likely as a result of maintenance of the tubular epithelial barrier. Recent studies indicate that facilitating re-differentiation and cell cycle regulation in injured renal proximal tubules might be important functions of HCaRG. We have proposed that HCaRG is a component of differential genetic susceptibility to renal impairment in response to hypertension.
Collapse
|
10
|
Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 2012; 303:F1487-94. [PMID: 22993069 DOI: 10.1152/ajprenal.00352.2012] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.
Collapse
Affiliation(s)
- Qingqing Wei
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | |
Collapse
|