1
|
Legaz I, Jimenez-Coll V, González-López R, Fernández-González M, Alegría-Marcos MJ, Galián JA, Botella C, Moya-Quiles R, Muro-Pérez M, Minguela A, Llorente S, Muro M. MicroRNAs as Potential Graft Rejection or Tolerance Biomarkers and Their Dilemma in Clinical Routines Behaving like Devilish, Angelic, or Frightening Elements. Biomedicines 2024; 12:116. [PMID: 38255221 PMCID: PMC10813128 DOI: 10.3390/biomedicines12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Allograft rejection is a widespread complication in allograft recipients with chronic kidney disease. Undertreatment of subclinical and clinical rejection and later post-transplant problems are caused by an imperfect understanding of the mechanisms at play and a lack of adequate diagnostic tools. Many different biomarkers have been analyzed and proposed to detect and monitor these crucial events in transplant outcomes. In this sense, microRNAs may help diagnose rejection or tolerance and indicate appropriate treatment, especially in patients with chronic allograft rejection. As key epigenetic regulators of physiological homeostasis, microRNAs have therapeutic potential and may indicate allograft tolerance or rejection. However, more evidence and clinical validation are indispensable before microRNAs are ready for clinical prime time.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum,” Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain
| | - Víctor Jimenez-Coll
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Rosana González-López
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | | | | | - José Antonio Galián
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Carmen Botella
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Rosa Moya-Quiles
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Manuel Muro-Pérez
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Santiago Llorente
- Service of Nephrology, Unit Hospital Clinic Universitario Virgen de la Arrixaca, IMIB-Arrixaca, 30120 Murcia, Spain
| | - Manuel Muro
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| |
Collapse
|
2
|
Novacescu D, Latcu SC, Bardan R, Daminescu L, Cumpanas AA. Contemporary Biomarkers for Renal Transplantation: A Narrative Overview. J Pers Med 2023; 13:1216. [PMID: 37623466 PMCID: PMC10456039 DOI: 10.3390/jpm13081216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Renal transplantation (RT) is the preferred treatment for end-stage renal disease. However, clinical challenges persist, i.e., early detection of graft dysfunction, timely identification of rejection episodes, personalization of immunosuppressive therapy, and prediction of long-term graft survival. Biomarkers have emerged as valuable tools to address these challenges and revolutionize RT patient care. Our review synthesizes the existing scientific literature to highlight promising biomarkers, their biological characteristics, and their potential roles in enhancing clinical decision-making and patient outcomes. Emerging non-invasive biomarkers seemingly provide valuable insights into the immunopathology of nephron injury and allograft rejection. Moreover, we analyzed biomarkers with intra-nephron specificities, i.e., glomerular vs. tubular (proximal vs. distal), which can localize an injury in different nephron areas. Additionally, this paper provides a comprehensive analysis of the potential clinical applications of biomarkers in the prediction, detection, differential diagnosis and assessment of post-RT non-surgical allograft complications. Lastly, we focus on the pursuit of immune tolerance biomarkers, which aims to reclassify transplant recipients based on immune risk thresholds, guide personalized immunosuppression strategies, and ultimately identify patients for whom immunosuppression may safely be reduced. Further research, validation, standardization, and prospective studies are necessary to fully harness the clinical utility of RT biomarkers and guide the development of targeted therapies.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Bardan
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Liviu Daminescu
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Qi Z, Wang S, Xuan A, Gu X, Deng J, Huang C, Zhang L, Yin X. MiR-142a-3p: A novel ACh receptor transcriptional regulator in association with peripheral nerve injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:325-336. [PMID: 36381585 PMCID: PMC9633872 DOI: 10.1016/j.omtn.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Long-term denervation leads to the disintegration of nicotinic acetylcholine receptor (nAChR) located at the endplate structure, which translates to deficits in functional activation despite nerve repair. Because of a lack of effective measures to protect AChR expression, we explored the effect of alterations in muscular miR-142a-3p on nAChR. In this study, we constructed a model of miR-142a-3p knockdown by transfecting a miR-142a-3p inhibitor short hairpin RNA (shRNA) into C2C12 myotubes, and we injected this miR-142a-3p inhibitor shRNA into the tibialis anterior (TA) muscle in uninjured mice and in denervated mice by transecting the sciatic nerve. Our results showed that miR-142a-3p knockdown led to an increased number and area of AChR clusters in myotubes in vitro and larger neuromuscular endplates in adult mice. Furthermore, miR-142a-3p knockdown delayed the disintegration of motor endplates after denervation. Last, upon miR-142a-3p knockdown in uninjured and denervated mice, we observed an increase in the mRNA levels of five AChR subunits as well as mRNAs of genes implicated in AChR transcription and AChR clustering. Together, these results suggest that miR-142a-3p may be a potential target for therapeutic intervention to prevent motor endplate degradation following peripheral nerve injury.
Collapse
Affiliation(s)
- Zhidan Qi
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Shen Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Gu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Chen Huang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Lei Zhang
- Electron Microscopy Analysis Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China,Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China,Pizhou People’s Hospital, Jiangsu, China,Corresponding author Xiaofeng Yin, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China.
| |
Collapse
|
4
|
Ba R, Geffard E, Douillard V, Simon F, Mesnard L, Vince N, Gourraud PA, Limou S. Surfing the Big Data Wave: Omics Data Challenges in Transplantation. Transplantation 2022; 106:e114-e125. [PMID: 34889882 DOI: 10.1097/tp.0000000000003992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In both research and care, patients, caregivers, and researchers are facing a leap forward in the quantity of data that are available for analysis and interpretation, marking the daunting "big data era." In the biomedical field, this quantitative shift refers mostly to the -omics that permit measuring and analyzing biological features of the same type as a whole. Omics studies have greatly impacted transplantation research and highlighted their potential to better understand transplant outcomes. Some studies have emphasized the contribution of omics in developing personalized therapies to avoid graft loss. However, integrating omics data remains challenging in terms of analytical processes. These data come from multiple sources. Consequently, they may contain biases and systematic errors that can be mistaken for relevant biological information. Normalization methods and batch effects have been developed to tackle issues related to data quality and homogeneity. In addition, imputation methods handle data missingness. Importantly, the transplantation field represents a unique analytical context as the biological statistical unit is the donor-recipient pair, which brings additional complexity to the omics analyses. Strategies such as combined risk scores between 2 genomes taking into account genetic ancestry are emerging to better understand graft mechanisms and refine biological interpretations. The future omics will be based on integrative biology, considering the analysis of the system as a whole and no longer the study of a single characteristic. In this review, we summarize omics studies advances in transplantation and address the most challenging analytical issues regarding these approaches.
Collapse
Affiliation(s)
- Rokhaya Ba
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| | - Estelle Geffard
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Venceslas Douillard
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Françoise Simon
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Mount Sinai School of Medicine, New York, NY
| | - Laurent Mesnard
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Nicolas Vince
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Pierre-Antoine Gourraud
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Sophie Limou
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| |
Collapse
|
5
|
The HDAC2/SP1/miR-205 feedback loop contributes to tubular epithelial cell extracellular matrix production in diabetic kidney disease. Clin Sci (Lond) 2022; 136:223-238. [PMID: 35084460 DOI: 10.1042/cs20210470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Extracellular matrix (ECM) accumulation is considered an important pathological feature of diabetic kidney disease (DKD). Histone deacetylase (HDAC) inhibitors protect against kidney injury. However, the potential mechanisms of HDACs in DKD are still largely unknown. Here, we describe a novel feedback loop composed of HDAC2 and miR-205 that regulates ECM production in tubular epithelial cells in individuals with DKD. We found that HDAC2 mRNA expression in peripheral blood was markedly higher in patients with DKD than in patients with diabetes. Nuclear HDAC2 protein expression was increased in TGFβ1-stimulated tubular epithelial cells and db/db mice. We also found that miR-205 was regulated by HDAC2 and downregulated in TGFβ1-treated HK2 cells and db/db mice. In addition, HDAC2 reduced histone H3K9 acetylation in the miR-205 promoter region to inhibit its promoter activity and subsequently suppressed miR-205 expression through an SP1-mediated pathway. Furthermore, miR-205 directly targeted HDAC2 and inhibited HDAC2 expression. Intriguingly, miR-205 also regulated its own transcription by inhibiting HDAC2 and increasing histone H3K9 acetylation in its promoter, forming a feedback regulatory loop. Additionally, the miR-205 agonist attenuated ECM production in HK2 cells and renal interstitial fibrosis in db/db mice. In conclusion, the HDAC2/SP1/miR-205 feedback loop may be crucial for the pathogenesis of DKD.
Collapse
|
6
|
Boštjančič E, Večerić-Haler Ž, Kojc N. The Role of Immune-Related miRNAs in the Pathology of Kidney Transplantation. Biomolecules 2021; 11:biom11081198. [PMID: 34439863 PMCID: PMC8393721 DOI: 10.3390/biom11081198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are members of the non-coding regulatory RNA family that play pivotal roles in physiological and pathological conditions, including immune response. They are particularly interesting as promising therapeutic targets, prognostic and diagnostic markers due to their easy detection in body fluids and stability. There is accumulating evidence that different miRNAs provide disease-specific signatures in liquid samples of distinct kidney injuries. Using experimental models and human samples, there have been numerous suggestions that immune-related miRNAs are also important contributors to the development of different kidney diseases as well as important markers for monitoring response after kidney transplantation. However, there are limited data for understanding their function in the molecular pathways of allograft pathologies. In our review, we focused on microRNAs that are related to different aspects of immune response after kidney transplantation.
Collapse
Affiliation(s)
- Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Željka Večerić-Haler
- Department of Nephrology, University Medical Centre, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-154-371-25
| |
Collapse
|
7
|
MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study. J Clin Med 2021; 10:jcm10132748. [PMID: 34206682 PMCID: PMC8268834 DOI: 10.3390/jcm10132748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The kidney allograft biopsy is considered the gold standard for rejection diagnosis but is invasive and could be indeterminate. Several publications point to the role of miRNA expression in suggesting its involvement in the acceptance or rejection of organ transplantation. This study aimed to analyze microRNAs involved in the differentiation and activation of B and T lymphocytes from kidney transplant (KT) patients’ peripheral blood leukocytes to be used as biomarkers of acute renal rejection (AR). Methods: A total of 15 KT patients with and without acute rejection (AR/NAR) were analyzed and quantified by miRNA PCR array. A total of 84 miRNAs related to lymphocyte differentiation and activation B and T were studied. The functions and biological pathways were analyzed to predict the potential targets of differential expressed miRNAs. Results: Six miRNA were increased in the AR group (miR-191-5p, miR-223-3p, miR-346, miR-423-5p, miR-574-3p, and miR-181d) and miR-150-5p was increased in the NAR group. In silico studies showed a total of 2603 target genes for the increased miRNAs in AR, while for the decrease miRNA, a total of 1107 target-potential genes were found. Conclusions: Our results show that KT with AR shows a decrease in miR-150-5p expression compared to NAR, suggesting that the decrease in miR-150-5p could be related to an increased MBD6 whose deregulation could have clinical consequences.
Collapse
|
8
|
Wu J, Zhang F, Zhang J, Sun Z, Wang W. Advances of miRNAs in kidney graft injury. Transplant Rev (Orlando) 2020; 35:100591. [PMID: 33309915 DOI: 10.1016/j.trre.2020.100591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage renal disease. However, various types of kidney graft injury after transplantation are still key factors that affect the survival of the kidney graft. Therefore, exploring the underlying mechanisms involved is very important. Current diagnostic measures for kidney graft injury (including needle biopsy, blood creatinine, eGFR, etc.) have many limiting factors such as invasiveness, insufficient sensitivity and specificity, so they cannot provide timely and effective information to clinicians. As for kidney grafts that have occurred injury, the traditional treatment has a little efficacy and many side effects. Therefore, there is an urgent need for developing new biomarkers and targeted treatment for kidney graft injury. Recently, studies have found that miRNAs are involved in the regulation of the progression of kidney graft injury. At the same time, it has high stability in blood, urine, and other body fluids, so it is suggested to have the potential as a biomarker and therapeutic target for kidney graft injury. Here, we reviewed the miRNAs involved in the pathophysiology of kidney graft injury such as ischemia/reperfusion injury, acute rejection, drug-induced nephrotoxicity, chronic allograft dysfunction, BK virus infection, and the latest advances of miRNAs as biomarkers and therapeutic targets of kidney graft injury, then summarized the specific data of miRNAs expression level in kidney graft injury, which aims to provide a reference for subsequent basic research and clinical transformation.
Collapse
Affiliation(s)
- Jiyue Wu
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Feilong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Jiandong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Zejia Sun
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Wei Wang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China.
| |
Collapse
|
9
|
Kohut TJ, Barandiaran JF, Keating BJ. Genomics and Liver Transplantation: Genomic Biomarkers for the Diagnosis of Acute Cellular Rejection. Liver Transpl 2020; 26:1337-1350. [PMID: 32506790 DOI: 10.1002/lt.25812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Acute cellular rejection (ACR) is a common complication in liver transplantation recipients (LTRs), especially within the first 12 months, and it is associated with increased morbidity and mortality. Although abnormalities in standard liver biochemistries may raise the clinical suspicion for ACR, it lacks specificity, and invasive liver biopsies, which are associated with numerous risks, are required for definitive diagnoses. Biomarker discovery for minimally invasive tools for diagnosis and prognostication of ACR after liver transplantation (LT) has become a rapidly evolving field of research with a recent shift in focus to omics-based biomarker discovery. Although none are yet ready to replace the standard of care, there are several promising minimally invasive, blood-derived biomarkers that are under intensive research for the diagnosis of ACR in LTRs. These omics-based biomarkers, encompassing DNA, RNA, proteins, and metabolites, hold tremendous potential. Some are likely to become integrated into ACR diagnostic algorithms to assist clinical decision making with a high degree of accuracy that is cost-effective and reduces or even obviates the need for an invasive liver biopsy.
Collapse
Affiliation(s)
- Taisa J Kohut
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA.,The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jose F Barandiaran
- Department of General Surgery, Main Line Health System, Lankenau Medical Center, Wynnewood, PA
| | - Brendan J Keating
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Anandagoda N, Roberts LB, Willis JCD, Sarathchandra P, Xiao F, Jackson I, Hertweck A, Kapoor P, Jenner RG, Howard JK, Lord GM. Dominant regulation of long-term allograft survival is mediated by microRNA-142. Am J Transplant 2020; 20:2715-2727. [PMID: 32277570 DOI: 10.1111/ajt.15907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 01/25/2023]
Abstract
Organ transplantation is often lifesaving, but the long-term deleterious effects of combinatorial immunosuppression regimens and allograft failure cause significant morbidity and mortality. Long-term graft survival in the absence of continuing immunosuppression, defined as operational tolerance, has never been described in the context of multiple major histocompatibility complex (MHC) mismatches. Here, we show that miR-142 deficiency leads to indefinite allograft survival in a fully MHC mismatched murine cardiac transplant model in the absence of exogenous immunosuppression. We demonstrate that the cause of indefinite allograft survival in the absence of miR-142 maps specifically to the T cell compartment. Of therapeutic relevance, temporal deletion of miR-142 in adult mice prior to transplantation of a fully MHC mismatched skin allograft resulted in prolonged allograft survival. Mechanistically, miR-142 directly targets Tgfbr1 for repression in regulatory T cells (TREG ). This leads to increased TREG sensitivity to transforming growth factor - beta and promotes transplant tolerance via an augmented peripheral TREG response in the absence of miR-142. These data identify manipulation of miR-142 as a promising approach for the induction of tolerance in human transplantation.
Collapse
Affiliation(s)
- Nelomi Anandagoda
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Joanna C D Willis
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Padmini Sarathchandra
- Heart Science Centre, Harefield Hospital, National Heart and Lung Institute, Imperial College London, Middlesex, UK
| | - Fang Xiao
- School of Life Course Sciences, King's College London, London, UK
| | - Ian Jackson
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Arnulf Hertweck
- CRUK UCL Centre, UCL Cancer Institute, University College London, London, UK
| | - Puja Kapoor
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Richard G Jenner
- CRUK UCL Centre, UCL Cancer Institute, University College London, London, UK
| | - Jane K Howard
- School of Life Course Sciences, King's College London, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Di Stefano AB, Pappalardo M, Moschella F, Cordova A, Toia F. MicroRNAs in solid organ and vascularized composite allotransplantation: Potential biomarkers for diagnosis and therapeutic use. Transplant Rev (Orlando) 2020; 34:100566. [PMID: 32682704 DOI: 10.1016/j.trre.2020.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, solid organ transplantation (SOT) is an established treatment for patients with end-organ dysfunction, which dramatically improves the quality-of-life. Vascularized composite allotransplants (VCAs) including hand and face have been reported worldwide over the last 20 years. However, VCAs, differently to SOT, are life-enhancing instead of life-saving and are not routinely performed due to the risk of immune rejection and the adverse effects of immunosuppression. Over the past decade, although considerable improvements in short-term outcomes after allotransplantation have been registered, these results have not been translated into major progress in long-term allograft acceptance and patient survival. Recently active researches in the field of biomarker discovery have been conducted to develop individualized therapies for allograft recipients. MicroRNAs (miRNAs) are a small noncoding RNAs functioning as critical regulators of gene and protein expression by RNA interference. They have been connected in numerous biological processes and diseases. Due to their immunomodulatory functions, miRNAs have been amended as potential diagnostic and prognostic biomarker for the detection of rejection in allotransplantation. Due to their specific circulating expression profile, they could act as noninvasive predictive tools for rejection that may help clinicians in an early adjustment of the immunosuppression protocol during acute rejections episodes. Indeed, specific anti-sense oligonucleotides suppressing miRNAs expressed in rejection could reduce the rejection rate in allografts and decrease the use of immunosuppressants. We present a literature review of the immunomodulatory properties and characteristics of miRNAs. We will summarize the current knowledge on miRNAs as potential biomarkers for allograft rejection and possible application in allotransplantation monitoring. Finally, we will discuss the advances in preclinical miRNA-based therapies for immunosuppression.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Marco Pappalardo
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Adriana Cordova
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Unit, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Unit, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy.
| |
Collapse
|
12
|
Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: A Systematic Review. Mol Diagn Ther 2020; 23:439-458. [PMID: 31054051 DOI: 10.1007/s40291-019-00397-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Traditional methods for rejection control in transplanted patients are considered invasive, risky, and prone to sampling errors. Using molecular biomarkers as an alternative protocol to biopsies, for monitoring rejection may help to mitigate some of these problems, increasing the survival rates and well-being of patients. Recent advances in omics technologies provide an opportunity for screening new molecular biomarkers to identify those with clinical utility. OBJECTIVE This systematic literature review (SLR) aimed to summarize existing evidence derived from large-scale expression profiling regarding differentially expressed mRNA and miRNA in graft rejection, highlighting potential molecular biomarkers in transplantation. METHODS The study was conducted following PRISMA methodology and the BiSLR guide for performing SLR in bioinformatics. PubMed, ScienceDirect, and EMBASE were searched for publications from January 2001 to January 2018, and studies (i) aiming at the identification of transplant rejection biomarkers, (ii) including human subjects, and (iii) applying methodologies for differential expression analysis from large-scale expression profiling were considered eligible. Differential expression patterns reported for genes and miRNAs in rejection were summarized from both cross-organ and organ-specific perspectives, and pathways enrichment analysis was performed for candidate biomarkers to interrogate their functional role in transplant rejection. RESULTS A total of 821 references were collected, resulting in 604 studies after removal of duplicates. After application of inclusion and exclusion criteria, 33 studies were included in our analysis. Among the 1517 genes and 174 miRNAs identifed, CXCL9, CXCL10, STAT1, hsa-miR-142-3p, and hsa-miR-155 appeared to be particularly promising as biomarkers in transplantation, with an increased expression associated with transplant rejection in multiple organs. In addition, hsa-miR-28-5p was consistently decreased in samples taken from rejected organs. CONCLUSION Despite the need for further research to fill existing knowledge gaps, transcriptomic technologies have a relevant role in the discovery of accurate biomarkers for transplant rejection diagnostics. Studies have reported consistent evidence of differential expression associated with transplant rejection, although issues such as experimental heterogeneity hinder a more systematic characterization of observed molecular changes. Special attention has been giving to large-scale mRNA expression profiling in rejection, whereas there is still room for improvements in the characterization of miRnome in this condition. PROSPERO REGISTRATION NUMBER CRD42018083321.
Collapse
|
13
|
Cabral A, da Silva Cândido D, Monteiro SM, Lemos F, Saitovitch D, Noronha IL, Alves LF, Geraldo MV, Kalil J, Cunha-Neto E, Pinto Ferreira LR, Coelho V. Differential microRNA Profile in Operational Tolerance: A Potential Role in Favoring Cell Survival. Front Immunol 2019; 10:740. [PMID: 31073299 PMCID: PMC6496457 DOI: 10.3389/fimmu.2019.00740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Operational tolerance (OT) is a state of graft functional stability that occurs after at least 1 year of immunosuppressant withdrawal. MicroRNAs (microRNA) are small non-coding RNAs that downregulate messenger RNA/protein expression of innumerous molecules and are critical for homeostasis. We investigated whether OT in kidney transplantation displays a differential microRNA profile, which would suggest that microRNAs participate in Operational Tolerance mechanisms, and may reveal potential molecular pathways. Methods: We first compared serum microRNA in OT (n = 8) with chronic rejection (CR) (n = 5) and healthy individuals (HI) (n = 5), using a 768-microRNA qPCR-panel. We used the Thermo Fisher Cloud computing platform to compare the levels of microRNAs in the OT group in relation to the other study groups. We performed validation experiments for miR-885-5p, by q-PCR, in a larger number of study subjects (OT = 8, CR = 12, HI = 12), as individual samples. Results: We detected a differential microRNA profile in OT vs. its opposing clinical outcome—CR—suggesting that microRNAs may integrate transplantation tolerance mechanisms. Some miRNAs were detected at higher levels in OT: miR-885-5p, miR-331-3p, miR-27a-5p vs. CR; others, we found at lower levels: miR-1233-3p, miR-572, miR-638, miR-1260a. Considering highly predicted/experimentally demonstrated targets of these miRNAs, bioinformatics analysis revealed that the granzyme B, and death receptor pathways are dominant, suggesting that cell death regulation integrates transplantation tolerance mechanisms. We confirmed higher miR-885-5p levels in OT vs. CR, and vs. HI, in a larger number of subjects. Conclusions: We propose that epigenetics mechanisms involving microRNAs may integrate human transplantation tolerance mechanisms, and regulate key members of the cell death/survival signaling. miR-885-5p could favor cell survival in OT by diminishing the levels of CRADD/RAIDD and CASP3. Nonetheless, given the nature of any complex phenomenon in humans, only cumulative data will help to determine whether this microRNA differential profile may be related to the cause or consequence of operational tolerance.
Collapse
Affiliation(s)
- Amanda Cabral
- Laboratório de Imunologia, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Darlan da Silva Cândido
- Laboratório de Imunologia, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Sandra Maria Monteiro
- Laboratório de Imunologia, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Francine Lemos
- Serviço de Transplante Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - David Saitovitch
- Divisão de Nefrologia, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irene L Noronha
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil.,Laboratório de Nefrologia Celular, Genética e Molecular, Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Letícia Ferreira Alves
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Murilo Vieira Geraldo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil.,Laboratório de Histocompatibilidade e Imunologia Celular, LIM-19, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratório de Imunologia, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil.,Laboratório de Histocompatibilidade e Imunologia Celular, LIM-19, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil.,Laboratório de Histocompatibilidade e Imunologia Celular, LIM-19, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Micro-RNAs (miRNAs) are highly conserved small RNA molecules that have selective gene-regulatory functions. This posttranscriptional regulation by miRNAs is critical for many immunological processes. Many developments in establishing the biological role of miRNAs in solid organ transplantation have been generated in the last decade. Discoveries of immune regulation by miRNAs, resulting in graft prolongation and transplant tolerance, are rapidly advancing and are the subject of this review. RECENT FINDINGS Many elegant experimental studies have revealed intriguing associations between transplant tolerance and specific miRNA profiles. These findings have provided insight into the miRNAs critical for sustaining immune suppression, and have revealed common miRNA pathways that should be further investigated and/or targeted therapeutically. Further reports have strategized and corroborated different methods of manipulating miRNA expression for prolonging allograft survival, yielding promising preclinical evidence of the efficacy of miRNA-based therapies. SUMMARY The review covers these recent developments in miRNA research that can revolutionize how we implement diagnostics and prognostics and how we can strategize transplantation therapies.
Collapse
|
15
|
Manzia TM, Gazia C, Baiocchi L, Lenci I, Milana M, Santopaolo F, Angelico R, Tisone G. Clinical Operational Tolerance and Immunosuppression Minimization in Kidney Transplantation: Where Do We Stand? Rev Recent Clin Trials 2019; 14:189-202. [PMID: 30868959 DOI: 10.2174/1574887114666190313170205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The 20th century represents a breakthrough in the transplantation era, since the first kidney transplantation between identical twins was performed. This was the first case of tolerance, since the recipient did not need immunosuppression. However, as transplantation became possible, an immunosuppression-free status became the ultimate goal, since the first tolerance case was a clear exception from the hard reality nowadays represented by rejection. METHODS A plethora of studies was described over the past decades to understand the molecular mechanisms responsible for rejection. This review focuses on the most relevant studies found in the literature where renal tolerance cases are claimed. Contrasting, and at the same time, encouraging outcomes are herein discussed and a glimpse on the main renal biomarkers analyzed in this field is provided. RESULTS The activation of the immune system has been shown to play a central role in organ failure, but also it seems to induce a tolerance status when an allograft is performed, despite tolerance is still rare to register. Although there are still overwhelming challenges to overcome and various immune pathways remain arcane; the immunosuppression minimization might be more attainable than previously believed. CONCLUSION . Multiple biomarkers and tolerance mechanisms suspected to be involved in renal transplantation have been investigated to understand their real role, with still no clear answers on the topic. Thus, the actual knowledge provided necessarily leads to more in-depth investigations, although many questions in the past have been answered, there are still many issues on renal tolerance that need to be addressed.
Collapse
Affiliation(s)
- Tommaso Maria Manzia
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Gazia
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
- Department of Surgery, Abdominal Organ Transplant Program, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, United States
| | - Leonardo Baiocchi
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | - Ilaria Lenci
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | - Martina Milana
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | | | - Roberta Angelico
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Tisone
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers 2018; 23:713-724. [PMID: 29909697 DOI: 10.1080/1354750x.2018.1488275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alieh Gholaminejad
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
17
|
Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner. Purinergic Signal 2018; 14:423-432. [PMID: 30244433 DOI: 10.1007/s11302-018-9624-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022] Open
Abstract
Plasma microparticles (MP) bear functional active ectonucleotidases of the CD39 family with implications in vascular inflammation. MP appear to be able to fuse with cells and transfer genetic information. Here, we tested whether levels of different immunomodulatory microRNAs (miRs) in plasma MP are modulated by CD39 after experimental hepatectomy. We further investigated whether horizontal transfer of miR-142-3p between mononuclear (MNC) and endothelial cells via MP is regulated by purinergic signaling. Partial hepatectomy was performed in C57BL/6 wild type and Cd39 null mice. MP were collected via ultracentrifugation. MNC were stimulated with nucleotides and nucleosides, in vitro, and tested for miR-142-3p levels. Fusion of MNC-derived MP and endothelial cells with subsequent transfer of miR-142-3p was imaged by flow cytometry and confocal microscopy. Endothelial inflammation and apoptosis were quantified after transfection with miR-142-3p. Significantly lower miR-142-3p levels were observed in plasma MP of Cd39 null mice after partial hepatectomy, when compared to C57BL/6 wild types (p < 0.05). In contrast to extracellular nucleotides, anti-inflammatory adenosine significantly increased miR-142-3p levels in MNC-derived MP, in vitro (p < 0.05). MNC-derived MP are able to transfer miR-142-3p to endothelial cells by fusion. Transfection of endothelial cells with miR-142-3p decreased TNF-α levels (p < 0.05) and endothelial apoptosis (p < 0.05). MiR-142-3p levels in MNC-derived MP are modulated by nucleoside signaling and might reflect compensatory responses in vascular inflammation. Our data suggest the transfer of genetic information via shed MP as a putative mechanism of intercellular communication-with implications in organ regeneration.
Collapse
|
18
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
19
|
Chesneau M, Danger R, Soulillou JP, Brouard S. B cells in operational tolerance. Hum Immunol 2018; 79:373-379. [PMID: 29458071 DOI: 10.1016/j.humimm.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Transplantation is currently the therapy of choice for endstage organ failure even though it requires long-term immunosuppresive therapy, with its numerous side effects, for acceptance of the transplanted organ. In rare cases however, patients develop operational tolerance, that is, graft survival without immunosuppression. Studies conducted on these patients reveal genetic, phenotypic, and functional signatures. They provide a better understanding of the immunological mechanisms involved in operational tolerance and define biomarkers that could be used to adapt immunosuppressive treatment to the individual, safely reduce immunosuppression doses, and ideally and safely guide immunosuppression withdrawal. This review summarizes studies that suggest a role for B cells as biomarkers of operational tolerance and discusses the use of B cells as a predictive tool for immunologic risk.
Collapse
Affiliation(s)
- M Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - R Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - J-P Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - S Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France.
| |
Collapse
|
20
|
Chan-On C, Liberto JM, Sarwal MM. Mechanisms and biomarkers of immune quiescence in kidney transplantation. Hum Immunol 2018; 79:356-361. [PMID: 29408630 DOI: 10.1016/j.humimm.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
This review discusses the current understanding of biomarkers of immune quiescence based on reviews of published literature in kidney transplant operational tolerance and mechanistic studies based on a better characterization of the stable, well-functioning renal allograft.
Collapse
Affiliation(s)
- Chitranon Chan-On
- Division of Nephrology, Faculty of Medicine, Department of Internal Medicine, Khon Kaen University, Khon Kaen, Thailand; Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane M Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
21
|
Bontha SV, Fernandez-Piñeros A, Maluf DG, Mas VR. Messengers of tolerance. Hum Immunol 2018; 79:362-372. [PMID: 29402484 DOI: 10.1016/j.humimm.2018.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
The use of immunosuppressant drugs after organ transplantation has brought great success in the field of organ transplantation with respect to short-term outcome. However, major challenges (i.e., limited improvement of long-term survival, immunosuppressant toxicity, infections and carcinoma) demand alternate treatment approaches that minimizes the use of immunosuppressants. Interestingly, few studies have identified groups of transplant patients who developed operational tolerance and thereby keep their allograft without complications in absence of immunosuppressants. These rare groups of patients are of particular interest as study subjects for understanding mechanisms of graft tolerance that could be leveraged in future for inducing tolerance and for understanding mechanisms involved in improving long-term allograft outcomes. Also, biomarkers from these studies could benefit the larger transplant population by their application in immunosuppressant tailoring and identification of tolerant patients among patients with stably functioning allografts. This review compiles several gene expression studies performed in samples from tolerant patients in different solid organ transplantations to identify key genes and associated molecular pathways relevant to tolerance. This review is aimed at putting forth all this important work done thus far and to identify research gaps that need to be filled, in order to achieve the greater purpose of these studies.
Collapse
Affiliation(s)
- Sai Vineela Bontha
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States
| | - Angela Fernandez-Piñeros
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States
| | - Daniel G Maluf
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States; Transplant Surgery, Department of Surgery, University of Virginia, Charlottesville 22903, United States
| | - Valeria R Mas
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States.
| |
Collapse
|
22
|
Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis 2018; 9:109. [PMID: 29371592 PMCID: PMC5833552 DOI: 10.1038/s41419-017-0152-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
Abstract
Kidney transplantation is the optimal treatment for end-stage renal diseases. Although great improvement has been achieved, immune tolerance is still the Holy Grail that every organ transplant practitioner pursues. The role of B cells in transplantation has long been considered simply to serve as precursors of plasma cells, which produce alloantibodies and induce antibody-mediated rejection. Recent research indicates that a specialized subset of B cells plays an important role in immune regulation, which has been well demonstrated in autoimmune diseases, infections, and cancers. This category of regulatory B cells (Bregs) differs from conventional B cells, and they may help develop a novel immunomodulatory therapeutic strategy to achieve immune tolerance in transplantation. Here, we review the latest evidence regarding phenotypes, functions, and effectors of Bregs and discuss their diverse effects on kidney transplantation.
Collapse
|
23
|
Mahr B, Granofszky N, Muckenhuber M, Wekerle T. Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol 2017; 8:1762. [PMID: 29312303 PMCID: PMC5743750 DOI: 10.3389/fimmu.2017.01762] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The perception that transplantation of hematopoietic stem cells can confer tolerance to any tissue or organ from the same donor is widely accepted but it has not yet become a treatment option in clinical routine. The reasons for this are multifaceted but can generally be classified into safety and efficacy concerns that also became evident from the results of the first clinical pilot trials. In comparison to standard immunosuppressive therapies, the infection risk associated with the cytotoxic pre-conditioning necessary to allow allogeneic bone marrow engraftment and the risk of developing graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, several approaches have recently been developed at the experimental level to reduce or even overcome the necessity for cytoreductive conditioning, such as costimulation blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any hazardous pretreatment, the recipients are exposed to the risk of developing GVHD as long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching the stem cell graft with facilitating cells emerged as potential strategies to reduce this peril. On the other hand, the long-lasting survival of kidney allografts, seen with transient chimerism in some clinical series, questions the need for durable chimerism for robust tolerance. From a safety point of view, loss of chimerism would indeed be favorable as it eliminates the risk of GVHD, but also complicates the assessment of tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to identify those patients who can safely be weaned off immunosuppression. In addition to these safety concerns, the limited efficacy of the current pilot trials with approximately 40-60% patients becoming tolerant remains an important issue that needs to be resolved. Overall, the road ahead to clinical routine may still be rocky but the first successful long-term patients and progress in pre-clinical research provide encouraging evidence that deliberately inducing tolerance through hematopoietic chimerism might eventually make it from dream to reality.
Collapse
Affiliation(s)
- Benedikt Mahr
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Granofszky
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Sharma S. Immunomodulation: A definitive role of microRNA-142. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:150-156. [PMID: 28801229 DOI: 10.1016/j.dci.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Majority of microRNAs are evolutionarily conserved in vertebrates. This is suggestive of their similar roles in regulation of gene networks. In addition to their conserved mature sequences and regulatory roles, a few microRNAs show very cell or tissue specific expression. These microRNAs are highly enriched in some cell types or organs. One such microRNA is microRNA-142 (miR-142). The classical stem-loop structure of miR142 encodes for two species of mature microRNAs; miR142-5p and miR142-3p. MiR-142 is abundant in cells of hematopoietic origin, and therefore, aptly plays a role in lineage differentiation of hematopoietic cells. Interestingly, over the years, miR-142 has gained considerable attention for its quintessential role in regulating immune response. This mini-review discusses the important functional roles of miR-142 in inflammatory and immune response in different physiological and disease setting.
Collapse
Affiliation(s)
- Salil Sharma
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
25
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|
26
|
Sukma Dewi I, Celik S, Karlsson A, Hollander Z, Lam K, McManus JW, Tebbutt S, Ng R, Keown P, McMaster R, McManus B, Öhman J, Gidlöf O. Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovasc Res 2017; 113:440-452. [PMID: 28073833 DOI: 10.1093/cvr/cvw244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023] Open
Abstract
Aims Exosome-mediated microRNA transfer is a recently discovered mode of cell-to-cell communication, in which microRNAs act as paracrine molecules, exerting their regulatory effects in recipient cells. T cells and endothelial cells are two main players in the mechanism of acute cellular cardiac rejection. The aim of this study was to investigate the role of exosomal microRNAs in the crosstalk between T cells and endothelial cells and its implications for the molecular mechanisms that drive acute cellular rejection in heart transplantation. Methods and results Exosomes isolated from serum samples of heart transplant patients with and without acute cardiac allograft rejection were profiled and showed enrichment of miR-142-3p, miR-92a-3p, miR-339-3p and miR-21-5p. Treatment of endothelial cells with the respected serum exosomes resulted the increased of miR-142-3p level in endothelial cells. Using T cells isolated from healthy donors and activated with either anti-CD3/CD28 antibody or IL-2/PHA, we could show that miR-142-3p is released from activated cells, is contained in exosomes and can be transferred to human vascular endothelial cells in vitro. Transcriptome analysis of endothelial cells treated with activated T cell supernatant with or without exosomes was used to identify mRNA targets of transferred miR-142-3-p. Overexpression of miR-142-3p in endothelial cells resulted in a significant down-regulation of RAB11FIP2, and interaction of miR-142-3p with its predicted target site was confirmed with a reporter assay. Moreover, treatment of endothelial cells with serum exosomes from heart transplant patients with acute cellular rejection resulted in down-regulation of RAB11FIP2 expression and increase in vascular endothelial permeability. Conclusion We have identified a novel mechanism whereby miR-142-3p, a microRNA enriched in exosomes during acute cellular rejection, is transferred to endothelial cells and compromises endothelial barrier function via down-regulation of RAB11FIP2. This study sheds new light on the interaction between host immune system and cardiac allograft endothelium during acute cellular rejection.
Collapse
Affiliation(s)
- Ihdina Sukma Dewi
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Selvi Celik
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Anna Karlsson
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,UBC James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Karen Lam
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada
| | - Janet-Wilson McManus
- netCAD, Canadian Blood Services, 2150 Western Parkway, Vancouver, British Columbia V6T 1V6, Canada
| | - Scott Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,UBC James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Department of Medicine, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Raymond Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Keown
- Vancouver General Hospital, 899 West 12th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Robert McMaster
- Department of Transplantation and Immunology, Vancouver Coastal Health Research Institute, 910 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Bruce McManus
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,UBC James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Jenny Öhman
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| |
Collapse
|
27
|
Yang X, Dan X, Men R, Ma L, Wen M, Peng Y, Yang L. MiR-142-3p blocks TGF-β-induced activation of hepatic stellate cells through targeting TGFβRI. Life Sci 2017; 187:22-30. [PMID: 28823564 DOI: 10.1016/j.lfs.2017.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
Abstract
AIM To understand the contribution of miR-142-3p in the activation of hepatic stellate cells (HSCs) and liver fibrosis, and the underlying mechanism. MATERIALS AND METHODS We detected microRNAs expression profiles in quiescent and activated HSCs by microRNA-array, and performed qRT-PCR to validate these data in HSCs and plasma of cirrhosis patients. In vitro, the 3rd-5th passage HSCs was transfected with mir-142-3p mimics or stimulated with TGF β. The markers of HSCs activation (i.e. FN and α-SMA) were examined by qRT-PCR and western blotting, and cell viability was detected by MTT, colony formation assays respectively. KEY FINDING In our study, we identified miR-142-3p as a novel regulator of HSCs activation and indicator of hepatic cirrhosis. We found that miR-142-3p was significantly reduced in activated HSCs, while TGFβRI was distinctly up-regulated in activated HSCs. Ectopic expression of miR-142-3p in activated HSCs inhibited cell viability as well as cell growth, and blocked HSCs activation, concomitant with decreased transdifferentiation markers (i.e. FN and α-SMA). Further, we confirmed that miR-142-3p was reduced upon TGF-β exposure, while diminishing TGF-β-Smad signaling pathway in turn by reducing TGFβRI expression in HSCs. Besides, the plasma level of miR-142-3p declined significantly in patients with hepatic cirrhosis. SIGNIFICANCE In conclusion, we demonstrated that miR-142-3p repressed TGF-β-Smad signaling pathway to prevent HSCs activation through directly targeting TGFβRI in HSCs.
Collapse
|
28
|
Role of Circulating MicroRNAs in the Immunopathogenesis of Rejection After Pediatric Lung Transplantation. Transplantation 2017; 101:2461-2468. [PMID: 27941431 DOI: 10.1097/tp.0000000000001595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute rejection (AR) and development of chronic rejection, bronchiolitis obliterans syndrome (BOS) remain major limiting factors for lung transplantation (LTx). This retrospective study is to identify differentially expressed circulating microRNAs (miRNAs) that associate with development of AR and BOS in pediatric lung transplant recipients (LTxR). METHODS We determined the circulating levels of 7 selected candidate miRNAs in 14 LTxR with AR, 7 with BOS, and compared them against 13 stable pediatric LTxR at 1, 6, and 12 months after LTx. In addition, 6 AR, 7 BOS, and 8 stable pediatric LTxR, 16 AR, 17 BOS, and 16 stable adult LTxR were included for validation. RESULTS MiR-10a, -195, -133b were significantly lower in AR and miR-144, -142-5p, -155 were higher in AR compared to stable (P < 0.05). In addition, circulating levels of miR-134, -10a, -195, -133b were significantly lower and miR-144, -142-5p, -155 were higher (P < 0.05) with development of BOS. The receiver-operating characteristic demonstrated that miR-142-5p, miR-155, and miR-195 strongly discriminated patients with AR from stable LTxR (P < 0.001 for all comparisons): miR-142-5p (area under the curve [AUC], 0.854), miR-155 (AUC, 0.876), and miR-195 (AUC, 0.872). Further, miR-10a, miR-142-5p, miR-144, and miR-155 strongly discriminated BOS from stable LTxR (P < 0.001 for all comparisons). CONCLUSIONS We demonstrated that differential expression of circulating miRNAs occurs in LTxR with AR and BOS, suggesting that they can provide not only important clues to pathogenesis but also may serve as potential noninvasive biomarkers for AR and BOS after pediatric LTx.
Collapse
|
29
|
Danger R, Sawitzki B, Brouard S. Immune monitoring in renal transplantation: The search for biomarkers. Eur J Immunol 2017; 46:2695-2704. [PMID: 27861809 DOI: 10.1002/eji.201545963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
It is now widely accepted that in order to improve long-term graft function and survival, a more personalized immunosuppressive treatment of transplant patients according to the individual anti-donor immune response status is needed. This applies to the identification of potentially "high-risk" patients likely to develop acute rejection episodes or display an accelerated decline of graft function, patients who might need immunosuppression intensification, and operationally tolerant patients suitable for immunosuppression minimization or weaning off. Such a patient stratification would benefit from biomarkers, which enable categorization into low and high risk or, ideally, identification of operational tolerant patients. Here, we report on recent developments regarding identification and performance analysis of noninvasive biomarkers such as mRNA and miRNA expression profiles, chemokines, or changes in immune cell subsets in either blood or urine of renal transplant patients. We will also discuss which future steps are needed to accelerate their clinical implementation.
Collapse
Affiliation(s)
- Richard Danger
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Berlin, Germany
| | - Sophie Brouard
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France.,CIC Biotherapy, CHU Nantes, , 30 bd Jean-Monnet, Nantes, France
| |
Collapse
|
30
|
Revilla-Nuin B, de Bejar Á, Martínez-Alarcón L, Herrero JI, Martínez-Cáceres CM, Ramírez P, Baroja-Mazo A, Pons JA. Differential profile of activated regulatory T cell subsets and microRNAs in tolerant liver transplant recipients. Liver Transpl 2017; 23:933-945. [PMID: 28006867 DOI: 10.1002/lt.24691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) play a potential role in operational tolerance in liver transplantation (LT) patients, and microRNAs (miRNAs) are known to be involved in immunological responses and tolerance. Thus, we analyzed the implication of different peripheral blood Treg subsets and miRNAs on LT tolerance in 24 tolerant (Tol) and 23 non-tolerant (non-Tol) LT recipients by cellular, genetic, and epigenetic approximation. Non-Tol patients had a lower demethylation rate of the forkhead box P3 (FOXP3) regulatory T cell-specific demethylated region (TSDR) than Tol patients that correlated with the frequency of circulating Tregs. Tol patients presented a different signature of Treg subset markers compared with non-Tol patients with increased expression of HELIOS and FOXP3 and a higher proportion of latency-associated peptide (LAP)+ Tregs and CD45RA- human leukocyte antigen D related (HLA-DR)+ activated effector-memory Tregs. The expression of miR95, miR24, miR31, miR146a, and miR155 was higher in Tol than in non-Tol patients and was positively correlated with activated Treg markers. In conclusion, these data suggest that activated effector-memory Tregs and a TSDR-demethylation state of Tregs may play a role in the complex system of regulation of LT tolerance. In addition, we describe a set of miRNAs differentially expressed in human LT Tol patients providing suggestive evidence that miRNAs are implied in the preservation of self-tolerance as mediated by Tregs. Liver Transplantation 23 933-945 2017 AASLD.
Collapse
Affiliation(s)
- Beatriz Revilla-Nuin
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - África de Bejar
- Clinical Laboratory Unit, Hospital General Universitario Santa Lucía, Cartagena, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - José Ignacio Herrero
- Liver Unit, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Carlos Manuel Martínez-Cáceres
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - Pablo Ramírez
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain.,Division of Gastroenterology and Hepatology and Liver Transplant Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - José Antonio Pons
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain.,Division of Gastroenterology and Hepatology and Liver Transplant Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
31
|
Salvadori M, Tsalouchos A. Biomarkers in renal transplantation: An updated review. World J Transplant 2017; 7:161-178. [PMID: 28698834 PMCID: PMC5487307 DOI: 10.5500/wjt.v7.i3.161] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Genomics, proteomics and molecular biology lead to tremendous advances in all fields of medical sciences. Among these the finding of biomarkers as non invasive indicators of biologic processes represents a useful tool in the field of transplantation. In addition to define the principal characteristics of the biomarkers, this review will examine the biomarker usefulness in the different clinical phases following renal transplantation. Biomarkers of ischemia-reperfusion injury and of delayed graft function are extremely important for an early diagnosis of these complications and for optimizing the treatment. Biomarkers predicting or diagnosing acute rejection either cell-mediated or antibody-mediated allow a risk stratification of the recipient, a prompt diagnosis in an early phase when the histology is still unremarkable. The kidney solid organ response test detects renal transplant recipients at high risk for acute rejection with a very high sensitivity and is also able to make diagnosis of subclinical acute rejection. Other biomarkers are able to detect chronic allograft dysfunction in an early phase and to differentiate the true chronic rejection from other forms of chronic allograft nephropathies no immune related. Finally biomarkers recently discovered identify patients tolerant or almost tolerant. This fact allows to safely reduce or withdrawn the immunosuppressive therapy.
Collapse
|
32
|
Behnam Sani K, Sawitzki B. Immune monitoring as prerequisite for transplantation tolerance trials. Clin Exp Immunol 2017; 189:158-170. [PMID: 28518214 DOI: 10.1111/cei.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Ever since its first application in clinical medicine, scientists have been urged to induce tolerance towards foreign allogeneic transplants and thus avoid rejection by the recipient's immune system. This would circumvent chronic use of immunosuppressive drugs (IS) and thus avoid development of IS-induced side effects, which are contributing to the still unsatisfactory long-term graft and patient survival after solid organ transplantation. Although manifold strategies of tolerance induction have been described in preclinical models, only three therapeutic approaches have been utilized successfully in a still small number of patients. These approaches are based on (i) IS withdrawal in spontaneous operational tolerant (SOT) patients, (ii) induction of a mixed chimerism and (iii) adoptive transfer of regulatory cells. Results of clinical trials utilizing these approaches show that tolerance induction does not work in all patients. Thus, there is a need for reliable biomarkers, which can be used for patient selection and post-therapeutic immune monitoring of safety, success and failure. In this review, we summarize recent achievements in the identification and validation of such immunological assays and biomarkers, focusing mainly on kidney and liver transplantation. From the published findings so far, it has become clear that indicative biomarkers may vary between different therapeutic approaches applied and organs transplanted. Also, patient numbers studied so far are very small. This is the main reason why nearly all described parameters lack validation and reproducibility testing in large clinical trials, and are therefore not yet suitable for clinical practice.
Collapse
Affiliation(s)
- K Behnam Sani
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Danger R, Chesneau M, Paul C, Guérif P, Durand M, Newell KA, Kanaparthi S, Turka LA, Soulillou JP, Houlgatte R, Giral M, Ramstein G, Brouard S. A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney Int 2017; 91:1473-1481. [PMID: 28242033 PMCID: PMC5432017 DOI: 10.1016/j.kint.2016.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
New challenges in renal transplantation include using biological information to devise a useful clinical test for discerning high- and low-risk patients for individual therapy and ascertaining the best combination and appropriate dosages of drugs. Based on a 20-gene signature from a microarray meta-analysis performed on 46 operationally tolerant patients and 266 renal transplant recipients with stable function, we applied the sparse Bolasso methodology to identify a minimal and robust combination of six genes and two demographic parameters associated with operational tolerance. This composite score of operational tolerance discriminated operationally tolerant patients with an area under the curve of 0.97 (95% confidence interval 0.94-1.00). The score was not influenced by immunosuppressive treatment, center of origin, donor type, or post-transplant lymphoproliferative disorder history of the patients. This composite score of operational tolerance was significantly associated with both de novo anti-HLA antibodies and tolerance loss. It was validated by quantitative polymerase chain reaction using independent samples and demonstrated specificity toward a model of tolerance induction. Thus, our score would allow clinicians to improve follow-up of patients, paving the way for individual therapy.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Chloé Paul
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pierrick Guérif
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | | | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Rémi Houlgatte
- INSERM UMR 954, Nancy, France; CHU de Nancy, DRCI, Nancy, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Université de Nantes, Faculté de Médecine, Nantes, France; CIC Biotherapy, CHU Nantes, Nantes, France
| | - Gérard Ramstein
- LINA DUKe, UMR 6241, Université de Nantes, Ecole des Mines de Nantes and CNRS, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; CIC Biotherapy, CHU Nantes, Nantes, France.
| |
Collapse
|
34
|
Massart A, Ghisdal L, Abramowicz M, Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol 2017; 189:138-157. [PMID: 28449211 DOI: 10.1111/cei.12981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
In the 1960s, our predecessors won a historical battle against acute rejection and ensured that transplantation became a common life-saving treatment. In parallel with this success, or perhaps because of it, we lost the battle for long-lived transplants, being overwhelmed with chronic immune insults and the toxicities of immunosuppression. It is likely that current powerful treatments block acute rejection, but at the same time condemn the few circulating donor cells that would have been able to elicit immunoregulatory host responses towards the allograft. Under these conditions, spontaneously tolerant kidney recipients - i.e. patients who maintain allograft function in the absence of immunosuppression - are merely accidents; they are scarce, mysterious and precious. Several teams pursue the goal of finding a biomarker that would guide us towards the 'just right' level of immunosuppression that avoids rejection while leaving some space for donor immune cells. Some cellular assays are attractive because they are antigen-specific, and provide a comprehensive view of immune responses toward the graft. These seem to closely follow patient regulatory capacities. However, these tests are cumbersome, and require abundant cellular material from both donor and recipient. The latest newcomers, non-antigen-specific recipient blood transcriptomic biomarkers, offer the promise that a practicable and simple signature may be found that overcomes the complexity of a system in which an infinite number of individual cell combinations can lead possibly to graft acceptance. Biomarker studies are as much an objective - identifying tolerant patients, enabling tolerance trials - as a means to deciphering the underlying mechanisms of one of the most important current issues in transplantation.
Collapse
Affiliation(s)
- A Massart
- Department of Nephrology, Dialysis, and Transplantation, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - L Ghisdal
- Department of Nephrology, Centre Hospitalier EpiCURA, Baudour, Belgium
| | - M Abramowicz
- Department of Human Genetics, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - D Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen and Antwerp University, Antwerp, Belgium
| |
Collapse
|
35
|
Celen E, Ertosun MG, Kocak H, Dinckan A, Yoldas B. Expression Profile of MicroRNA Biogenesis Components in Renal Transplant Patients. Transplant Proc 2017; 49:472-476. [PMID: 28340815 DOI: 10.1016/j.transproceed.2017.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) and the miRNA biogenesis components are potential biomarkers of some prevalent diseases, such as cancer and diabetes. In light of this information, we aimed to investigate the expression profiles of miRNA biogenesis components in renal transplant patients before and after transplantation and how these profiles are related to immunosuppressive treatment and clinical outcomes of these patients. METHODS In this study, gene and protein expression profiles of Dicer, Drosha, Pasha (DGCR8), Exportin5 (XPO5), and Argonaute2 (AGO2) in peripheral blood mononuclear cells (PBMCs) of renal transplant patients were evaluated by means of real-time quantitative polymerase chain reaction and Western blot methods before and 3 months after transplantation. Patients who had transplant procedures for the first time were included in the study. RESULTS Gene expressions were significantly reduced after transplantation. The reduction rate of expressions in 1 patient undergoing chronic rejection was higher. In addition, in patients under everolimus treatment, gene expression of Dicer did not change and gene expression of AGO2 increased. Dicer, Drosha, DGCR8, and AGO2 protein expressions were reduced in all patients, but no change was observed in XPO5 protein expression in nonrejecting patients. Interestingly, in the patient undergoing chronic rejection, protein expression profiles other than Dicer were distinctive from nonrejecting patients. However, XPO5 protein expression was higher in that patient. CONCLUSIONS Our study shows the importance of the global effect of immunosuppressive treatment on the miRNA biogenesis pathway. miRNA biogenesis components are potential biomarkers indicative of graft outcome and pharmacologic target molecules.
Collapse
Affiliation(s)
- E Celen
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - M G Ertosun
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - H Kocak
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - A Dinckan
- Department of General Surgery, Faculty of Medicine, İstanbul Yeni Yüzyıl University, İstanbul, Turkey
| | - B Yoldas
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
36
|
Zununi Vahed S, Poursadegh Zonouzi A, Ghanbarian H, Ghojazadeh M, Samadi N, Omidi Y, Ardalan M. Differential expression of circulating miR-21, miR-142-3p and miR-155 in renal transplant recipients with impaired graft function. Int Urol Nephrol 2017; 49:1681-1689. [PMID: 28455659 DOI: 10.1007/s11255-017-1602-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/17/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The discovery of circulating microRNAs (miRNAs), as potential noninvasive diagnostic biomarkers, has opened new avenues of research for identifying patients with chronic failure in renal transplantation. The present study aimed to investigate the expression levels of four immune-related miRNAs (miR-21, miR-31, miR-142-3p and miR-155) in plasma samples of renal recipients. METHODS The plasma expression levels of the miRNAs were evaluated by quantitative real-time PCR (qPCR) in 53 renal recipients with long-term stable allograft function, SGF (N = 27), and with biopsy-proven interstitial fibrosis and tubular atrophy (IFTA) (N = 26) and also healthy controls (N = 15). The possible correlation between clinical parameters and the circulating miRNAs and the receiver-operating characteristic (ROC) analysis were performed. RESULTS Our results showed that expression of miR-21 (p = 0.023), miR-142-3p (p = 0.048) and miR-155 (p = 0.005) was significantly upregulated in plasma samples of recipients with IFTA in comparison with SGF and healthy control groups. Concentration of miR-21 (∆Ct value) in plasma was negatively correlated with creatinine (r = -0.432, p = 0.028) and positively correlated with eGFR (r = 0.423, p = 0.031). The multivariate ROC curve analysis indicated that miR-21, miR-142-3p and miR-155 in plasma samples could discriminate almost most of the IFTA patients (area under curve = 0.802, sensitivity = 81%, specificity = 92%). CONCLUSION Our data suggested that altered expression of miR-21, miR-142-3p and miR-155 in plasma samples may be associated with renal dysfunction and can be used for graft monitoring.
Collapse
Affiliation(s)
- Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Poursadegh Zonouzi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hossein Ghanbarian
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Morteza Ghojazadeh
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Nasser Samadi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Islamic Republic of Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
37
|
Domenico TD, Joelsons G, Montenegro RM, Manfro RC. Upregulation of microRNA 142-3p in the peripheral blood and urinary cells of kidney transplant recipients with post-transplant graft dysfunction. ACTA ACUST UNITED AC 2017; 50:e5533. [PMID: 28380212 PMCID: PMC5423747 DOI: 10.1590/1414-431x20175533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Abstract
We analyzed microRNA (miR)-142-3p expression in leucocytes of the peripheral blood and urinary sediment cell samples obtained from kidney transplant recipients who developed graft dysfunction. Forty-one kidney transplant recipients with kidney graft dysfunction and 8 stable patients were included in the study. The groups were divided according to histological analysis into acute rejection group (n=23), acute tubular necrosis group (n=18) and stable patients group used as a control for gene expression (n=8). Percutaneous biopsies were performed and peripheral blood samples and urine samples were obtained. miR-142-3p was analyzed by real-time polymerase chain reaction. The group of patients with acute tubular necrosis presented significantly higher expressions in peripheral blood (P<0.05) and urine (P<0.001) compared to the stable patients group. Also, in the peripheral blood, miR-142-3p expression was significantly higher in the acute tubular necrosis group compared to the acute rejection group (P<0.05). Urine samples of the acute rejection group presented higher expression compared to the stable patients group (P<0.001) but the difference between acute tubular necrosis and acute rejection groups was not significant in the urinary analyzes (P=0.079). miR-142-3p expression has a distinct pattern of expression in the setting of post-operative acute tubular necrosis after kidney transplantation and may potentially be used as a non-invasive biomarker for renal graft dysfunction.
Collapse
Affiliation(s)
- T D Domenico
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - G Joelsons
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - R M Montenegro
- Unidade de Transplante Renal, Serviço de Nefrologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - R C Manfro
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Unidade de Transplante Renal, Serviço de Nefrologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
38
|
Gupta SK, Thum T. MiR-142-3p is a paracrine mediator between T cells and endothelium during allograft rejection. Cardiovasc Res 2017; 113:431-433. [PMID: 28339725 DOI: 10.1093/cvr/cvx031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Shashi K Gupta
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuber Str.1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuber Str.1, 30625 Hannover, Germany.,Excellence Cluster REBIRTH, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,National Heart and Lung Institute, Imperial College, Sydney St, Chelsea, London SW3 6NP, UK
| |
Collapse
|
39
|
Shrestha A, Mukhametshina RT, Taghizadeh S, Vásquez-Pacheco E, Cabrera-Fuentes H, Rizvanov A, Mari B, Carraro G, Bellusci S. MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn 2017; 246:285-290. [PMID: 27884048 DOI: 10.1002/dvdy.24477] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, microRNA-142 (miR-142) is emerging as a major regulator of cell fate decision in the hematopoietic system. However, miR-142 is expressed in many other tissues, and recent evidence suggests that it may play a more pleiotropic role during embryonic development. In addition, miR-142 has been shown to play important functions in disease. miR-142 displays a functional role in cancer, virus infection, inflammation, and immune tolerance. Both a guide strand (miR-142-3p) and passenger strand (miR-142-5p) are generated from the miR-142 hairpin. miR-142-3p and -5p display overlapping but also independent target genes. Loss of function mouse models (genetrap, global knock out [KO], and conditional KO) have been reported and support the important role of miR-142 in different biological processes. This review will summarize the abundant literature already available for miR-142 and will lay the foundation for future works on this important microRNA. Developmental Dynamics 246:285-290, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amit Shrestha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Regina T Mukhametshina
- Institute of Fundamental Medicine and Biology. Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Sara Taghizadeh
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | | | - Hector Cabrera-Fuentes
- Cardiovascular & Metabolic Diseases Program, Duke-NUS Graduate Medical School Singapore, Singapore.,Institute of Biochemistry, Justus-Liebig-University Giessen, Germany
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology. Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Bernard Mari
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique, CNRS, UMR 7275, Sophia Antipolis, France.,Université Côte d'Azur, France
| | - Gianni Carraro
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,Institute of Fundamental Medicine and Biology. Kazan (Volga Region) Federal University, Kazan, Russian Federation
| |
Collapse
|
40
|
Sukma Dewi I, Hollander Z, Lam KK, McManus JW, Tebbutt SJ, Ng RT, Keown PA, McMaster RW, McManus BM, Gidlöf O, Öhman J. Association of Serum MiR-142-3p and MiR-101-3p Levels with Acute Cellular Rejection after Heart Transplantation. PLoS One 2017; 12:e0170842. [PMID: 28125729 PMCID: PMC5268768 DOI: 10.1371/journal.pone.0170842] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 11/28/2022] Open
Abstract
Background Identifying non-invasive and reliable blood-derived biomarkers for early detection of acute cellular rejection in heart transplant recipients is of great importance in clinical practice. MicroRNAs are small molecules found to be stable in serum and their expression patterns reflect both physiological and underlying pathological conditions in human. Methods We compared a group of heart transplant recipients with histologically-verified acute cellular rejection (ACR, n = 26) with a control group of heart transplant recipients without allograft rejection (NR, n = 37) by assessing the levels of a select set of microRNAs in serum specimens. Results The levels of seven microRNAs, miR-142-3p, miR-101-3p, miR-424-5p, miR-27a-3p, miR-144-3p, miR-339-3p and miR-326 were significantly higher in ACR group compared to the control group and could discriminate between patients with and without allograft rejection. MiR-142-3p and miR-101-3p had the best diagnostic test performance among the microRNAs tested. Serum levels of miR-142-3p and miR-101-3p were independent of calcineurin inhibitor levels, as measured by tacrolimus and cyclosporin; kidney function, as measured by creatinine level, and general inflammation state, as measured by CRP level. Conclusion This study demonstrated two microRNAs, miR-142-3p and miR-101-3p, that could be relevant as non-invasive diagnostic tools for identifying heart transplant patients with acute cellular rejection.
Collapse
Affiliation(s)
- Ihdina Sukma Dewi
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
- * E-mail:
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- UBC James Hogg Research Centre, Vancouver, Canada
| | - Karen K. Lam
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
| | | | - Scott J. Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- UBC James Hogg Research Centre, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Raymond T. Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- Department of Computer Science, University of British Columbia, Vancouver, Canada
| | | | | | - Bruce M. McManus
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- UBC James Hogg Research Centre, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Olof Gidlöf
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jenny Öhman
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
41
|
The Potential of MicroRNAs as Novel Biomarkers for Transplant Rejection. J Immunol Res 2017; 2017:4072364. [PMID: 28191475 PMCID: PMC5278203 DOI: 10.1155/2017/4072364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
The control of gene expression by microRNAs (miRNAs, miR) influences many cellular functions, including cellular differentiation, cell proliferation, cell development, and functional regulation of the immune system. Recently, miRNAs have been detected in serum, plasma, and urine and circulating miR profiles have been associated with a variety of diseases. Rejection is one of the major causes of allograft failure and preventing and treating acute rejection are the central task for clinicians working with transplant patients. Invasive biopsies used in monitoring rejection are burdensome and risky to transplant patients. Novel and easily accessible biomarkers of acute rejection could make it possible to detect rejection earlier and make more fine-tuned calibration of immunosuppressive or new target treatment possible. In this review, we discuss whether circulating miRNA can serve as an early noninvasive diagnostic biomarker and an expression fingerprint of allograft rejection and transplant failure. Understanding the regulatory interplay of relevant miRNAs and the rejecting allograft will result in a better understanding of the molecular pathophysiology of alloimmune injury.
Collapse
|
42
|
Application of Operational Tolerance Signatures Are Limited by Variability and Type of Immunosuppression in Renal Transplant Recipients: A Cross-Sectional Study. Transplant Direct 2016; 3:e125. [PMID: 28349125 PMCID: PMC5361564 DOI: 10.1097/txd.0000000000000638] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/28/2016] [Indexed: 12/24/2022] Open
Abstract
Supplemental digital content is available in the text. Background Renal transplant recipients (RTR) frequently develop complications relating to chronic immunosuppression. Identifying RTR who could safely reduce immunosuppression is therefore highly desirable. We hypothesized that “signatures” described in RTR who have stopped immunosuppression but maintained stable graft function (“operational tolerance”) may enable identification of immunosuppressed RTR who are candidates for immunosuppression minimization. However, the effect of immunosuppression itself on these signatures and circulating B-cell populations is currently unknown. Methods We undertook a cross-sectional study of 117 RTR to assess the effect of immunosuppression upon circulating B cell populations, humoral alloresponse and 2 previously published “signatures” of operational tolerance. Results Immunosuppression associated with alterations in both published “signatures.” Azathioprine associated with a decrease in transitional and naive B-cell numbers and calcineurin inhibition associated with an increase in the number of circulating plasmablasts. However, only azathioprine use associated with the presence of donor-specific anti-HLA IgG antibodies. Calcineurin inhibition associated with an increase in total serum IgM but not IgG. Data were corrected for age, time since last transplant, and other immunosuppression. Conclusions Current signatures of operational tolerance may be significantly affected by immunosuppressive regimen, which may hinder use in their current form in clinical practice. Calcineurin inhibition may prevent the development of long-lasting humoral alloresponses, whereas azathioprine therapy may be associated with donor specific antibody development.
Collapse
|
43
|
Rebollo‐Mesa I, Nova‐Lamperti E, Mobillo P, Runglall M, Christakoudi S, Norris S, Smallcombe N, Kamra Y, Hilton R, Bhandari S, Baker R, Berglund D, Carr S, Game D, Griffin S, Kalra PA, Lewis R, Mark PB, Marks S, Macphee I, McKane W, Mohaupt MG, Pararajasingam R, Kon SP, Serón D, Sinha MD, Tucker B, Viklický O, Lechler RI, Lord GM, Hernandez‐Fuentes MP. Biomarkers of Tolerance in Kidney Transplantation: Are We Predicting Tolerance or Response to Immunosuppressive Treatment? Am J Transplant 2016; 16:3443-3457. [PMID: 27328267 PMCID: PMC5132071 DOI: 10.1111/ajt.13932] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/12/2016] [Accepted: 06/08/2016] [Indexed: 01/25/2023]
Abstract
We and others have previously described signatures of tolerance in kidney transplantation showing the differential expression of B cell-related genes and the relative expansions of B cell subsets. However, in all of these studies, the index group-namely, the tolerant recipients-were not receiving immunosuppression (IS) treatment, unlike the rest of the comparator groups. We aimed to assess the confounding effect of these regimens and develop a novel IS-independent signature of tolerance. Analyzing gene expression in three independent kidney transplant patient cohorts (232 recipients and 14 tolerant patients), we have established that the expression of the previously reported signature was biased by IS regimens, which also influenced transitional B cells. We have defined and validated a new gene expression signature that is independent of drug effects and also differentiates tolerant patients from healthy controls (cross-validated area under the receiver operating characteristic curve [AUC] = 0.81). In a prospective cohort, we have demonstrated that the new signature remained stable before and after steroid withdrawal. In addition, we report on a validated and highly accurate gene expression signature that can be reliably used to identify patients suitable for IS reduction (approximately 12% of stable patients), irrespective of the IS drugs they are receiving. Only a similar approach will make the conduct of pilot clinical trials for IS minimization safe and hence allow critical improvements in kidney posttransplant management.
Collapse
Affiliation(s)
- I. Rebollo‐Mesa
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,BiostatisticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom,UCB CelltechUCB Pharma S.A.SloughUnited Kingdom
| | - E. Nova‐Lamperti
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom
| | - P. Mobillo
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom
| | - M. Runglall
- National Institute for Health Research Biomedical Research CentreGuy's and St. Thomas’ National Health Service Foundation TrustKing's College LondonLondonUnited Kingdom
| | - S. Christakoudi
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,BiostatisticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | - S. Norris
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,University College LondonLondonUnited Kingdom
| | - N. Smallcombe
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom
| | - Y. Kamra
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,Peter Gorer Department of ImmunobiologyKing's College LondonLondonUnited Kingdom
| | - R. Hilton
- Guy's and St. Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - Indices of Tolerance EU Consortium
- King's College LondonLondonUnited Kingdom,Oxford UniversityOxfordUnited Kingdom,Imperial College LondonLondonUnited Kingdom,Institute for Medical Immunology, Université Libre de BruxellesBruxellesBelgium,Miltenyi BiotecBergisch GladbachGermany,University of NantesNantesFrance,Charité, Universitaatsmedizin BerlinBerlinGermany
| | - S. Bhandari
- Hull and East Yorkshire Hospitals NHS TrustHullUnited Kingdom
| | - R. Baker
- St. James's University HospitalLeedsUnited Kingdom
| | | | - S. Carr
- Leicester General HospitalLeicesterUnited Kingdom
| | - D. Game
- Guy's and St. Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - S. Griffin
- Cardiff and Vale University Health BoardCardiffUnited Kingdom
| | | | - R. Lewis
- Queen Alexandra HospitalPortsmouthUnited Kingdom
| | - P. B. Mark
- University of GlasgowGlasgowUnited Kingdom
| | - S. Marks
- Great Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - I. Macphee
- St. George's HospitalLondonUnited Kingdom
| | - W. McKane
- Northern General HospitalSheffieldUnited Kingdom
| | - M. G. Mohaupt
- INSELSPITALUniversitätsspital BernKlinik für Nephrologie/Hypertonie Abteilung für HypertonieBernSwitzerland
| | | | - S. P. Kon
- King's College Hospital NHS Foundation TrustLondonUnited Kingdom
| | - D. Serón
- Hospital Universitari Vall d'Hebr_onBarcelonaSpain
| | - M. D. Sinha
- Evelina London Children's HospitalLondonUnited Kingdom
| | - B. Tucker
- King's College Hospital NHS Foundation TrustLondonUnited Kingdom
| | - O. Viklický
- Transplantační laboratoř IKEMPragueCzech Republic
| | - R. I. Lechler
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,King's Health PartnersLondonUnited Kingdom
| | - G. M. Lord
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,National Institute for Health Research Biomedical Research CentreGuy's and St. Thomas’ National Health Service Foundation TrustKing's College LondonLondonUnited Kingdom,Guy's and St. Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - M. P. Hernandez‐Fuentes
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,National Institute for Health Research Biomedical Research CentreGuy's and St. Thomas’ National Health Service Foundation TrustKing's College LondonLondonUnited Kingdom
| |
Collapse
|
44
|
Abstract
BACKGROUND Although the liver is less immunogenic than other solid organs, most liver transplant recipients receive lifelong immunosuppression. In both experimental models and clinical transplantation, total lymphoid irradiation (TLI) has been shown to induce allograft tolerance. Our goal was to identify the microRNAs (miRNAs) expressed in tolerant liver allograft recipients in an experimental model of TLI-induced tolerance. METHODS To identify the miRNAs associated with TLI-induced tolerance, we examined syngeneic recipients (Lewis→Lewis) and allogeneic recipients (Dark Agouti→Lewis) of orthotropic liver transplants that received posttransplant TLI, allogeneic recipients that were not treated posttransplantation and experienced acute rejection, and native Dark Agouti livers. Quantitative-polymerase chain reaction miRNA array cards were used to profile liver grafts. RESULTS We identified 12 miRNAs that were specifically and significantly increased during acute rejection. In early tolerance, 33 miRNAs were altered compared with syngeneic livers, with 80% of the miRNAs increased. In established tolerance, 42 miRNAs were altered. In addition, miR-142-5p and miR-181a demonstrated increased expression in tolerant livers (both early and established tolerance) as compared with syngeneic livers. A principal component analysis of all miRNAs assayed demonstrated a profile in established tolerance that was closely related to that seen in syngeneic livers. CONCLUSIONS The miRNA profile of established tolerant allografts is very similar to syngeneic grafts, suggesting tolerance may be a return to an immunological state of quiescence.
Collapse
|
45
|
Lu J, Zhang X. Immunological characteristics of renal transplant tolerance in humans. Mol Immunol 2016; 77:71-8. [PMID: 27479171 DOI: 10.1016/j.molimm.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Establishing allograft tolerance is a highly desirable therapeutic goal in kidney transplantation, from which recipients would greatly benefit by withdrawing or minimizing immunosuppression. Identifying biomarkers in predicting tolerance or early diagnosing rejection is essential to direct personalized management. Recent findings have revealed that multiple populations of immune cells have involved in promoting long-term graft function or inducing rejection in renal transplant recipients. Thus, roles of immune cells add another level to predict the renal tolerant state; tailoring their functional and/or phenotypic characteristics would provide insights into mechanism involved in transplant tolerance that may aid in designing new therapies. Here, we review these findings and discuss the current understanding immunological characteristics of renal transplant tolerance in humans, and their potential clinical translation to immune tolerance biomarkers.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
46
|
Zhou M, Hara H, Dai Y, Mou L, Cooper DKC, Wu C, Cai Z. Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation. Int J Mol Sci 2016; 17:ijms17081232. [PMID: 27490531 PMCID: PMC5000630 DOI: 10.3390/ijms17081232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Different cell types possess different miRNA expression profiles, and cell/tissue/organ-specific miRNAs (or profiles) indicate different diseases. Circulating miRNA is either actively secreted by living cells or passively released during cell death. Circulating cell/tissue/organ-specific miRNA may serve as a non-invasive biomarker for allo- or xeno-transplantation to monitor organ survival and immune rejection. In this review, we summarize the proof of concept that circulating organ-specific miRNAs serve as non-invasive biomarkers for a wide spectrum of clinical organ-specific manifestations such as liver-related disease, heart-related disease, kidney-related disease, and lung-related disease. Furthermore, we summarize how circulating organ-specific miRNAs may have advantages over conventional methods for monitoring immune rejection in organ transplantation. Finally, we discuss the implications and challenges of applying miRNA to monitor organ survival and immune rejection in allo- or xeno-transplantation.
Collapse
Affiliation(s)
- Ming Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article describes biomarkers capable of identifying and predicting operational tolerance in solid organ transplant recipients. We outline the utility of these biomarkers in distinguishing allograft recipients in whom toxic immunosuppressive therapies might safely be minimized or withdrawn, and discuss their value in the appraisal of tolerance induction strategies. Finally, we review the insights derived from biomarker discovery into the cellular mechanisms underlying allograft tolerance. RECENT FINDINGS Important progress has been made in the development of robust signatures of tolerance, in both renal and liver transplant settings. Methodological advances, including high-throughput sequencing and bioinformatic processes, have been brought to bear on biomarker discovery and have heralded improvements in the accuracy with which operational tolerance can be predicted. Although the immunopathological basis for donor-specific tolerance is increasingly recognized to involve a complex interplay between numerous cell types, we review new lines of evidence shedding light on these mechanisms. SUMMARY Significant recent progress in identifying robust tolerance biomarkers has been made. In recognition of the need for rigorous validation of these, the first biomarker-led prospective immunosuppression withdrawal trials are underway. Such projects promise further progress and refinement in tolerance biomarker discovery, and offer hope for the amelioration of the burden associated with immunosuppressive therapies.
Collapse
|
48
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
49
|
Khan A, Nasr P, El-Charabaty E, El-Sayegh S. An Insight Into the Immunologic Events and Risk Assessment in Renal Transplantation. J Clin Med Res 2016; 8:367-72. [PMID: 27081421 PMCID: PMC4817575 DOI: 10.14740/jocmr2411w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 12/30/2022] Open
Abstract
Organ transplantation has always been considered to be the optimal therapeutic intervention in patients with end-stage organ failure. In the US, approximately 615,000 patients are diagnosed with end-stage renal disease and less than 30% have received a kidney transplant. One of the crucial drawbacks in successful renal transplantation is allograft rejection. Survival rates among transplant recipients have greatly improved due to better understanding of transplant biology and more effective immunosuppressive agents. Post-transplant immune monitoring and optimization of the immunosuppressive therapy using non-invasive biomarkers can effectively predict impending graft rejection and may spare the need for renal biopsy. This article provides an insight into the immunomodulations of renal transplant recipients. It depicts the immune system including several types of kidney rejection and reviews the biomarkers that may serve in near future, as surveillance tools for graft monitoring. Finally, a summary on the main immunosuppressive drugs used in kidney transplant both in the induction and maintenance phases is also covered.
Collapse
Affiliation(s)
- Asif Khan
- Department of Medicine, Staten Island University Hospital, 475 Seaview Ave., Staten Island, NY 10305, USA
| | - Patricia Nasr
- Department of Medicine, Staten Island University Hospital, 475 Seaview Ave., Staten Island, NY 10305, USA
| | - Elie El-Charabaty
- Department of Nephrology, Staten Island University Hospital, 475 Seaview Ave., Staten Island, NY 10305, USA
| | - Suzanne El-Sayegh
- Department of Nephrology, Staten Island University Hospital, 475 Seaview Ave., Staten Island, NY 10305, USA
| |
Collapse
|
50
|
Casiraghi F, Cortinovis M, Perico N, Remuzzi G. Recent advances in immunosuppression and acquired immune tolerance in renal transplants. Am J Physiol Renal Physiol 2016; 310:F446-53. [DOI: 10.1152/ajprenal.00312.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/19/2016] [Indexed: 01/03/2023] Open
Affiliation(s)
- Federica Casiraghi
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Transplant Research Center “Chiara Cucchi de Alessandri e Gilberto Crespi,” Ranica, Bergamo, Italy
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Clinical Research Center for Rare Diseases “Aldo e Cele Daccò,” Ranica, Bergamo, Italy
| | - Monica Cortinovis
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Transplant Research Center “Chiara Cucchi de Alessandri e Gilberto Crespi,” Ranica, Bergamo, Italy
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Clinical Research Center for Rare Diseases “Aldo e Cele Daccò,” Ranica, Bergamo, Italy
| | - Norberto Perico
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Clinical Research Center for Rare Diseases “Aldo e Cele Daccò,” Ranica, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Transplant Research Center “Chiara Cucchi de Alessandri e Gilberto Crespi,” Ranica, Bergamo, Italy
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Clinical Research Center for Rare Diseases “Aldo e Cele Daccò,” Ranica, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; and
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|