1
|
Lei Q, Hou X, Liu X, Liang D, Fan Y, Xu F, Liang S, Liang D, Yang J, Xie G, Liu Z, Zeng C. Artificial intelligence assists identification and pathologic classification of glomerular lesions in patients with diabetic nephropathy. J Transl Med 2024; 22:397. [PMID: 38684996 PMCID: PMC11059590 DOI: 10.1186/s12967-024-05221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.
Collapse
Affiliation(s)
- Qunjuan Lei
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Xiaoshuai Hou
- Ping An Healthcare Technology, 206 Kaibin Road, Shanghai, 200030, China
| | - Xumeng Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Dongmei Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Yun Fan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Jing Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Guotong Xie
- Ping An Healthcare Technology, 206 Kaibin Road, Shanghai, 200030, China.
- Ping An Healthcare and Technology Company Limited, Shanghai, China.
- Ping An International Smart City Technology Co., Shanghai, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China.
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China.
| |
Collapse
|
2
|
Waller AP, Wolfgang KJ, Pruner I, Stevenson ZS, Abdelghani E, Muralidharan K, Wilkie TK, Blissett AR, Calomeni EP, Vetter TA, Brodsky SV, Smoyer WE, Nieman MT, Kerlin BA. Prothrombin Knockdown Protects Podocytes and Reduces Proteinuria in Glomerular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.544360. [PMID: 38464017 PMCID: PMC10925217 DOI: 10.1101/2023.06.20.544360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic kidney disease (CKD) is a leading cause of death, and its progression is driven by glomerular podocyte injury and loss, manifesting as proteinuria. Proteinuria includes urinary loss of coagulation zymogens, cofactors, and inhibitors. Importantly, both CKD and proteinuria significantly increase the risk of thromboembolic disease. Prior studies demonstrated that anticoagulants reduced proteinuria in rats and that thrombin injured cultured podocytes. Herein we aimed to directly determine the influence of circulating prothrombin on glomerular pathobiology. We hypothesized that (pro)thrombin drives podocytopathy, podocytopenia, and proteinuria. Glomerular proteinuria was induced with puromycin aminonucleoside (PAN) in Wistar rats. Circulating prothrombin was either knocked down using a rat-specific antisense oligonucleotide or elevated by serial intravenous infusions of prothrombin protein, which are previously established methods to model hypo- (LoPT) and hyper-prothrombinemia (HiPT), respectively. After 10 days (peak proteinuria in this model) plasma prothrombin levels were determined, kidneys were examined for (pro)thrombin co-localization to podocytes, histology, and electron microscopy. Podocytopathy and podocytopenia were determined and proteinuria, and plasma albumin were measured. LoPT significantly reduced prothrombin colocalization to podocytes, podocytopathy, and proteinuria with improved plasma albumin. In contrast, HiPT significantly increased podocytopathy and proteinuria. Podocytopenia was significantly reduced in LoPT vs. HiPT rats. In summary, prothrombin knockdown ameliorated PAN-induced glomerular disease whereas hyper-prothrombinemia exacerbated disease. Thus, (pro)thrombin antagonism may be a viable strategy to simultaneously provide thromboprophylaxis and prevent podocytopathy-mediated CKD progression.
Collapse
|
3
|
Shi J, Hu Y, Shao G, Zhu Y, Zhao Z, Xu Y, Zhang Z, Wu H. Quantifying Podocyte Number in a Small Sample Size of Glomeruli with CUBIC to Evaluate Podocyte Depletion of db/db Mice. J Diabetes Res 2023; 2023:1901105. [PMID: 36776229 PMCID: PMC9908347 DOI: 10.1155/2023/1901105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.
Collapse
Affiliation(s)
- Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangze Shao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanyong Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Shankland SJ, Wessely O. Zoning in on podocytes. Kidney Int 2022; 102:966-968. [PMID: 36272754 DOI: 10.1016/j.kint.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Podocytes undergo defined morphologic changes during development, homeostasis, and aging, and on injury. Quantitative podometric assessments of podocyte endowment provide a powerful tool to interrogate glomerular health. Expanding this approach to a regional assessment demonstrates that the podocytes from cortical, subcortical, and juxtamedullary glomeruli are not only morphologically heterogeneous per se, but respond differently to stressors, such as age and hypertension. This suggests that zonal glomerular changes harbor critical information to understand glomerulopathies.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Oliver Wessely
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Santo BA, Govind D, Daneshpajouhnejad P, Yang X, Wang XX, Myakala K, Jones BA, Levi M, Kopp JB, Yoshida T, Niedernhofer LJ, Manthey D, Moon KC, Han SS, Zee J, Rosenberg AZ, Sarder P. PodoCount: A Robust, Fully Automated, Whole-Slide Podocyte Quantification Tool. Kidney Int Rep 2022; 7:1377-1392. [PMID: 35694561 PMCID: PMC9174049 DOI: 10.1016/j.ekir.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Podocyte depletion is a histomorphologic indicator of glomerular injury and predicts clinical outcomes. Podocyte estimation methods or podometrics are semiquantitative, technically involved, and laborious. Implementation of high-throughput podometrics in experimental and clinical workflows necessitates an automated podometrics pipeline. Recognizing that computational image analysis offers a robust approach to study cell and tissue structure, we developed and validated PodoCount (a computational tool for automated podocyte quantification in immunohistochemically labeled tissues) using a diverse data set. Methods Whole-slide images (WSIs) of tissues immunostained with a podocyte nuclear marker and periodic acid–Schiff counterstain were acquired. The data set consisted of murine whole kidney sections (n = 135) from 6 disease models and human kidney biopsy specimens from patients with diabetic nephropathy (DN) (n = 45). Within segmented glomeruli, podocytes were extracted and image analysis was applied to compute measures of podocyte depletion and nuclear morphometry. Computational performance evaluation and statistical testing were performed to validate podometric and associated image features. PodoCount was disbursed as an open-source, cloud-based computational tool. Results PodoCount produced highly accurate podocyte quantification when benchmarked against existing methods. Podocyte nuclear profiles were identified with 0.98 accuracy and segmented with 0.85 sensitivity and 0.99 specificity. Errors in podocyte count were bounded by 1 podocyte per glomerulus. Podocyte-specific image features were found to be significant predictors of disease state, proteinuria, and clinical outcome. Conclusion PodoCount offers high-performance podocyte quantitation in diverse murine disease models and in human kidney biopsy specimens. Resultant features offer significant correlation with associated metadata and outcome. Our cloud-based tool will provide end users with a standardized approach for automated podometrics from gigapixel-sized WSIs.
Collapse
Affiliation(s)
- Briana A. Santo
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Darshana Govind
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaoxin X. Wang
- Department of Biochemistry, Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Komuraiah Myakala
- Department of Biochemistry, Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
| | - Moshe Levi
- Department of Biochemistry, Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jarcy Zee
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Correspondence: Avi Z. Rosenberg, Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building, Room 632D, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
- Pinaki Sarder, Department of Pathology and Anatomical Sciences, University at Buffalo, 955 Main Street, Room 4204, Buffalo, New York 14203, USA.
| |
Collapse
|
6
|
Bao D, Su H, Lei CT, Tang H, Ye C, Xiong W, He FF, Lin JH, Hammes HP, Zhang C. MAD2B-mediated cell cycle reentry of podocytes is involved in the pathogenesis of FSGS. Int J Biol Sci 2021; 17:4396-4408. [PMID: 34803506 PMCID: PMC8579434 DOI: 10.7150/ijbs.62238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
Rationale: Focal segmental glomerulosclerosis (FSGS) is characterized by the dysfunction of “post-mitotic” podocytes. The reentry of podocytes in the cell cycle will ultimately result in cell death. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of anaphase-promoting complex (APC)/cyclosome, precisely controls the metaphase to anaphase transition and ordered cell cycle progression. However, the role of MAD2B in FSGS podocyte injury remains unknown. Methods: To explore MAD2B function in podocyte cell cycle reentry, we used conditional mutant mice lacking MAD2B selectively in podocytes in ADR-induced FSGS murine model. Additionally, KU-55933, a specific inhibitor of ataxia-telangiectasia mutated (ATM) was utilized in vivo and in vitro to explore the role of ATM in regulating MAD2B. Results: The expression of MAD2B in podocytes was dramatically increased in patients with FSGS and ADR-treated mice along with podocyte cell cycle reentry. Podocyte-specific knockout of MAD2B effectively attenuated proteinuria, podocyte injury, and prevented the aberrant cell cycle reentry. By bioinformatics analysis we revealed that ATM kinase is a key upstream regulator of MAD2B. Furthermore, inhibition of ATM kinase abolished MAD2B-driven cell cycle reentry and alleviated podocyte impairment in FSGS murine model. In vitro studies by site-directed mutagenesis and immunoprecipitation we revealed ATM phosphorylated MAD2B and consequently hampered the ubiquitination of MAD2B in a phosphorylation-dependent manner. Conclusions: ATM kinase-MAD2B axis importantly contributes to the cell cycle reentry of podocytes, which is a novel pathogenic mechanism of FSGS, and may shed light on the development of its therapeutic approaches.
Collapse
Affiliation(s)
- Dian Bao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Govind D, Becker JU, Miecznikowski J, Rosenberg AZ, Dang J, Tharaux PL, Yacoub R, Thaiss F, Hoyer PF, Manthey D, Lutnick B, Worral AM, Mohammad I, Walavalkar V, Tomaszewski JE, Jen KY, Sarder P. PodoSighter: A Cloud-Based Tool for Label-Free Podocyte Detection in Kidney Whole-Slide Images. J Am Soc Nephrol 2021; 32:2795-2813. [PMID: 34479966 PMCID: PMC8806084 DOI: 10.1681/asn.2021050630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte depletion precedes progressive glomerular damage in several kidney diseases. However, the current standard of visual detection and quantification of podocyte nuclei from brightfield microscopy images is laborious and imprecise. METHODS We have developed PodoSighter, an online cloud-based tool, to automatically identify and quantify podocyte nuclei from giga-pixel brightfield whole-slide images (WSIs) using deep learning. Ground-truth to train the tool used immunohistochemically or immunofluorescence-labeled images from a multi-institutional cohort of 122 histologic sections from mouse, rat, and human kidneys. To demonstrate the generalizability of our tool in investigating podocyte loss in clinically relevant samples, we tested it in rodent models of glomerular diseases, including diabetic kidney disease, crescentic GN, and dose-dependent direct podocyte toxicity and depletion, and in human biopsies from steroid-resistant nephrotic syndrome and from human autopsy tissues. RESULTS The optimal model yielded high sensitivity/specificity of 0.80/0.80, 0.81/0.86, and 0.80/0.91, in mouse, rat, and human images, respectively, from periodic acid-Schiff-stained WSIs. Furthermore, the podocyte nuclear morphometrics extracted using PodoSighter were informative in identifying diseased glomeruli. We have made PodoSighter freely available to the general public as turnkey plugins in a cloud-based web application for end users. CONCLUSIONS Our study demonstrates an automated computational approach to detect and quantify podocyte nuclei in standard histologically stained WSIs, facilitating podocyte research, and enabling possible future clinical applications.
Collapse
Affiliation(s)
- Darshana Govind
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Jan U. Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Rabi Yacoub
- Department of Internal Medicine, University at Buffalo, Buffalo, New York
| | - Friedrich Thaiss
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Peter F. Hoyer
- Pediatric Nephrology, University Hospital Essen, Essen, Germany
| | | | - Brendon Lutnick
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Amber M. Worral
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Imtiaz Mohammad
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Vighnesh Walavalkar
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - John E. Tomaszewski
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Urinary podocyte markers in kidney diseases. Clin Chim Acta 2021; 523:315-324. [PMID: 34666027 DOI: 10.1016/j.cca.2021.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
Podocytes play an important role in the maintenance of kidney function, and they are the primary focus of many kidney diseases. Podocyte injury results in the shedding of podocyte-derived cellular fragments and podocyte-specific molecular targets into the urine, which may serve as biomarkers of kidney diseases. Intact podocytes, either viable or dead, and podocyte-derived microvesicles could be quantified in the urine by various centrifugation, visualization and culture methods. Podocyte-specific protein targets from the nucleus, cytoplasm, slit-diaphragm, glomerular capillary basement membrane, and cytoskeleton, as well as their corresponding messenger RNA (mRNA), in the urine could be quantified by western blotting, ELISA, or quantitative polymerase chain reaction. Although some of these techniques may be expensive or labor-intensive at present, they may become widely available in the future because of the improvement in technology and automation. The application of urinary podocyte markers for the diagnosis and monitoring of various kidney diseases have been explored but the published data in this area are not sufficiently systematic and lack external validation. Further research should focus on standardizing, comparing, and automizing laboratory methods, as well as defining their added value to the routine clinical tests.
Collapse
|
9
|
Lemley KV. An Introduction to Stereology with Applications to the Glomerulus. GLOMERULAR DISEASES 2021; 1:294-301. [PMID: 36751381 PMCID: PMC9677735 DOI: 10.1159/000519719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
Background Stereology is the science of inferring quantitative features of 3-dimensional structures from lower dimensional samples of those structures (probes). It is a statistical discipline and therefore may seem intimidating to many potential users. Without a proper understanding of its principles, though, errors may be made in the quantitative reporting of structural research results. Summary This review article attempts to explain and justify the basic principles of stereology as applied to the glomerulus in a simple and accessible way. A few common errors in application are described. The strengths and weaknesses of "biased" (model-based) stereology are described as well as the basics of design-based ("unbiased") stereology. Key Messages Stereology is a useful body of theory and practices when quantitation of structural histological features of the glomerulus is desired.
Collapse
|
10
|
Zimmermann M, Klaus M, Wong MN, Thebille AK, Gernhold L, Kuppe C, Halder M, Kranz J, Wanner N, Braun F, Wulf S, Wiech T, Panzer U, Krebs CF, Hoxha E, Kramann R, Huber TB, Bonn S, Puelles VG. Deep learning-based molecular morphometrics for kidney biopsies. JCI Insight 2021; 6:144779. [PMID: 33705360 PMCID: PMC8119189 DOI: 10.1172/jci.insight.144779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Morphologic examination of tissue biopsies is essential for histopathological diagnosis. However, accurate and scalable cellular quantification in human samples remains challenging. Here, we present a deep learning-based approach for antigen-specific cellular morphometrics in human kidney biopsies, which combines indirect immunofluorescence imaging with U-Net-based architectures for image-to-image translation and dual segmentation tasks, achieving human-level accuracy. In the kidney, podocyte loss represents a hallmark of glomerular injury and can be estimated in diagnostic biopsies. Thus, we profiled over 27,000 podocytes from 110 human samples, including patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis (ANCA-GN), an immune-mediated disease with aggressive glomerular damage and irreversible loss of kidney function. We identified previously unknown morphometric signatures of podocyte depletion in patients with ANCA-GN, which allowed patient classification and, in combination with routine clinical tools, showed potential for risk stratification. Our approach enables robust and scalable molecular morphometric analysis of human tissues, yielding deeper biological insights into the human kidney pathophysiology.
Collapse
Affiliation(s)
- Marina Zimmermann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Klaus
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Katrin Thebille
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Gernhold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kuppe
- Department of Nephrology and Clinical Immunology and.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Maurice Halder
- Department of Nephrology and Clinical Immunology and.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- St.-Antonius Hospital Eschweiler, Department of Urology, Eschweiler, Germany.,Department of Urology and Kidney Transplantation, Martin-Luther-University, Halle, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Wulf
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, Division of Translational Immunology, and.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, Division of Translational Immunology, and.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology and.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Kaverina NV, Eng DG, Miner JH, Pippin JW, Shankland SJ. Parietal epithelial cell differentiation to a podocyte fate in the aged mouse kidney. Aging (Albany NY) 2020; 12:17601-17624. [PMID: 32858527 PMCID: PMC7521511 DOI: 10.18632/aging.103788] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Healthy aging is typified by a progressive and absolute loss of podocytes over the lifespan of animals and humans. To test the hypothesis that a subset of glomerular parietal epithelial cell (PEC) progenitors transition to a podocyte fate with aging, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice were generated. PECs were inducibly labeled with a tdTomato reporter, and podocytes were constitutively labeled with an EGFP reporter. With advancing age (14 and 24 months) glomeruli in the juxta-medullary cortex (JMC) were more severely injured than those in the outer cortex (OC). In aged mice (24m), injured glomeruli with lower podocyte number (41% decrease), showed more PEC migration and differentiation to a podocyte fate than mildly injured or healthy glomeruli. PECs differentiated to a podocyte fate had ultrastructural features of podocytes and co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of mesangial (Perlecan) or endothelial (ERG) cells. PECs differentiated to a podocyte fate did not express CD44, a marker of PEC activation. Taken together, we demonstrate that a subpopulation of PECs differentiate to a podocyte fate predominantly in injured glomeruli in mice of advanced age.
Collapse
Affiliation(s)
| | - Diana G. Eng
- Division of Nephrology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey H. Miner
- Division of Nephrology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
12
|
Maraszek KE, Santo BA, Yacoub R, Tomaszewski JE, Mohammad I, Worral AM, Sarder P. The Presence and Location of Podocytes in Glomeruli as Affected by Diabetes Mellitus. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11320:1132018. [PMID: 32362706 PMCID: PMC7194214 DOI: 10.1117/12.2548904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The primary purpose of the kidney, specifically the glomerulus, is filtration. Filtration is accomplished through the glomerular filtration barrier, which consists of the fenestrated endothelium, glomerular basement membrane, and specialized epithelial cells called podocytes. In pathologic states, such as Diabetes Mellitus (DM) and diabetic kidney disease (DKD), variable glomerular conditions result in podocyte injury and depletion, followed by progressive glomerular injury and DKD progression. In this work we quantified glomerulus and podocyte structural changes in histopathology image data derived from a murine model of DM. Using a variety of image processing techniques, we studied changes in podocyte morphology and intra-glomerular distribution across healthy, mild DM, and DM glomeruli. Our feature analysis provided feature trends which we believe are reflective of DKD pathology; while glomerular area peaked in mild DM, average podocyte number and distance from the urinary pole continued to decrease and increase, respectively, throughout DM. Ultimately, this study aims to augment the set of quantifiable image biomarkers used for evaluation of DKD progression in digital pathology, as well as underscore the importance of engineering biologically-inspired image features.
Collapse
Affiliation(s)
- Kathryn E. Maraszek
- Department of Pathology and Anatomical Sciences, University
at Buffalo – The State University of New York
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, University
at Buffalo – The State University of New York
| | - Rabi Yacoub
- Medicine – Nephrology, University at Buffalo
– The State University of New York
| | - John E. Tomaszewski
- Department of Pathology and Anatomical Sciences, University
at Buffalo – The State University of New York
| | - Imtiaz Mohammad
- Department of Pathology and Anatomical Sciences, University
at Buffalo – The State University of New York
| | - Amber M. Worral
- Department of Pathology and Anatomical Sciences, University
at Buffalo – The State University of New York
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University
at Buffalo – The State University of New York
| |
Collapse
|
13
|
Sutherland MR, Vojisavljevic D, Black MJ. A practical guide to the stereological assessment of glomerular number, size, and cellular composition. Anat Rec (Hoboken) 2020; 303:2679-2692. [PMID: 31960613 DOI: 10.1002/ar.24361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
The evaluation of a range of measures in the kidneys, such as developmental stage, rate and success, injury, and disease processes, relies on obtaining information on the three-dimensional structure of the renal corpuscles, and in particular the glomerular capillary tufts. To do this in the most accurate, comprehensive, and unbiased manner depends on a knowledge of stereological methods. In this article, we provide a practical guide for researchers on how to quantitate a number of structures in the kidneys, including the estimation of total glomerular number, glomerular capillary length and filtration surface area, and the cellular composition of individual glomeruli. Guidance is also provided on how to apply these methods to kidneys at different sizes and levels of maturity.
Collapse
Affiliation(s)
- Megan R Sutherland
- Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Danica Vojisavljevic
- Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Mary Jane Black
- Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Sample Preparation and Stereological Methods for the Study of Glomerular Ultrastructure Using Electron Microscopy. Methods Mol Biol 2019. [PMID: 31701447 DOI: 10.1007/978-1-4939-9841-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this chapter we describe conventional methods used for preparing renal tissue for transmission electron microscopy. We also describe a relatively new technique, serial block face scanning electron microscopy. Protocols are given for processing, sectioning, and imaging of tissue along with methods for obtaining quantitative data from the results.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Podocytes are critical components of the nephron filtration barrier and are depleted in many kidney injuries and disease states. Terminally differentiated adult podocytes are highly specialized, postmitotic cells, raising the question of whether the body has any ability to regenerate lost podocytes. This timely question has recently been illuminated by a series of innovative studies. Here, we review recent progress on this topic of significant interest and debate. RECENT FINDINGS The innovation of genetic labeling techniques enables fate tracing of individual podocytes, providing the strongest evidence yet that podocytes can be replaced by nearby progenitor cells. In particular, two progenitor pools have recently been identified in multiple studies: parietal epithelial cells and cells of renin lineage. These studies furthermore suggest that podocyte regeneration can be enhanced using ex-vivo or pharmacological interventions. SUMMARY Recent studies indicate that the podocyte compartment is more dynamic than previously believed. Bidirectional exchange with neighboring cellular compartments provides a mechanism for podocyte replacement. Based on these findings, we propose a set of criteria for evaluating podocyte regeneration and suggest that restoration of podocyte number to a subsclerotic threshold be targeted as a potentially achievable clinical goal.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW For more than a century, kidney microscopic imaging was driven by the need for greater and greater resolution. This was in part provided by the analysis of thinner tissue sections. As a result, most kidney morphometry was performed in 'two' dimensions, largely ignoring the three-dimensionality of kidney tissue and cells. Although stereological techniques address this issue, they have generally been considered laborious and expensive and thereby unattractive for routine use. RECENT FINDINGS The past 2 decades have witnessed the development of optical clearing techniques, which enables visualization of thick slices of kidney tissue and even whole kidneys. This review describes the three main optical clearing strategies (solvent-based, aqueous-based and hydrogel embedding) with their respective advantages and disadvantages. We also describe how optical clearing provides new approaches to kidney morphometrics, including general kidney morphology (i.e. identification and quantitation of atubular glomeruli), glomerular numbers and volumes, numbers of specific glomerular cells (i.e. podocytes) and cell-specific stress-related changes (i.e. foot process effacement). SUMMARY The new clearing and morphometric approaches described in this review provide a new toolbox for imaging and quantification of kidney microanatomy. These approaches will make it easier to visualize the three-dimensional microanatomy of the kidney and decrease our reliance on biased two-dimensional morphometric techniques and time-consuming stereological approaches. They will also accelerate our research of structure-function relations in the healthy and diseased kidney.
Collapse
|
17
|
Dower K, Zhao S, Schlerman FJ, Savary L, Campanholle G, Johnson BG, Xi L, Nguyen V, Zhan Y, Lech MP, Wang J, Nie Q, Karsdal MA, Genovese F, Boucher G, Brown TP, Zhang B, Homer BL, Martinez RV. High resolution molecular and histological analysis of renal disease progression in ZSF1 fa/faCP rats, a model of type 2 diabetic nephropathy. PLoS One 2017; 12:e0181861. [PMID: 28746409 PMCID: PMC5529026 DOI: 10.1371/journal.pone.0181861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model’s suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Ken Dower
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- * E-mail: (KD); (RVM)
| | - Shanrong Zhao
- Clinical Bioinformatics, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Franklin J. Schlerman
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Leigh Savary
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Gabriela Campanholle
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Bryce G. Johnson
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Li Xi
- Clinical Bioinformatics, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Vuong Nguyen
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Yutian Zhan
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Matthew P. Lech
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Ju Wang
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Qing Nie
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | | | | | - Germaine Boucher
- Drug Safety, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Thomas P. Brown
- Drug Safety, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Baohong Zhang
- Clinical Bioinformatics, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Bruce L. Homer
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Robert V. Martinez
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- * E-mail: (KD); (RVM)
| |
Collapse
|
18
|
Puelles VG, Bertram JF, Moeller MJ. Quantifying podocyte depletion: theoretical and practical considerations. Cell Tissue Res 2017; 369:229-236. [DOI: 10.1007/s00441-017-2630-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
19
|
Wang L, Sha Y, Bai J, Eisner W, Sparks MA, Buckley AF, Spurney RF. Podocyte-specific knockout of cyclooxygenase 2 exacerbates diabetic kidney disease. Am J Physiol Renal Physiol 2017; 313:F430-F439. [PMID: 28490532 DOI: 10.1152/ajprenal.00614.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Enhanced expression of cyclooxygenase 2 (COX2) in podocytes contributes to glomerular injury in diabetic kidney disease, but some basal level of podocyte COX2 expression might be required to promote podocyte attachment and/or survival. To investigate the role of podocyte COX2 expression in diabetic kidney disease, we deleted COX2 specifically in podocytes in a mouse model of Type 1 diabetes mellitus (Akita mice). Podocyte-specific knockout (KO) of COX2 did not affect renal morphology or albuminuria in nondiabetic mice. Albuminuria was significantly increased in wild-type (WT) and KO Akita mice compared with nondiabetic controls, and the increase in albuminuria was significantly greater in KO Akita mice compared with WT Akita mice at both 16 and 20 wk of age. At the 20-wk time point, mesangial expansion was also increased in WT and KO Akita mice compared with nondiabetic animals, and these histologic abnormalities were not improved by KO of COX2. Tubular injury was seen only in diabetic mice, but there were no significant differences between groups. Thus, KO of COX2 enhanced albuminuria and did not improve the histopathologic features of diabetic kidney disease. These data suggest that 1) KO of COX2 in podocytes does not ameliorate diabetic kidney disease in Akita mice, and 2) some basal level of podocyte COX2 expression in podocytes is necessary to attenuate the adverse effects of diabetes on glomerular filtration barrier function.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - William Eisner
- Division of Hematological Malignancies, Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina;
| |
Collapse
|
20
|
Mallipattu SK, Guo Y, Revelo MP, Roa-Peña L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C, Jain MK, Lu Y, Ma'ayan A, Mehrotra A, Yacoub R, Nord EP, Woroniecki RP, Yang VW, He JC. Krüppel-Like Factor 15 Mediates Glucocorticoid-Induced Restoration of Podocyte Differentiation Markers. J Am Soc Nephrol 2016; 28:166-184. [PMID: 27288011 DOI: 10.1681/asn.2015060672] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.
Collapse
Affiliation(s)
| | - Yiqing Guo
- Division of Nephrology, Departments of Medicine and
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | | | - Jason Ling
- Division of Nephrology, Departments of Medicine and
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Victoria Ly
- Division of Nephrology, Departments of Medicine and
| | | | - Mukesh K Jain
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yuan Lu
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics and
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Rabi Yacoub
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | | | | | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Department of Pharmacology and Systems Therapeutics and.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
21
|
Morphometry Predicts Early GFR Change in Primary Proteinuric Glomerulopathies: A Longitudinal Cohort Study Using Generalized Estimating Equations. PLoS One 2016; 11:e0157148. [PMID: 27285824 PMCID: PMC4902229 DOI: 10.1371/journal.pone.0157148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Most predictive models of kidney disease progression have not incorporated structural data. If structural variables have been used in models, they have generally been only semi-quantitative. METHODS We examined the predictive utility of quantitative structural parameters measured on the digital images of baseline kidney biopsies from the NEPTUNE study of primary proteinuric glomerulopathies. These variables were included in longitudinal statistical models predicting the change in estimated glomerular filtration rate (eGFR) over up to 55 months of follow-up. RESULTS The participants were fifty-six pediatric and adult subjects from the NEPTUNE longitudinal cohort study who had measurements made on their digital biopsy images; 25% were African-American, 70% were male and 39% were children; 25 had focal segmental glomerular sclerosis, 19 had minimal change disease, and 12 had membranous nephropathy. We considered four different sets of candidate predictors, each including four quantitative structural variables (for example, mean glomerular tuft area, cortical density of patent glomeruli and two of the principal components from the correlation matrix of six fractional cortical areas-interstitium, atrophic tubule, intact tubule, blood vessel, sclerotic glomerulus, and patent glomerulus) along with 13 potentially confounding demographic and clinical variables (such as race, age, diagnosis, and baseline eGFR, quantitative proteinuria and BMI). We used longitudinal linear models based on these 17 variables to predict the change in eGFR over up to 55 months. All 4 models had a leave-one-out cross-validated R2 of about 62%. CONCLUSIONS Several combinations of quantitative structural variables were significantly and strongly associated with changes in eGFR. The structural variables were generally stronger than any of the confounding variables, other than baseline eGFR. Our findings suggest that quantitative assessment of diagnostic renal biopsies may play a role in estimating the baseline risk of succeeding loss of renal function in future clinical studies, and possibly in clinical practice.
Collapse
|
22
|
Puelles VG, van der Wolde JW, Schulze KE, Short KM, Wong MN, Bensley JG, Cullen-McEwen LA, Caruana G, Hokke SN, Li J, Firth SD, Harper IS, Nikolic-Paterson DJ, Bertram JF. Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. J Am Soc Nephrol 2016; 27:3093-3104. [PMID: 26975438 DOI: 10.1681/asn.2015121340] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/02/2016] [Indexed: 11/03/2022] Open
Abstract
Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli.
Collapse
Affiliation(s)
- Victor G Puelles
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - James W van der Wolde
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Biochemistry and Molecular Biology, and
| | - Milagros N Wong
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jonathan G Bensley
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Luise A Cullen-McEwen
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Georgina Caruana
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stacey N Hokke
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jinhua Li
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stephen D Firth
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | | | - John F Bertram
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW There is currently much interest in the numbers of both glomeruli and podocytes. This interest stems from a greater understanding of the effects of suboptimal fetal events on nephron endowment, the associations between low nephron number and chronic cardiovascular and kidney disease in adults, and the emergence of the podocyte depletion hypothesis. RECENT FINDINGS Obtaining accurate and precise estimates of glomerular and podocyte number has proven surprisingly difficult. When whole kidneys or large tissue samples are available, design-based stereological methods are considered gold standard because they are based on principles that negate systematic bias. However, these methods are often tedious and time consuming, and oftentimes inapplicable when dealing with small samples such as biopsies. Therefore, novel methods suitable for small tissue samples, and innovative approaches to facilitate high throughput measurements, such as MRI to estimate glomerular number and flow cytometry to estimate podocyte number, have recently been described. SUMMARY This review describes current gold-standard methods for estimating glomerular and podocyte number, as well as methods developed in the past 3 years. We are now better placed than ever before to accurately and precisely estimate glomerular and podocyte number, and examine relationships between these measurements and kidney health and disease.
Collapse
|
24
|
Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki SI, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy. Diabetes 2016; 65:755-67. [PMID: 26384385 DOI: 10.2337/db15-0473] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022]
Abstract
Overcoming refractory massive proteinuria remains a clinical and research issue in diabetic nephropathy. This study was designed to investigate the pathogenesis of massive proteinuria in diabetic nephropathy, with a special focus on podocyte autophagy, a system of intracellular degradation that maintains cell and organelle homeostasis, using human tissue samples and animal models. Insufficient podocyte autophagy was observed histologically in patients and rats with diabetes and massive proteinuria accompanied by podocyte loss, but not in those with no or minimal proteinuria. Podocyte-specific autophagy-deficient mice developed podocyte loss and massive proteinuria in a high-fat diet (HFD)-induced diabetic model for inducing minimal proteinuria. Interestingly, huge damaged lysosomes were found in the podocytes of diabetic rats with massive proteinuria and HFD-fed, podocyte-specific autophagy-deficient mice. Furthermore, stimulation of cultured podocytes with sera from patients and rats with diabetes and massive proteinuria impaired autophagy, resulting in lysosome dysfunction and apoptosis. These results suggest that autophagy plays a pivotal role in maintaining lysosome homeostasis in podocytes under diabetic conditions, and that its impairment is involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy. These results may contribute to the development of a new therapeutic strategy for advanced diabetic nephropathy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Autophagy
- Autophagy-Related Protein 5
- Autophagy-Related Protein 7
- Blotting, Western
- Cell Line
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diet, High-Fat
- Female
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Intravital Microscopy
- Kidney/metabolism
- Kidney/pathology
- Lysosomes/metabolism
- Lysosomes/pathology
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/genetics
- Middle Aged
- Podocytes/metabolism
- Proteinuria/etiology
- Proteinuria/metabolism
- Proteinuria/pathology
- RNA-Binding Proteins/blood
- Rats
- Rats, Long-Evans
- Severity of Illness Index
- Young Adult
Collapse
Affiliation(s)
- Atsuko Tagawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Mako Yasuda
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Nakazawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Hisazumi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shin-Ichi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Koya
- Division of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-gun, Ishikawa, Japan
| | - Katsuhiko Asanuma
- Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan Division of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Eun-Hee Kim
- Division of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan Osong Medical Innovation Foundation, Laboratory Animal Center, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Hokkaido, Japan
| | | | - Kazuyuki Hayashi
- Department of Nephrology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Hiroshi Ohashi
- Department of Pathology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
25
|
Puelles VG, Cullen-McEwen LA, Taylor GE, Li J, Hughson MD, Kerr PG, Hoy WE, Bertram JF. Human podocyte depletion in association with older age and hypertension. Am J Physiol Renal Physiol 2016; 310:F656-F668. [PMID: 26792066 DOI: 10.1152/ajprenal.00497.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autopsy in Mississippi. Demographic data were obtained from medical and autopsy records. Subjects were categorized by age and hypertension as potential independent and additive contributors to podocyte depletion. Design-based stereology was used to estimate individual glomerular volume and total podocyte number per glomerulus, which allowed the calculation of podocyte density (number per volume). Podocyte depletion was defined as a reduction in podocyte number (absolute depletion) or podocyte density (relative depletion). The cortical location of glomeruli (outer or inner cortex) and presence of parietal podocytes were also recorded. Older age was an independent contributor to both absolute and relative podocyte depletion, featuring glomerular hypertrophy, podocyte loss, and thus reduced podocyte density. Hypertension was an independent contributor to relative podocyte depletion by exacerbating glomerular hypertrophy, mostly in glomeruli from the inner cortex. However, hypertension was not associated with podocyte loss. Absolute and relative podocyte depletion were exacerbated by the combination of older age and hypertension. The proportion of glomeruli with parietal podocytes increased with age but not with hypertension alone. These findings demonstrate that older age and hypertension are independent and additive contributors to podocyte depletion in white American men without kidney disease.
Collapse
Affiliation(s)
- Victor G Puelles
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia;
| | - Luise A Cullen-McEwen
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Georgina E Taylor
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jinhua Li
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, and Department of Medicine, Monash University, Melbourne, Victoria, Australia; and
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| | - John F Bertram
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, Tokuyama H, Wakino S, Hayashi K, Itoh H. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int 2015; 88:745-53. [PMID: 26108068 DOI: 10.1038/ki.2015.178] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/21/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
Proteinuria is a central component of chronic kidney disease and an independent risk factor for cardiovascular disease. Kidney podocytes have an essential role as a filtration barrier against proteinuria. Kruppel-like Factor 4 (KLF4) is expressed in podocytes and decreased in glomerular diseases leading to methylation of the nephrin promoter, decreased nephrin expression and proteinuria. Treatment with an angiotensin receptor blocker (ARB) reduced methylation of the nephrin promoter in murine glomeruli of an adriamycin nephropathy model with recovery of KLF4 expression and a decrease in albuminuria. In podocyte-specific KLF4 knockout mice, the effect of ARB on albuminuria and the nephrin promoter methylation was attenuated. In cultured human podocytes, angiotensin II reduced KLF4 expression and caused methylation of the nephrin promoter with decreased nephrin expression. In patients, nephrin promoter methylation was increased in proteinuric kidney diseases with decreased KLF4 and nephrin expression. KLF4 expression in ARB-treated patients was higher in patients with than without ARB treatment. Thus, angiotensin II can modulate epigenetic regulation in podocytes and ARB inhibits these actions in part via KLF4 in proteinuric kidney diseases. This study provides a new concept that renin-angiotensin system blockade can exert therapeutic effects through epigenetic modulation of the kidney gene expression.
Collapse
Affiliation(s)
- Kaori Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroyuki Sasamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tatsuhiko Azegami
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyo Oguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koichi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
27
|
Schwartzman M, Reginensi A, Wong JS, Basgen JM, Meliambro K, Nicholas SB, D'Agati V, McNeill H, Campbell KN. Podocyte-Specific Deletion of Yes-Associated Protein Causes FSGS and Progressive Renal Failure. J Am Soc Nephrol 2015; 27:216-26. [PMID: 26015453 DOI: 10.1681/asn.2014090916] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/02/2015] [Indexed: 11/03/2022] Open
Abstract
FSGS is the most common primary glomerular disease underlying ESRD in the United States and is increasing in incidence globally. FSGS results from podocyte injury, yet the mechanistic details of disease pathogenesis remain unclear. This has resulted in an unmet clinical need for cell-specific therapy in the treatment of FSGS and other proteinuric kidney diseases. We previously identified Yes-associated protein (YAP) as a prosurvival signaling molecule, the in vitro silencing of which increases podocyte susceptibility to apoptotic stimulus. YAP is a potent oncogene that is a prominent target for chemotherapeutic drug development. In this study, we tested the hypothesis that podocyte-specific deletion of Yap leads to proteinuric kidney disease through increased podocyte apoptosis. Yap was selectively silenced in podocytes using Cre-mediated recombination controlled by the podocin promoter. Yap silencing in podocytes resulted in podocyte apoptosis, podocyte depletion, proteinuria, and an increase in serum creatinine. Histologically, features characteristic of FSGS, including mesangial sclerosis, podocyte foot process effacement, tubular atrophy, interstitial fibrosis, and casts, were observed. In human primary FSGS, we noted reduced glomerular expression of YAP. Taken together, these results suggest a role for YAP as a physiologic antagonist of podocyte apoptosis, the signaling of which is essential for maintaining the integrity of the glomerular filtration barrier. These data suggest potential nephrotoxicity with strategies directed toward inhibition of YAP function. Further studies should evaluate the role of YAP in proteinuric glomerular disease pathogenesis and its potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Monica Schwartzman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Antoine Reginensi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jenny S Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John M Basgen
- Department of Research, Morphometry and Stereology Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Susanne B Nicholas
- Department of Research, Morphometry and Stereology Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California; Department of Medicine, Division of Nephrology, University of California Los Angeles, Los Angeles, California; and
| | - Vivette D'Agati
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York;
| |
Collapse
|
28
|
Puelles VG, Douglas-Denton RN, Cullen-McEwen LA, Li J, Hughson MD, Hoy WE, Kerr PG, Bertram JF. Podocyte Number in Children and Adults: Associations with Glomerular Size and Numbers of Other Glomerular Resident Cells. J Am Soc Nephrol 2015; 26:2277-88. [PMID: 25568174 DOI: 10.1681/asn.2014070641] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/02/2014] [Indexed: 11/03/2022] Open
Abstract
Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335-502), 389 NECs (IQR=265-498), and 146 PECs (IQR=111-206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431-746; P<0.01), 1383 NECs (IQR=998-2042; P<0.001), and 367 PECs (IQR=309-673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 10(6) µm(3)) than small glomeruli from adults and children (932 podocytes per 10(6) µm(3); P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology.
Collapse
Affiliation(s)
- Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | | | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia; and Department of Medicine, Monash University, Melbourne, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia;
| |
Collapse
|
29
|
Crobe A, Desogus M, Sanna A, Fraschini M, Gerosa C, Fanni D, Fanos V, Van Eyken P, Faa G. Decreasing podocyte number during human kidney intrauterine development. Am J Physiol Renal Physiol 2014; 307:F1033-40. [DOI: 10.1152/ajprenal.00165.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nephron number at birth has relevant clinical importance with implications for long-term renal health. In recent years, the podocyte depletion hypothesis has emerged as an important concept in kidney pathology. This study was aimed at verifying whether human podocyte number changes significantly during intrauterine life. To this end, 62 subjects with gestational ages ranging from 20 to 41 wk were examined. Kidney sections were stained with hematoxylin and eosin and digitally scanned at ×400 magnification. Subjects were subdivided into fetuses (gestational age ≤24 wk, n = 5), preterms (gestational age ≥25 and ≤36 wk, n = 39), and full-term newborns (gestational age ≥37 wk, n = 18). The average podocyte number of 1,908 ± 645, 1,394 ± 498, and 1,126 ± 256 was, respectively, observed in fetuses, preterms, and full-term newborns. A significant main effect ( P = 0.0051) of gestational age on podocyte number was observed with a significantly lower number in full-term newborns than in fetuses ( P < 0.01). Intragroup variability was also observed. We speculate that variations in podocyte number could be correlated with factors such as drugs and maternal diet occurring during intrauterine life. In conclusion, this study shows, for the first time, a decreasing trend in podocyte number during gestation.
Collapse
Affiliation(s)
- A. Crobe
- Section of Pathology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M. Desogus
- Section of Pathology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - A. Sanna
- Section of Pathology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M. Fraschini
- Department of Electrical and Electronics Engineering, University of Cagliari, Cagliari, Italy
| | - C. Gerosa
- Section of Pathology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - D. Fanni
- Section of Pathology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - V. Fanos
- NICU, Neonatal Pathology, Puericulture Institute and Neonatal Section, University of Cagliari, Cagliari, Italy; and
| | - P. Van Eyken
- Department of Pathology, KU Leuven, Leuven, Belgium
| | - G. Faa
- Section of Pathology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Qian C, Yu X, Pothayee N, Dodd S, Bouraoud N, Star R, Bennett K, Koretsky A. Live nephron imaging by MRI. Am J Physiol Renal Physiol 2014; 307:F1162-8. [PMID: 25186296 DOI: 10.1152/ajprenal.00326.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The local sensitivity of MRI can be improved with small MR detectors placed close to regions of interest. However, to maintain such sensitivity advantage, local detectors normally need to communicate with the external amplifier through cable connections, which prevent the use of local detectors as implantable devices. Recently, an integrated wireless amplifier was developed that can efficiently amplify and broadcast locally detected signals, so that the local sensitivity was enhanced without the need for cable connections. This integrated detector enabled the live imaging of individual glomeruli using negative contrast introduced by cationized ferritin, and the live imaging of renal tubules using positive contrast introduced by gadopentetate dimeglumine. Here, we utilized the high blood flow to image individual glomeruli as hyperintense regions without any contrast agent. These hyperintense regions were identified for pixels with signal intensities higher than the local average. Addition of Mn(2+) allowed the simultaneous detection of both glomeruli and renal tubules: Mn(2+) was primarily reabsorbed by renal tubules, which would be distinguished from glomeruli due to higher enhancement in T1-weighted MRI. Dynamic studies of Mn(2+) absorption confirmed the differential absorption affinity of glomeruli and renal tubules, potentially enabling the in vivo observation of nephron function.
Collapse
Affiliation(s)
- Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland;
| | - Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland; High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tubingen, Germany
| | - Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Robert Star
- Division of Kidney Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kevin Bennett
- Department of Biology, University of Hawaii, Honolulu, Hawaii; and
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Penning ME, Bloemenkamp KWM, van der Zon T, Zandbergen M, Schutte JM, Bruijn JA, Bajema IM, Baelde HJ. Association of preeclampsia with podocyte turnover. Clin J Am Soc Nephrol 2014; 9:1377-85. [PMID: 25035270 DOI: 10.2215/cjn.12811213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Preeclampsia is characterized by hypertension and proteinuria, and increased shedding of podocytes into the urine is a common finding. This finding raises the question of whether preeclamptic nephropathy involves podocyte damage. This study examined podocyte-related changes in a unique sample of renal tissues obtained from women who died of preeclampsia. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS All patients with preeclampsia who died in The Netherlands since 1990 and had available autopsy tissue were identified using a nationwide database of the Dutch Pathology Registry (PALGA). This resulted in a cohort of 11 women who died from preeclampsia. Three control groups were also identified during the same time period, and consisted of normotensive women who died during pregnancy (n=25), and nonpregnant controls either with (n=14) or without (n=13) chronic hypertension. Glomerular lesions, including podocyte numbers, podocyte proliferation, and parietal cell activation, were measured. RESULTS Patients with preeclampsia had prominent characteristic glomerular lesions. The results showed that the number of podocytes per glomerulus did not differ significantly between the patients with preeclampsia and the control groups. However, preeclampsia was associated with a significant increase in intraglomerular cell proliferation (7.3% [SD 9.4] of the glomeruli of patients with preeclampsia had Ki-67-positive cells versus 1.6% [SD 3.3] of the glomeruli of hypertensive controls and 1.1% [SD 1.3] of nonpregnant controls; P=0.004) and activated parietal epithelial cells on a podocyte location (34% [SD 13.1] of the glomeruli of patients with preeclampsia versus 18.0% [SD 15.3] of pregnant controls, 11.9% [SD 13.2] of hypertensive controls, and 10.8% [SD 13.4] of nonpregnant controls; P=0.01). CONCLUSIONS These findings suggest that the recently described mechanisms of podocyte replacement play a role in preeclampsia. These results provide key new insights into the pathogenesis of preeclamptic nephropathy, and they open new possibilities for developing therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | - Joke M Schutte
- Department of Obstetrics and Gynecology, Isala Zwolle, Zwolle, The Netherlands
| | | | | | | |
Collapse
|
32
|
Venkatareddy M, Wang S, Yang Y, Patel S, Wickman L, Nishizono R, Chowdhury M, Hodgin J, Wiggins PA, Wiggins RC. Estimating podocyte number and density using a single histologic section. J Am Soc Nephrol 2013; 25:1118-29. [PMID: 24357669 DOI: 10.1681/asn.2013080859] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reduction in podocyte density to levels below a threshold value drives glomerulosclerosis and progression to ESRD. However, technical demands prohibit high-throughput application of conventional morphometry for estimating podocyte density. We evaluated a method for estimating podocyte density using single paraffin-embedded formalin-fixed sections. Podocyte nuclei were imaged using indirect immunofluorescence detection of antibodies against Wilms' tumor-1 or transducin-like enhancer of split 4. To account for the large size of podocyte nuclei in relation to section thickness, we derived a correction factor given by the equation CF=1/(D/T+1), where T is the tissue section thickness and D is the mean caliper diameter of podocyte nuclei. Normal values for D were directly measured in thick tissue sections and in 3- to 5-μm sections using calibrated imaging software. D values were larger for human podocyte nuclei than for rat or mouse nuclei (P<0.01). In addition, D did not vary significantly between human kidney biopsies at the time of transplantation, 3-6 months after transplantation, or with podocyte depletion associated with transplant glomerulopathy. In rat models, D values also did not vary with podocyte depletion, but increased approximately 10% with old age and in postnephrectomy kidney hypertrophy. A spreadsheet with embedded formulas was created to facilitate individualized podocyte density estimation upon input of measured values. The correction factor method was validated by comparison with other methods, and provided data comparable with prior data for normal human kidney transplant donors. This method for estimating podocyte density is applicable to high-throughput laboratory and clinical use.
Collapse
Affiliation(s)
| | - Su Wang
- Departments of Internal Medicine
| | - Yan Yang
- Departments of Internal Medicine
| | | | | | | | | | - Jeffrey Hodgin
- Pathology, University of Michigan, Ann Arbor, Michigan; and
| | - Paul A Wiggins
- Department of Physics and Department of Bioengineering, University of Washington, Seattle, Washington
| | | |
Collapse
|