1
|
van Zyl M, Cramer E, Sanders JSF, Leuvenink HGD, Lisman T, van Rooy MJ, Hillebrands JL. The role of neutrophil extracellular trap formation in kidney transplantation: Implications from donors to the recipient. Am J Transplant 2024; 24:1547-1557. [PMID: 38719094 DOI: 10.1016/j.ajt.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Kidney transplantation remains the gold standard for patients with end-stage renal disease, but severe donor organ shortage has led to long waiting lists. The utilization of expanded criteria donor kidneys within the category of deceased donors has enlarged the pool of available kidneys for transplantation; however, these grafts often have an increased risk for delayed graft function or reduced graft survival following transplantation. During brain or circulatory death, neutrophils are recruited to the vascular beds of kidneys where a proinflammatory microenvironment might prime the formation of neutrophil extracellular traps (NETs), web-like structures, containing proteolytic enzymes, DNA, and histones. NETs are known to cause tissue damage and specifically endothelial damage while activating other systems such as coagulation and complement, contributing to tissue injury and an unfavorable prognosis in various diseases. In lung transplantation and kidney transplantation studies, NETs have also been associated with primary graft dysfunction or rejection. In this review, the role that NETs might play across the different phases of transplantation, already initiated in the donor, during preservation, and in the recipient, will be discussed. Based on current knowledge, NETs might be a promising therapeutic target to improve graft outcomes.
Collapse
Affiliation(s)
- Maryna van Zyl
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Elodie Cramer
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Mia-Jeanne van Rooy
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Corken AL, Ong V, Kore R, Ghanta SN, Karaduta O, Pathak R, Rose S, Porter C, Jain N. Platelets, inflammation, and purinergic receptors in chronic kidney disease. Kidney Int 2024; 106:392-399. [PMID: 38821448 PMCID: PMC11343655 DOI: 10.1016/j.kint.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 06/02/2024]
Abstract
Platelets are anucleated cells that circulate in the bloodstream. Historically, platelets were thought to perform a singular function-stop bleeding via clotting. Although platelets do play a key role in hemostasis and thrombosis, recent studies indicate that platelets also modulate inflammation, and this platelet-induced inflammation contributes to the pathophysiology of various diseases such as atherosclerosis and diabetes mellitus. Thus, in recent years, our understanding of platelet function has broadened. In this review, we revisit the classic role of platelets in hemostasis and thrombosis and describe the newly recognized function of platelets in modulating inflammation. We cover the potential use of purinergic receptor antagonists to prevent platelet-modulated inflammation, particularly in patients with chronic kidney disease, and finally, we define key questions that must be addressed to understand how platelet-modulated inflammation contributes to the pathophysiology of chronic kidney disease.
Collapse
Affiliation(s)
- Adam L Corken
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Vincz Ong
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rajshekhar Kore
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sai N Ghanta
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Oleg Karaduta
- Department of Physician Assistant Studies, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rupak Pathak
- Department of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Craig Porter
- Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Nishank Jain
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
3
|
Luo S, Nie M, Song L, Xie Y, Zhong M, Tan S, An R, Li P, Tan L, Xie X. Characteristic changes in blood routine and peripheral blood lymphocyte subpopulations in recipients of different types of rejection. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:417-425. [PMID: 38970516 PMCID: PMC11208394 DOI: 10.11817/j.issn.1672-7347.2024.230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Rejection remains the most important factor limiting the survival of transplanted kidneys. Although a pathological biopsy of the transplanted kidney is the gold standard for diagnosing rejection, its limitations prevent it from being used as a routine monitoring method. Recently, peripheral blood lymphocyte subpopulation testing has become an important means of assessing the body's immune system, however, its application value and strategy in the field of kidney transplantation need further exploration. Additionally, the development and utilization of routine test parameters are also important methods for exploring diagnostic strategies and predictive models for kidney transplant diseases. This study aims to explore the correlation between peripheral blood lymphocyte subpopulations and T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), as well as their diagnostic value, in conjunction with routine blood tests. METHODS A total of 154 kidney transplant recipients, who met the inclusion and exclusion criteria and were treated at the Second Xiangya Hospital of Central South University from January to December, 2021, were selected as the study subjects. They were assigned into a stable group, a TCMR group, and an ABMR group, based on the occurrence and type of rejection. The basic and clinical data of these recipients were retrospectively analyzed and compared among the 3 groups. The transplant kidney function, routine blood tests, and peripheral blood lymphocyte subpopulation data of the TCMR group and the ABMR group before rejection treatment were compared with those of the stable group. RESULTS The stable, TCMR group, and ABMR group showed no statistically significant differences in immunosuppressive maintenance regimens or sources of transplanted kidneys (all P>0.05). However, the post-transplant duration was significantly longer in the ABMR group compared with the stable group (P<0.001) and the TCMR group (P<0.05). Regarding kidney function, serum creatinine levels in the ABMR group were higher than in the stable group and the TCMR group (both P<0.01), with the TCMR group also showing higher levels than the stable group (P<0.01). Both TCMR and ABMR groups had significantly higher blood urea nitrogen levels than the stable group (P<0.01), with no statistically significant difference between TCMR and ABMR groups (P>0.05). The estimated glomerular filtration rate (eGFR) was lower in both TCMR and ABMR groups compared with the stable group (both P<0.01). In routine blood tests, the ABMR group had lower hemoglobin, red blood cell count, and platelet count than the stable group (all P<0.05). The TCMR group had higher neutrophil percentage (P<0.05) and count (P<0.05) than the stable group, and the ABMR group had a higher neutrophil percentage than the stable group (P<0.05). The eosinophil percentage and count in the TCMR group were lower than in the stable and ABMR groups (all P<0.05). Both TCMR and ABMR groups had lower basophil percentage and count, as well as lower lymphocyte percentage and count, compared with the stable group (all P<0.05). There were no significant differences in monocyte percentage and count among the 3 groups (all P>0.05). In lymphocyte subpopulations, the TCMR and ABMR groups had lower counts of CD45+ cells and T cells compared with the stable group (all P<0.05). The TCMR group also had lower counts of CD4+ T cells, NK cells, and B cells than the stable group (all P<0.05). There were no significant differences in the T cell percentage, CD4+ T cell percentage, CD8+ T cell percentage and their counts, CD4+/CD8+ T cell ratio, NK cell percentage, and B cell percentage among the stable, TCMR, and ABMR groups (all P>0.05). CONCLUSIONS The occurrence of rejection leads to impaired transplant kidney function, accompanied by characteristic changes in some parameters of routine blood tests and peripheral blood lymphocyte subpopulations in kidney transplant recipients. The different characteristics of changes in some parameters of routine blood tests and peripheral blood lymphocyte subpopulations during TCMR and ABMR may help predict and diagnose rejection and differentiate between TCMR and ABMR.
Collapse
Affiliation(s)
- Shuaiyu Luo
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Manhua Nie
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lei Song
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yixin Xie
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Mingda Zhong
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Shubo Tan
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
- Department of Urology, Institute of Urology Transplantation, Second Hospital, University of South China, Hengyang Hunan 421001, China
| | - Rong An
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Pan Li
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Liang Tan
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xubiao Xie
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011.
| |
Collapse
|
4
|
Lin J, Lv J, Yu X, Xue X, Yu S, Wang H, Chen J. Single-Cell Heterogeneity Restorative Chimeric Engineering Nanoparticles for Alleviating Antibody-Mediated Allograft Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34588-34606. [PMID: 37459593 DOI: 10.1021/acsami.3c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Disturbance of single-cell transcriptional heterogeneity is an inevitable consequence of persistent donor-specific antibody (DSA) production and allosensitization. However, identifying and efficiently clearing allospecific antibody repertoires to restore single-cell transcriptional profiles remain challenging. Here, inspired by the high affinity of natural bacterial proteins for antibodies, a genetic engineered membrane-coated nanoparticle termed as DSA trapper by the engineering chimeric gene of protein A/G with phosphatidylserine ligands for macrophage phagocytosis was reported. It has been shown that DSA trappers adsorbed alloreactive antibodies with high saturation and activated the heterophagic clearance of antibody complexes, alleviating IgG deposition and complement activation. Remarkably, DSA trappers increased the endothelial protective lineages by 8.39-fold, reversed the highly biased cytotoxicity, and promoted the proliferative profiles of Treg cells, directly providing an obligate immune tolerant niche for single-cell heterogeneity restoration. In the mice of allogeneic transplantation, the DSA trapper spared endothelial from inflammatory degenerative rosette, improved the glomerular filtration rate, and prolonged the survival of allogeneic mice from 23.6 to 78.3 days. In general, by identifying the lineage characteristics of rejection-related antibodies, the chimeric engineered DSA trapper realized immunoadsorption and further phagocytosis of alloantibody complexes to restore the single-cell genetic architecture of the allograft, offering a promising prospect for the treatment of alloantibody-mediated immune injury.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Xianping Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Shiping Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| |
Collapse
|
5
|
van den Berg TA, Nieuwenhuijs-Moeke GJ, Lisman T, Moers C, Bakker SJ, Pol RA. Pathophysiological Changes in the Hemostatic System and Antithrombotic Management in Kidney Transplant Recipients. Transplantation 2023; 107:1248-1257. [PMID: 36529881 PMCID: PMC10205120 DOI: 10.1097/tp.0000000000004452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, the main cause for early graft loss is renal graft thrombosis because kidney transplant outcomes have improved drastically owing to advances in immunological techniques and immunosuppression. However, data regarding the efficacy of antithrombotic therapy in the prevention of renal graft thrombosis are scarce. Adequate antithrombotic management requires a good understanding of the pathophysiological changes in the hemostatic system in patients with end-stage kidney disease (ESKD). Specifically, ESKD and dialysis disrupt the fine balance between pro- and anticoagulation in the body, and further changes in the hemostatic system occur during kidney transplantation. Consequently, kidney transplant recipients paradoxically are at risk for both thrombosis and bleeding. This overview focuses on the pathophysiological changes in hemostasis in ESKD and kidney transplantation and provides a comprehensive summary of the current evidence for antithrombotic management in (adult) kidney transplant recipients.
Collapse
Affiliation(s)
- Tamar A.J. van den Berg
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Ton Lisman
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J.L. Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
6
|
Desai C, Koupenova M, Machlus KR, Sen Gupta A. Beyond the thrombus: Platelet-inspired nanomedicine approaches in inflammation, immune response, and cancer. J Thromb Haemost 2022; 20:1523-1534. [PMID: 35441793 PMCID: PMC9321119 DOI: 10.1111/jth.15733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
The traditional role of platelets is in the formation of blood clots for physiologic (e.g., in hemostasis) or pathologic (e.g., in thrombosis) functions. The cellular and subcellular mechanisms and signaling in platelets involved in these functions have been extensively elucidated and new knowledge continues to emerge, resulting in various therapeutic developments in this area for the management of hemorrhagic or thrombotic events. Nanomedicine, a field involving design of nanoparticles with unique biointeractive surface modifications and payload encapsulation for disease-targeted drug delivery, has become an important component of such therapeutic development. Beyond their traditional role in blood clotting, platelets have been implicated to play crucial mechanistic roles in other diseases including inflammation, immune response, and cancer, via direct cellular interactions, as well as secretion of soluble factors that aid in the disease microenvironment. To date, the development of nanomedicine systems that leverage these broader roles of platelets has been limited. Additionally, another exciting area of research that has emerged in recent years is that of platelet-derived extracellular vesicles (PEVs) that can directly and indirectly influence physiological and pathological processes. This makes PEVs a unique paradigm for platelet-inspired therapeutic design. This review aims to provide mechanistic insight into the involvement of platelets and PEVs beyond hemostasis and thrombosis, and to discuss the current state of the art in the development of platelet-inspired therapeutic technologies in these areas, with an emphasis on future opportunities.
Collapse
Affiliation(s)
- Cian Desai
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
| | - Milka Koupenova
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Kellie R. Machlus
- Department of SurgeryVascular Biology ProgramBoston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anirban Sen Gupta
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
7
|
Lai X, Zheng X, Mathew JM, Gallon L, Leventhal JR, Zhang ZJ. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front Immunol 2021; 12:661643. [PMID: 34093552 PMCID: PMC8173220 DOI: 10.3389/fimmu.2021.661643] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Despite advances in post-transplant management, the long-term survival rate of kidney grafts and patients has not improved as approximately forty percent of transplants fails within ten years after transplantation. Both immunologic and non-immunologic factors contribute to late allograft loss. Chronic kidney transplant rejection (CKTR) is often clinically silent yet progressive allogeneic immune process that leads to cumulative graft injury, deterioration of graft function. Chronic active T cell mediated rejection (TCMR) and chronic active antibody-mediated rejection (ABMR) are classified as two principal subtypes of CKTR. While significant improvements have been made towards a better understanding of cellular and molecular mechanisms and diagnostic classifications of CKTR, lack of early detection, differential diagnosis and effective therapies continue to pose major challenges for long-term management. Recent development of high throughput cellular and molecular biotechnologies has allowed rapid development of new biomarkers associated with chronic renal injury, which not only provide insight into pathogenesis of chronic rejection but also allow for early detection. In parallel, several novel therapeutic strategies have emerged which may hold great promise for improvement of long-term graft and patient survival. With a brief overview of current understanding of pathogenesis, standard diagnosis and challenges in the context of CKTR, this mini-review aims to provide updates and insights into the latest development of promising novel biomarkers for diagnosis and novel therapeutic interventions to prevent and treat CKTR.
Collapse
Affiliation(s)
- Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Zheng
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - James M. Mathew
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Medicine, Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Braun WE, Herlitz L, Li J, Schold J, Poggio E, Stephany B, Fatica R, Nally J, Brown K, Fairchild R, Baldwin W, Goldfarb D, Kiser W, Augustine J, Avery R, Tomford JW, Nakamoto S. Continuous function of 80 primary renal allografts for 30-47 years with maintenance prednisone and azathioprine/mycophenolate mofetil therapy: A clinical mosaic of long-term successes. Clin Transplant 2020; 35:e14131. [PMID: 33112428 DOI: 10.1111/ctr.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Eighty primary renal allograft recipients, 61 living-related and 19 deceased donor, transplanted from 1963 through 1984 had continuous graft function for 30-47 years. They were treated with three different early immunosuppression programs (1963-1970: thymectomy, splenectomy, high oral prednisone; 1971-1979: divided-dose intravenous methylprednisolone; and 1980-1984: antilymphocyte globulin) each with maintenance prednisone and azathioprine, and no calcineurin inhibitor. Long-term treatment often included the anti-platelet medication, dipyridamole. Although both recipient and donor ages were young (27.2 ± 9.5 and 33.1 ± 12.0 years, respectively), six recipients with a parent donor had >40-year success. At 35 years, death-censored graft survival was 85.3% and death with a functioning graft 84.2%; overall graft survival was 69.5% (Kaplan-Meier estimate). Biopsy-documented early acute cellular and highly probable antibody-mediated rejections were reversed with divided-dose intravenous methylprednisolone. Complications are detailed in an integrated timeline. Hypogammaglobulinemia identified after 20 years doubled the infection rate. An association between a monoclonal gammopathy of undetermined significance and non-plasma-cell malignancies was identified. Twenty-seven azathioprine-treated patients tested after 37 years had extremely low levels of T1/T2 B lymphocytes representing a "low immunosuppression state of allograft acceptance (LISAA)". The lifetime achievements of these patients following a single renal allograft and low-dose maintenance immunosuppression are remarkable. Their success evolved as a clinical mosaic.
Collapse
Affiliation(s)
- William E Braun
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Jianbo Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse Schold
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Emilio Poggio
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Brian Stephany
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Richard Fatica
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Nally
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Kathleen Brown
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - William Baldwin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - David Goldfarb
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - William Kiser
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua Augustine
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Robin Avery
- Division of Infectious Disease (Transplant/Oncology), Johns Hopkins, Baltimore, MD, USA
| | - J Walton Tomford
- Department of Infectious Disease, Cleveland Clinic, Cleveland, OH, USA
| | - Satoru Nakamoto
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Platelets: Mechanistic and Diagnostic Significance in Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
In addition to their function in coagulation, platelets recently have been recognized as an important component of innate immune responses. This review relates salient immune functions of platelets to transplants.
Recent Findings
Platelets are critical bridges between vascular endothelium and leukocytes. Real-time imaging of platelets has demonstrated that platelets rapidly adhere to vascular endothelium and form a nidus for attachment of neutrophils and then monocytes. However, the majority of platelets subsequently release from endothelium and return to the circulation in an activated state. These recycled platelets have the potential to transport proteins and RNA from the graft to the recipient. Some of the platelets that return to the circulation are attached to leukocytes.
Summary
Platelets have the potential to modulate many elements of the graft and the immune response from the time of organ retrieval through ischemia-reperfusion to acute and chronic rejection. Beyond mechanistic considerations, assays that detect changes in platelet protein or RNA expression could be used to monitor early inflammatory responses in transplants.
Collapse
|
10
|
Zhan Y, Lu R, Meng H, Hou J, Huang W, Wang X, Hu W. Platelets as inflammatory mediators in a murine model of periodontitis. J Clin Periodontol 2020; 47:572-582. [DOI: 10.1111/jcpe.13265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yalin Zhan
- First Clinical Division Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Ruifang Lu
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Huanxin Meng
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Jianxia Hou
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Wenxue Huang
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Xian'e Wang
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Wenjie Hu
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| |
Collapse
|
11
|
Torres-Ruiz J, Villca-Gonzales R, Gómez-Martín D, Zentella-Dehesa A, Tapia-Rodríguez M, Uribe-Uribe NO, Morales-Buenrostro LE, Alberú J. A potential role of neutrophil extracellular traps (NETs) in kidney acute antibody mediated rejection. Transpl Immunol 2020; 60:101286. [PMID: 32156665 DOI: 10.1016/j.trim.2020.101286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The aim of this study was to evaluate neutrophil extracellular traps (NETs) in kidney transplant recipients (KTR) and their potential involvement in acute antibody-mediated rejection (AAMR). METHODS We studied 3 groups: KTR with AAMR (KTR-Cases, n = 14); KTR without any immunologic event (KTR-Controls, n = 14) and donors (n = 12). Spontaneous and lipopolysaccharide-induced NETosis were evaluated by immunofluorescence indirect (IFI) (NET/cells ratio). Plasmatic cH3-DNA complexes were evaluated by ELISA, (Optic Density Index - ODI). The expression of MPO and citrullinated histone 4 (cH4) was evaluated in renal biopsies. RESULTS We found an enhanced spontaneous NETosis in KTR regardless of whether they had rejection. The Nets/cells ratio in spontaneous NETosis was 0.203 (IQR 0.12-0.34) in Total-KTR and 0.094 (IQR 0.01-0.17) in donors, p = .011. Likewise, the ODI of cH3-DNA was 1.41 (IQR 0.94-1.72) in Total-KTR, and 0.95 (IQR 0.83-1.27) in donors, p = .019. KTR-Cases had the higher amount of NETs 1.70 (IQR 1.19-1.91). In two KTR-Cases, expression of MPO and cH4 was found in biopsies. CONCLUSIONS KTR show enhanced NETosis. This may indicate a permanent activation of neutrophils. Although more studies are needed, the higher amount of NETs and netting neutrophils in biopsies of KTR-Cases suggest a role of NETosis in AAMR.
Collapse
Affiliation(s)
- Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Emergency Medicine Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roxana Villca-Gonzales
- Department of Nephrology, Hospital Regional Lic Adolfo Lopez Mateos, ISSSTE, Mexico City, Mexico
| | - Diana Gómez-Martín
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Alejandro Zentella-Dehesa
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norma O Uribe-Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Josefina Alberú
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
12
|
Martins SR, Alves LV, Cardoso CN, Silva LG, Nunes FF, de Lucas Júnior FDM, Silva AC, Dusse LM, Alpoim PN, Mota AP. Cell-derived microparticles and von Willebrand factor in Brazilian renal transplant recipients. Nephrology (Carlton) 2019; 24:1304-1312. [PMID: 31482669 DOI: 10.1111/nep.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 01/19/2023]
Abstract
AIM This study was aimed at investigating platelet-derived microparticles (PMP), endothelium cell-derived microparticles (EMP) and von Willebrand factor (VWF) according to renal function and time post-transplant. We found this study relevant because unusual biomarkers seem to be a promising tool to evaluate chronic renal disease and post-transplant monitoring. METHODS Ninety-one renal transplant recipients (RTx) were allocated into groups according to creatinine plasma levels (C1 < 1.4 and C2 ≥ 1.4 mg/dL), estimated glomerular filtration rates (R1 < 60 and R2 ≥ 60 mL/min per 1.73 m2 ) and time post-transplant (T1: 3-24; T2: 25-60; T3: 61-120; and T4 > 120 months). EMP and PMP levels were assessed by flow cytometry and VWF levels were evaluated by enzyme-linked immunosorbent assay. RESULTS Platelet-derived microparticle levels were higher in C1 group compared with C2 (P = 0.00). According to diameter, small PMP and EMP (≤0.7 μm) were also higher in C1 group, all values of P less than 0.05. T1 and T2 groups have shown high EMP levels and a predominance of big microparticle (>0.7 μm) compared with T4 group, all values of P less than 0.05. Higher VWF levels were observed among RTx with creatinine ≥1.4 mg/dL compared with other RTx, P = 0.01. CONCLUSION The results showed that PMP, EMP and VWF are promising markers to evaluate endothelial function in RTx. These biomarkers could play a major role in monitoring patients after renal transplant.
Collapse
Affiliation(s)
- Suellen R Martins
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lorraine V Alves
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina N Cardoso
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Letícia G Silva
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Fc Nunes
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana Cs Silva
- Departament of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luci Ms Dusse
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia N Alpoim
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Pl Mota
- Departament of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Kramer CSM, Franke-van Dijk MEI, Priddey AJ, Pongrácz T, Gnudi E, Car H, Karahan GE, van Beelen E, Zilvold-van den Oever CCC, Rademaker HJ, de Haan N, Wuhrer M, Kosmoliaptsis V, Parren PWHI, Mulder A, Roelen DL, Claas FHJ, Heidt S. Recombinant human monoclonal HLA antibodies of different IgG subclasses recognising the same epitope: Excellent tools to study differential effects of donor-specific antibodies. HLA 2019; 94:415-424. [PMID: 31403241 PMCID: PMC6851673 DOI: 10.1111/tan.13664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/11/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
In the field of transplantation, the humoural immune response against mismatched HLA antigens of the donor is associated with inferior graft survival, but not in every patient. Donor‐specific HLA antibodies (DSA) of different immunoglobulin G (IgG) subclasses may have differential effects on the transplanted organ. Recombinant technology allows for the generation of IgG subclasses of a human monoclonal antibody (mAb), while retaining its epitope specificity. In order to enable studies on the biological function of IgG subclass HLA antibodies, we used recombinant technology to generate recombinant human HLA mAbs from established heterohybridomas. We generated all four IgG subclasses of a human HLA class I and class II mAb and showed that the different subclasses had a comparable affinity, normal human Fc glycosylation, and retained HLA epitope specificity. For both mAbs, the IgG1 and IgG3 isotypes were capable of binding complement component 3d (C3d) and efficient in complement‐dependent cell lysis against their specific targets, while the IgG2 and IgG4 subclasses were not able to induce cytotoxicity. Considering the fact that the antibody‐binding site and properties remained unaffected, these IgG subclass HLA mAbs are excellent tools to study the function of individual IgG subclass HLA class I and class II‐specific antibodies in a controlled fashion.
Collapse
Affiliation(s)
- Cynthia S M Kramer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marry E I Franke-van Dijk
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tamás Pongrácz
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Gnudi
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Helena Car
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van Beelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Noortje de Haan
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paul W H I Parren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Lava Therapeutics, 's-Hertogenbosch, The Netherlands
| | - Arend Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Zhao D, Liao T, Li S, Zhang Y, Zheng H, Zhou J, Han F, Dong Y, Sun Q. Mouse Model Established by Early Renal Transplantation After Skin Allograft Sensitization Mimics Clinical Antibody-Mediated Rejection. Front Immunol 2018; 9:1356. [PMID: 30022978 PMCID: PMC6039569 DOI: 10.3389/fimmu.2018.01356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023] Open
Abstract
Antibody-mediated rejection (AMR) is the main barrier to renal graft survival, and mouse renal AMR models are important to study this process. Current mouse models are established by priming the recipient to donor skin for over 7 days before kidney transplantation. The robustness of AMR in these cases is too strong to mimic clinical AMR and it is unclear why altering the priming times ranging from 7 to 91 days fails to reduce the AMR potency in these models. In the present study, we found that the donor-recipient combination and skin graft size were determinants of donor-specific antibody (DSA) development patterns after skin transplantation. DSA-IgG was sustained for over 100 days after skin challenge, accounting for an identical AMR robustness upon different skin priming times over 7 days. However, decreasing the skin priming time within 7 days attenuated the robustness of subsequent renal allograft AMR in C3H to Balb/c mice. Four-day skin priming guaranteed that recipients develop acute renal AMR mixed with a high ratio of graft-infiltrating macrophages, renal grafts survived for a mean of 6.4 ± 2.1 days, characterized by typical AMR histological changes, such as glomerulitis, peritubular capillary (PTC) dilation, and capillaritis, deposition of IgG and C3d in PTCs, but less prevalence of microthrombus, whereas the cellular rejection histological change of tubulitis was absent to mild. With this scheme, we also found that the renal AMR model can be developed using common mouse strains such as C57BL/6 and Balb/c, with mean prolonged renal graft survival times of 14.4 ± 5.0 days. Finally, we proved that donor-matched skin challenge after kidney transplantation did not strongly affect DSA development and kidney graft outcome. These findings may facilitate an understanding and establishment of mouse renal allograft AMR models and promote AMR-associated studies.
Collapse
Affiliation(s)
- Daqiang Zhao
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Liao
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siwen Li
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yannan Zhang
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haofeng Zheng
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhou
- Department of Pathology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Han
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Dong
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiquan Sun
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Coutance G, Van Aelst L, Hékimian G, Vidal C, Rouvier P, Saheb S, Gautreau C, Leprince P, Varnous S. Antibody-mediated rejection induced cardiogenic shock: Too late for conventional therapy. Clin Transplant 2018; 32:e13253. [DOI: 10.1111/ctr.13253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Guillaume Coutance
- Department of Cardiac and Thoracic Surgery; Cardiology Institute; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| | - Lucas Van Aelst
- Department of Cardiac and Thoracic Surgery; Cardiology Institute; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
- Department of Cardiovascular Sciences; KULeuven Campus Gasthuisberg O&N1; Leuven Belgium
| | - Guillaume Hékimian
- Department of Medical Intensive Care Unit; Cardiology Institute; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| | - Charles Vidal
- Department of Cardiac Anesthesia and Reanimation; Cardiology Institute; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| | - Philippe Rouvier
- Department of Pathology; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| | - Samir Saheb
- Department of Hemo-biotherapies; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| | - Chantal Gautreau
- Laboratory of Immunology and Histocompatibility, AP-HP; Saint Louis Hospital; Paris France
| | - Pascal Leprince
- Department of Cardiac and Thoracic Surgery; Cardiology Institute; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| | - Shaida Varnous
- Department of Cardiac and Thoracic Surgery; Cardiology Institute; Pitié Salpêtrière Hospital; University of Paris VI; Paris France
| |
Collapse
|
16
|
Zhan Y, Lu R, Meng H, Wang X, Sun X, Hou J. The role of platelets in inflammatory immune responses in generalized aggressive periodontitis. J Clin Periodontol 2017; 44:150-157. [PMID: 27883202 DOI: 10.1111/jcpe.12657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yalin Zhan
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Ruifang Lu
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Huanxin Meng
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Xian'e Wang
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Xiaojun Sun
- Department of Stomatology; The First Hospital of Shanxi Medical University; Taiyuan Shanxi China
| | - Jianxia Hou
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| |
Collapse
|
17
|
Acute antibody-mediated rejection in kidney transplant recipients. Transplant Rev (Orlando) 2017; 31:47-54. [DOI: 10.1016/j.trre.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
|
18
|
Abstract
Within a little more than a decade, the transplant of human organs for end-stage organ disease became a reality. The early barriers to successful long-term graft and patient survival were related to the inability to effectively control the immune system such that it would not attack the donor tissue but would still recognize and destroy invading organisms and cells. As immunosuppressive therapy has been refined and proper matching of donors and recipients has been improved, hyperacute rejection has become a rare occurrence and acute rejection has been markedly controlled. However, antibody-mediated rejection remains an important impediment to increased survival of transplanted organs. This article provides readers with a broad overview of the immune system, discusses mechanisms of transplant rejection, and details prevention, detection, and treatment of antibody-mediated rejection in solid organ transplant.
Collapse
Affiliation(s)
- Michael Petty
- Michael Petty is Cardiothoracic Clinical Nurse Specialist, University of Minnesota Medical Center, 420 Delaware St SE, Minneapolis, MN 55455
| |
Collapse
|
19
|
Mechanisms of antibody-mediated acute and chronic rejection of kidney allografts. Curr Opin Organ Transplant 2016; 21:7-14. [PMID: 26575854 DOI: 10.1097/mot.0000000000000262] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection is responsible for up to half of acute rejection episodes in kidney transplant patients and more than half of late graft failures. Antibodies cause acute graft abnormalities that are distinct from T cell-mediated rejection and at later times posttransplant, a distinct pathologic lesion is associated with capillary basement membrane multilayering and glomerulopathy. Despite the importance of donor-reactive antibodies as the leading cause of kidney graft failure, mechanisms underlying antibody-mediated acute and chronic kidney graft injury are poorly understood. Here, we review recent insights provided from clinical studies as well as from animal models that may help to identify new targets for therapy. RECENT FINDINGS Studies of biopsies from kidney grafts in patients with donor-specific antibody versus those without have utilized analysis of pathologic lesions and gene expression to identify the distinct characteristics of antibody-mediated rejection. These analyses have indicated the presence of natural killer cells and their activation during antibody-mediated rejection. The impact of studies of antibody-mediated allograft injury in animal models have lagged behind these clinical studies, but have been useful in testing the activation of innate immune components within allografts in the presence of donor-specific antibodies. SUMMARY Most insights into processes of antibody-mediated rejection of kidney grafts have come from carefully designed clinical studies. However, several new mouse models of antibody-mediated kidney allograft rejection may replicate the abnormalities observed in clinical kidney grafts and may be useful in directly testing mechanisms that underlie acute and chronic antibody-mediated graft injury.
Collapse
|
20
|
Valenzuela NM, Reed EF. Antibodies to HLA Molecules Mimic Agonistic Stimulation to Trigger Vascular Cell Changes and Induce Allograft Injury. CURRENT TRANSPLANTATION REPORTS 2015; 2:222-232. [PMID: 28344919 DOI: 10.1007/s40472-015-0065-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA)-induced signaling in endothelial and smooth muscle cells causes dramatic cytoskeletal rearrangement, increased survival, motility, proliferation, adhesion molecule and chemokine expression, and adhesion of leukocytes. These mechanisms are directly related to endothelial activation, neointimal proliferation, and intragraft accumulation of leukocytes during antibody-mediated rejection (AMR) and chronic rejection. Clustering of HLA by ligands in trans, such as in antigen-presenting cells at the immune synapse, triggers physiological functions analogous to HLA antibody-induced signaling in vascular cells. Emerging evidence has revealed previously unknown functions for HLA beyond antigen presentation, including association with coreceptors in cis to permit signal transduction, and modulation of intracellular signaling downstream of other receptors that may be relevant to HLA signaling in the graft vasculature. We discuss the literature regarding HLA-induced signaling in vascular endothelial and smooth muscle cells, as well as under endogenous biological conditions, and how such signaling relates to functional changes and pathological mechanisms during graft injury.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Ave Room 1-520, Los Angeles, CA 90095, USA
| | - Elaine F Reed
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Ave Room 1-520, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection. Trends Mol Med 2015; 21:319-29. [PMID: 25801125 DOI: 10.1016/j.molmed.2015.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multifaceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLAs). Despite the clearly detrimental impact of HLA antibodies (HLA-Abs) on graft function and survival, the prevention, diagnosis, and treatment of AMR remain a challenge. The histological manifestations of AMR reflect the signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a 'perfect storm' of inflammation. Characterization of antibody features that are critical for effector functions may help to identify HLA-Abs that are more likely to cause rejection. We also highlight recent advances that may pave the way for new, more effective therapies.
Collapse
|
22
|
Allison SJ. Transplantation: the role of platelets in antibody-mediated rejection. Nat Rev Nephrol 2014; 10:614. [PMID: 25201138 DOI: 10.1038/nrneph.2014.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|