1
|
Giordani AS, Menghi C, Proietti R, Stefanelli LF, Cacciapuoti M, Calò LA. Cardiovascular and arrhythmic manifestations of Bartter's and Gitelman's syndromes: do not forget the heart. A narrative literature review. J Hypertens 2024:00004872-990000000-00573. [PMID: 39445629 DOI: 10.1097/hjh.0000000000003910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Bartter's and Gitelman's syndromes (BS/GS) are genetically determined kidney tubulopathies leading to electrolyte and neurohormonal abnormalities. Although considered benign entities, major adverse cardiovascular events may complicate both syndromes, in form of ventricular arrhythmias leading to palpitations, syncope or sudden cardiac death, microvascular cardiac dysfunction and exercise-induced myocardial contractile deficit. The mechanisms leading to cardiovascular complications are not only driven by chronic electrolyte abnormalities, i.e. chronic hypokalemia and hypomagnesemia, but also by neurohormonal alterations that can impair vascular tone and myocardial contractility. In presence of triggering factors, BS/GS patients may experience a spectrum of cardiac arrhythmias necessitating prompt diagnosis and treatment. The aim of this review is to explore the pathophysiological mechanisms of BS and GS, highlighting those responsible for cardiovascular involvement, and to analyze the spectrum of associated cardiovascular complications. This highlights the importance of an integrated shared management of GS/BS patients between Nephrologist and Cardiologist.
Collapse
Affiliation(s)
- Andrea S Giordani
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Caterina Menghi
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Riccardo Proietti
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Kamel KS, Shapiro J, Harel Z. Alcalose métabolique et hypokaliémie chez une femme de 23 ans. CMAJ 2024; 196:E1089-E1093. [PMID: 39313265 PMCID: PMC11426351 DOI: 10.1503/cmaj.240163-f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Affiliation(s)
- Kamel S Kamel
- Division de néphrologie, St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Joshua Shapiro
- Division de néphrologie, St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Ziv Harel
- Division de néphrologie, St. Michael's Hospital, University of Toronto, Toronto, Ont.
| |
Collapse
|
3
|
Kamel KS, Shapiro J, Harel Z. A 23-year-old woman with metabolic alkalosis and hypokalemia. CMAJ 2024; 196:E760-E764. [PMID: 38857937 PMCID: PMC11173655 DOI: 10.1503/cmaj.240163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Affiliation(s)
- Kamel S Kamel
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Joshua Shapiro
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Ziv Harel
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ont.
| |
Collapse
|
4
|
Heleno CT, Miranda H, Gotera N, Kloecker G. The Use of Amiloride and Sodium-Glucose Cotransporter 2 Inhibitors in Cisplatin-Induced Hypomagnesemia: A Case Report and Review of the Literature. Cureus 2024; 16:e62546. [PMID: 39022464 PMCID: PMC11253575 DOI: 10.7759/cureus.62546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Cisplatin, a chemotherapy agent widely used since its FDA approval in 1978 for testicular cancer, is associated with nephrotoxicity and hypomagnesemia. Magnesium supplementation is not only a treatment for hypomagnesemia but also a well-established agent in preventing cisplatin-induced nephrotoxicity (CIN). Considering the challenges associated with intravenous magnesium use and even with the supplementation of oral forms, there is a need for drugs that effectively reduce urinary magnesium excretion. Amiloride and sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have emerged as potential candidates. Amiloride is a well-known potassium-sparing diuretic that also has a hypomagnesemia effect seen in preclinical data. SGLT2 inhibitors are a drug class initially used in diabetes that was also observed to have positive effects on cardiovascular mortality, diabetic kidney disease, and hypomagnesemia. SGLT2 inhibitors were found to reduce hypomagnesemia in a meta-analysis study of 18 trials. However, these trials were not specifically designed for the evaluation of hypomagnesemia, and their current use in hypomagnesemia is considered off-label.
Collapse
Affiliation(s)
- Caio T Heleno
- Hematology and Oncology, University of Louisville, Louisville, USA
| | - Helena Miranda
- Medicine, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Nico Gotera
- Clinical Internal Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Goetz Kloecker
- Hematology and Oncology, University of Louisville, Louisville, USA
| |
Collapse
|
5
|
Shah CV, Sparks MA, Lee CT. Sodium/Glucose Cotransporter 2 Inhibitors and Magnesium Homeostasis: A Review. Am J Kidney Dis 2024; 83:648-658. [PMID: 38372686 DOI: 10.1053/j.ajkd.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024]
Abstract
Magnesium (Mg2+), also known as "the forgotten ion," is the second most abundant intracellular cation and is essential in a broad range of intracellular physiological and biochemical reactions. Its deficiency, hypomagnesemia (Mg2+<1.8mg/dL), is a prevalent condition and routinely poses challenges in its management in clinical practice. Sodium/glucose cotransporter 2 (SGLT2) inhibitors have emerged as a new class of drugs with treating hypomagnesemia as their unique extraglycemic benefit. The beneficial effect of SGLT2 inhibitors on magnesium balance in patients with diabetes with or without hypomagnesemia has been noted as a class effect in recent meta-analysis data from randomized clinical trials. Some reports have demonstrated their role in treating refractory hypomagnesemia in patients with or without diabetes. Moreover, studies on animal models have attempted to illustrate the effect of SGLT2 inhibitors on Mg2+homeostasis. In this review, we discuss the current evidence and possible pathophysiological mechanisms, and we provide directions for further research. We conclude by suggesting the effect of SGLT2 inhibitors on Mg2+homeostasis is a class effect, with certain patients gaining significant benefits. Further studies are needed to examine whether SGLT2 inhibitors can become a desperately needed novel class of medicines in treating hypomagnesemia.
Collapse
Affiliation(s)
- Chintan V Shah
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.
| | - Matthew A Sparks
- Division of Nephrology and Department of Medicine, Duke University, and Durham VA Health Care System, Durham, North Carolina
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Kaohsiung Municipal Feng-Shan Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Protos AN, Jeyakumar AKC, Sams H, Dossabhoy NR, Tsiouris A. Coronary artery bypass surgery in a patient with Bartter's syndrome - postoperative critical care management: a case report. Indian J Thorac Cardiovasc Surg 2024; 40:357-360. [PMID: 38681720 PMCID: PMC11045673 DOI: 10.1007/s12055-023-01658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 05/01/2024] Open
Abstract
Bartter syndrome is a rare, renal tubulopathy caused by defective salt reabsorption in the thick ascending limb of the loop of Henle which results in salt wasting, hypokalemia, and metabolic disturbances. The electrolyte disturbances associated with this condition can be difficult to manage in the postoperative setting, especially in patients undergoing cardiac surgery. We report a case of a 62-year-old male with a history of diabetes, hypertension, coronary artery disease, and Bartter syndrome who underwent coronary artery bypass grafting and who developed severe lactic acidemia and severe electrolyte abnormalities postoperatively. Treatment consisted of aggressive resuscitation with crystalloid and intravenous (IV) electrolyte replacement.
Collapse
Affiliation(s)
- Adam Nicholas Protos
- Division of Cardiac Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216 USA
| | - Ashok Kumar Coimbatore Jeyakumar
- Division of Cardiac Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216 USA
| | - Hanna Sams
- Division of Cardiac Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216 USA
| | - Neville Rohinton Dossabhoy
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216 USA
| | - Athanasios Tsiouris
- Division of Cardiac Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216 USA
| |
Collapse
|
7
|
Liu B, Huang C, Pan Y, Yao J. An unusual cause of hypokalaemia. BMJ 2024; 384:e077724. [PMID: 38331452 DOI: 10.1136/bmj-2023-077724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Bo Liu
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Cao Huang
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Yunfei Pan
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Jianping Yao
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
8
|
Huang X, Wu M, Mou L, Zhang Y, Jiang J. Gitelman syndrome combined with diabetes mellitus: A case report and literature review. Medicine (Baltimore) 2023; 102:e36663. [PMID: 38115360 PMCID: PMC10727606 DOI: 10.1097/md.0000000000036663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
RATIONALE Gitelman syndrome (GS) is an uncommon autosomal recessive tubulopathy resulting from a functional deletion mutation in the SLC12A3 gene. Its onset is typically insidious and challenging to discern, and it is characterized by hypokalemia, metabolic alkalosis, and reduced urinary calcium excretion. There is limited literature on the diagnosis and management of GS in individuals with concomitant diabetes. PATIENT CONCERNS A 36-year-old male patient with a longstanding history of diabetes exhibited suboptimal glycemic control. Additionally, he presented with concurrent findings of hypokalemia, hypomagnesemia, hypocalciuria, and metabolic alkalosis. DIAGNOSIS Building upon the patient's clinical manifestations and extensive laboratory evaluations, we conducted thorough genetic testing, leading to the identification of a compound heterozygous mutation within the SLC12A3 gene. This definitive finding confirmed the diagnosis of GS. INTERVENTIONS We have formulated a detailed medication regimen for patients, encompassing personalized selection of hypoglycemic medications and targeted electrolyte supplementation. OUTCOMES Following 1 week of comprehensive therapeutic intervention, the patient's serum potassium level effectively normalized to 3.79 mmol/L, blood glucose parameters stabilized, and there was significant alleviation of clinical symptoms. LESSONS GS has a hidden onset and requires early diagnosis and intervention based on patient related symptoms and laboratory indicators in clinical practice, and personalized medication plans need to be provided according to the specific situation of the patient.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Miaohui Wu
- School of Pharmacy, Fujian Medical University, Quanzhou, China
| | - Lunpan Mou
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yaping Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jianjia Jiang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Peng X, Chen C, Tu J, Lin Y, Li H, Geng H. Long-Term Indomethacin Treatment in a Chinese Child with Gitelman Syndrome: Case Report and Literature Review on its Efficacy and Tolerance. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e941627. [PMID: 38069462 PMCID: PMC10720922 DOI: 10.12659/ajcr.941627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Gitelman syndrome (GS) is a rare inherited autosomal recessive salt-losing renal tubulopathy. Early-onset GS is difficult to differentiate from Bartter syndrome (BS). It has been reported in some cases that cyclooxygenase (COX) inhibitors, which pharmacologically reduce prostaglandin E2(PGE2) synthesis, are helpful for GS patients, especially in children, but the long-term therapeutic effect has not yet been revealed. CASE REPORT A 4-year-old boy was first brought to our hospital for the chief concern of short stature and growth retardation. Biochemical tests demonstrated severe hypokalemia, hyponatremia, and hypochloremic metabolic alkalosis. The patient's serum magnesium was normal. He was diagnosed with BS and treated with potassium supplementation and indomethacin and achieved stable serum potassium levels and slow catch-up growth. At 11.8 years of age, the patient showed hypomagnesemia and a genetic test confirmed that he had GS with compound heterozygous mutations in the SLC12A3 gene. At the age of 14.8 years, when indomethacin had been taken for nearly 10 years, the boy reported having chronic stomachache, while his renal function remained normal. After proton pump inhibitor and acid inhibitor therapy, the patient's symptoms were ameliorated, and he continued to take a low dose of indomethacin (37.5 mg/d divided tid) with good tolerance. CONCLUSIONS Early-onset GS in childhood can be initially misdiagnosed as BS, and gene detection can confirm the final diagnosis. COX inhibitors, such as indomethacin, might be tolerated by pediatric patients, and long-term therapy can improve the hypokalemia and growth retardation without significant adverse effects.
Collapse
|
10
|
Bager JE, Manhem K, Andersson T, Hjerpe P, Bengtsson-Boström K, Ljungman C, Mourtzinis G. Hypertension: sex-related differences in drug treatment, prevalence and blood pressure control in primary care. J Hum Hypertens 2023; 37:662-670. [PMID: 36658330 PMCID: PMC10403353 DOI: 10.1038/s41371-023-00801-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Antihypertensive treatment is equally beneficial for reducing cardiovascular risk in both men and women. Despite this, the drug treatment, prevalence and control of hypertension differ between men and women. Men and women respond differently, particularly with respect to the risk of adverse events, to many antihypertensive drugs. Certain antihypertensive drugs may also be especially beneficial in the setting of certain comorbidities - of both cardiovascular and extracardiac nature - which also differ between men and women. Furthermore, hypertension in pregnancy can pose a considerable therapeutic challenge for women and their physicians in primary care. In addition, data from population-based studies and from real-world data are inconsistent regarding whether men or women attain hypertension-related goals to a higher degree. In population-based studies, women with hypertension have higher rates of treatment and controlled blood pressure than men, whereas real-world, primary-care data instead show better blood pressure control in men. Men and women are also treated with different antihypertensive drugs: women use more thiazide diuretics and men use more angiotensin-enzyme inhibitors and calcium-channel blockers. This narrative review explores these sex-related differences with guidance from current literature. It also features original data from a large, Swedish primary-care register, which showed that blood pressure control was better in women than men until they reached their late sixties, after which the situation was reversed. This age-related decrease in blood pressure control in women was not, however, accompanied by a proportional increase in use of antihypertensive drugs and female sex was a significant predictor of less intensive antihypertensive treatment.
Collapse
Affiliation(s)
- Johan-Emil Bager
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Emergency Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Karin Manhem
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Emergency Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tobias Andersson
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Regionhälsan R&D Centre, Skaraborg Primary Care, Skövde, Sweden
| | - Per Hjerpe
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Regionhälsan R&D Centre, Skaraborg Primary Care, Skövde, Sweden
| | - Kristina Bengtsson-Boström
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Regionhälsan R&D Centre, Skaraborg Primary Care, Skövde, Sweden
| | - Charlotta Ljungman
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Georgios Mourtzinis
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine and Emergency Mölndal, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Rocha J, Pacheco M, Matos M, Ferreira S, Almeida JS. Gitelman Syndrome: A Case Report. Cureus 2023; 15:e38418. [PMID: 37273382 PMCID: PMC10234615 DOI: 10.7759/cureus.38418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Gitelman syndrome is a rare hereditary tubulopathy characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. In this case report, we describe a 21-year-old male who presented with myalgias, asthenia, general muscle weakness, and hypokalemia after receiving oral potassium supplementation for six months. Additional biochemical studies showed hypomagnesemia, metabolic alkalosis, and increased urinary potassium and magnesium excretion. Calcium urinary excretion was within the normal range, but 25-hydroxycholecalciferol levels were low. Systolic arterial hypertension was found, probably reflecting chronic hyperreninemic hyperaldosteronism. Genetic testing for SCL12A3 mutations identified a pathogenic variant in homozygosity, which confirmed the Gitelman syndrome diagnosis. Treatment with chronic potassium and magnesium oral supplementation was started, as well as eplerenone and amiloride, with sustained correction of hypokalemia and hypomagnesemia.
Collapse
Affiliation(s)
- João Rocha
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Mariana Pacheco
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Mariana Matos
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Susana Ferreira
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Jorge S Almeida
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| |
Collapse
|
12
|
Ying J, Wu H, Zhang R, Wu P, Sui F, Li Z. A case report of Gitelman syndrome in children. Medicine (Baltimore) 2023; 102:e33509. [PMID: 37058043 PMCID: PMC10101307 DOI: 10.1097/md.0000000000033509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
RATIONALE Giltelman syndrome (GS) is an autosomal recessive infectious disease, which is caused by the mutation of SLC12A3 gene encoding thiazide diuretic sensitive sodium chloride cotransporter located in the distal convoluted tubule of the kidney. PATIENT CONCERNS A 7-year-old and 3-month-old male patient has poor appetite, slow growth in height and body weight since the age of 3, body weight: 16 kg (-3 standard deviation), height: 110 cm (-3 standard deviation), normal exercise ability and intelligence. One year ago, he was diagnosed with hypokalemia. After potassium supplement treatment, the blood potassium returned to normal. The patient developed abdominal pain, vomiting, limb weakness, and tetany 1 day before admission. DIAGNOSES After admission examination, the patient was found to have hypokalemia (2.27-2.88 mmol/L), hypomagnesemia (0.47 mmol/L), hypophosphatemia (1.17 mmol/L), hypocalcemia (1.06 mmol/24 hours), and metabolic alkalosis (PH 7.60). The blood pressure is normal, and the concentration of aldosterone is 791.63 pg/mL. The adrenocorticotropic hormone and cortisol detected at 8 am are 4.95 pmol/L and 275.09 nmol/L, respectively. Twenty-four hours of urine potassium is 32.52 mmol. Gene sequencing results showed 2 pathogenic variants in the GS-related SLC12A3 gene, which are related to the phenotype of the subject. INTERVENTIONS After admission, the patients were given potassium and magnesium supplements, as well as oral spironolactone. The symptoms of limb weakness and tetany were significantly relieved. After discharge, the patients continued to maintain treatment to keep the blood potassium at more than 3.0 mmol/L, and the blood magnesium at more than 0.6 mmol/L. OUTCOMES Follow-up at 1 month after discharge, in the patient's self-description, he had no symptoms such as limb weakness and tetany, and his height was increased by 1 cm and the body weight increased by 1.5 kg. LESSONS For patients with hypokalemia, hypomagnesemia, and metabolic alkalosis, the possibility of GS should be given priority. After the diagnosed by gene sequencing of SLC12A3 gene, potassium and magnesium supplementation could significantly improve symptoms.
Collapse
Affiliation(s)
- Jing Ying
- Department of Pediatrics, Affiliated Shenzhen Longhua People’s Hospital, Southern Medical University, Longhua, Shenzhen, Guangdong, P. R. China
| | - Haixia Wu
- Department of Pediatrics, Affiliated Shenzhen Longhua People’s Hospital, Southern Medical University, Longhua, Shenzhen, Guangdong, P. R. China
| | - Ruizhong Zhang
- Department of Pediatrics, Affiliated Shenzhen Longhua People’s Hospital, Southern Medical University, Longhua, Shenzhen, Guangdong, P. R. China
| | - Pengmei Wu
- Department of Pediatrics, Affiliated Shenzhen Longhua People’s Hospital, Southern Medical University, Longhua, Shenzhen, Guangdong, P. R. China
| | - Fengxuan Sui
- Department of Pediatrics, Affiliated Shenzhen Longhua People’s Hospital, Southern Medical University, Longhua, Shenzhen, Guangdong, P. R. China
| | - Zilong Li
- Department of Pediatrics, Affiliated Shenzhen Longhua People’s Hospital, Southern Medical University, Longhua, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
13
|
Ray E, Mohan K, Ahmad S, Wolf MTF. Physiology of a Forgotten Electrolyte-Magnesium Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:148-163. [PMID: 36868730 DOI: 10.1053/j.akdh.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 03/05/2023]
Abstract
Magnesium (Mg2+) is the second most common intracellular cation and the fourth most abundant element on earth. However, Mg2+ is a frequently overlooked electrolyte and often not measured in patients. While hypomagnesemia is common in 15% of the general population, hypermagnesemia is typically only found in preeclamptic women after Mg2+ therapy and in patients with ESRD. Mild to moderate hypomagnesemia has been associated with hypertension, metabolic syndrome, type 2 diabetes mellitus, CKD, and cancer. Nutritional Mg2+ intake and enteral Mg2+ absorption are important for Mg2+ homeostasis, but the kidneys are the key regulators of Mg2+ homeostasis by limiting urinary excretion to less than 4% while the gastrointestinal tract loses over 50% of the Mg2+ intake in the feces. Here, we review the physiological relevance of Mg2+, the current knowledge of Mg2+ absorption in the kidneys and the gut, the different causes of hypomagnesemia, and a diagnostic approach on how to assess Mg2+ status. We highlight the latest discoveries of monogenetic conditions causing hypomagnesemia, which have enhanced our understanding of tubular Mg2+ absorption. We will also discuss external and iatrogenic causes of hypomagnesemia and advances in the treatment of hypomagnesemia.
Collapse
Affiliation(s)
- Evan Ray
- Renal-Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, PA
| | - Krithika Mohan
- Department of Nephrology, Hosmat Hospital, HBR Layout, Bangalore, India
| | - Syeda Ahmad
- Renal-Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, PA
| | - Matthias T F Wolf
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
14
|
Atia J, Evison F, Gallier S, Hewins P, Ball S, Gavin J, Coleman J, Garrick M, Pankhurst T. Does acute kidney injury alerting improve patient outcomes? BMC Nephrol 2023; 24:14. [PMID: 36647011 PMCID: PMC9843843 DOI: 10.1186/s12882-022-03031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Electronic alerts (e-alerts) for Acute Kidney Injury (AKI) have been implemented into a variety of different Electronic Health Records (EHR) systems worldwide in order to improve recognition and encourage early appropriate management of AKI. We were interested in the impact on patient safety, specialist referral and clinical management. METHODS All patients admitted to our institution with AKI were included in the study. We studied AKI progression, dialysis dependency, length of hospital stay, emergency readmission, ICU readmission, and death, before and after the introduction of electronic alerts. The impact on prescription of high risk drugs, fluid administration, and referral to renal services was also analysed. RESULTS After the introduction of the e-alert, progression to higher AKI stage, emergency readmission to hospital and death during admission were significantly reduced. More prescriptions were stopped for drugs that adversely affect renal function in AKI and there was a significant increase in the ICU admissions and in the number of patients having dialysis, especially in earlier stages. Longer term mortality, renal referrals, and fluid alteration did not change significantly after the AKI e-alert introduction. CONCLUSIONS AKI e-alerts can improve clinical outcomes in hospitalised patients.
Collapse
Affiliation(s)
- Jolene Atia
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK ,grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Edgbaston, Birmingham, UK
| | - Felicity Evison
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK ,grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Edgbaston, Birmingham, UK
| | - Suzy Gallier
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK ,grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Edgbaston, Birmingham, UK ,grid.6572.60000 0004 1936 7486PIONEER: HDR-UK Health Data Research Hub for Acute Care, University of Birmingham, Birmingham, UK
| | - Peter Hewins
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Simon Ball
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK ,grid.6572.60000 0004 1936 7486HDRUK Better Care Science Priority and Health Data Research UK Midlands, University of Birmingham, Birmingham, UK
| | - Joseph Gavin
- grid.415953.f0000 0004 0400 1537Lister Hospital, Stevenage, UK
| | - Jamie Coleman
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK ,grid.6572.60000 0004 1936 7486School of Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Mark Garrick
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Tanya Pankhurst
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK ,grid.415490.d0000 0001 2177 007XQueen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH UK
| |
Collapse
|
15
|
Saha A, Omer A, Trivedi N. Improvement in Serum Magnesium Levels With Sodium-Glucose Cotransporter 2 Inhibitors. JCEM CASE REPORTS 2023; 1:luac018. [PMID: 37908255 PMCID: PMC10578385 DOI: 10.1210/jcemcr/luac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/02/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are associated with a modest but significant increase in serum magnesium levels. This report describes improvement in serum magnesium and associated symptoms after initiating SGLT2i therapy in a patient with refractory hypomagnesemia. A 58-year-old woman presented with persistent hypomagnesemia refractory to oral magnesium supplements. She had history of type 2 diabetes mellitus, hypothyroidism, fibromyalgia, and degenerative disk disease. The cause of hypomagnesemia was attributed to excessive renal losses. Laboratory investigations revealed serum magnesium of 1.2 mg/dL with fractional excretion of magnesium of 8.9%. She was started on empagliflozin 10 mg daily. Within 4 weeks of therapy, her serum magnesium level corrected with symptomatic improvement, which was sustained a few weeks later. Subsequently, her oral magnesium supplements dose was reduced. SGLT2i has been shown to improve magnesium levels in patients with urinary magnesium wasting. Several mechanisms have been postulated, but the exact physiology remains unknown. SGLT2i have been efficacious for glycemic control, renal protection, decreasing the risk of atherosclerotic cardiovascular disease events, and cardiac mortality in patients with diabetes. In addition, renal and cardiac benefits are also demonstrated in patients without diabetes. This observation demonstrates that SGLT2i can improve the management of patients with otherwise intractable hypomagnesemia.
Collapse
Affiliation(s)
- Arunava Saha
- PGY2, Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, USA
| | - Abdulkadir Omer
- Department of Endocrinology and Metabolic Medicine, Saint Vincent Hospital, Worcester, MA, USA
| | - Nitin Trivedi
- Department of Endocrinology and Metabolic Medicine, Saint Vincent Hospital, Worcester, MA, USA
| |
Collapse
|
16
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
17
|
De Silva N, Pathmanathan S, Sumanatilleke M, Dematapitiya C, Dissanayake P, Wijenayake U, Subasinghe V, Dissanayake V. A novel mutation of SLC12A3 gene causing Gitelman syndrome. SAGE Open Med Case Rep 2022; 10:2050313X221102294. [PMID: 35693921 PMCID: PMC9178994 DOI: 10.1177/2050313x221102294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
A 48-year-old patient with a history of diabetes mellitus, presented to a surgical ward with abdominal pain. She was found to have hypokalemia. Her younger sister had passed away due to sudden cardiac death at the age of 25 years. Further evaluation revealed an elevated trans-tubular potassium gradient suggestive of renal potassium loss, normal blood pressure, hypomagnesemia, hypocalciuria, and alkalosis. Moreover, there was evidence of secondary hyperaldosteronism. Genetic studies revealed two heterozygous mutations of the SLC12A3 gene, including a novel mutation which has not been reported before anywhere in the world. She was treated with intravenous potassium supplementation and was later converted to oral potassium and oral magnesium supplementation with spironolactone. Her potassium and magnesium levels normalized and glycaemic control also improved. Hypokalemia and hypomagnesemia found in Gitelman syndrome may be associated with insulin resistance and correction of electrolytes can lead to better glycaemic control.
Collapse
Affiliation(s)
- Neomal De Silva
- Diabetes and Endocrinology Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | | | | | | | - Preethi Dissanayake
- Diabetes and Endocrinology Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Umesha Wijenayake
- Diabetes and Endocrinology Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Vindya Subasinghe
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Vajira Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
18
|
Darrat M, Likinyo H, Winata SHR, Morgan S, Courtney AE, Lindsay J. Successful living kidney donation from a patient with a Gitelman's syndrome. BMJ Case Rep 2022; 15:e246162. [PMID: 35131782 PMCID: PMC8823029 DOI: 10.1136/bcr-2021-246162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/04/2022] Open
Abstract
Living kidney donation from Gitelman's syndrome (GS) patients remains very rare. Long-term renal prognosis of donor and recipient patients remains unknown. We report a 67-year-old man with GS, harbouring a mutation of the SLC12A3 gene, who donated his kidney for transplant. Five years post-transplantation, his clinical condition and biochemical parameters remained stable with close monitoring and follow-up. Patients with non-complicated GS can be considered eligible to donate their kidney for transplant.
Collapse
Affiliation(s)
- Milad Darrat
- Regional Centre for Endocrinology & Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Hannah Likinyo
- Regional Centre for Endocrinology & Diabetes, Royal Victoria Hospital, Belfast, UK
| | | | - Sarah Morgan
- Regional Centre for Endocrinology & Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Aisling E Courtney
- Regional Nephrology and Transplant Unit, Belfast City Hospital, Belfast, UK
| | - John Lindsay
- Department of Endocrinology & Diabetes, Mater Infirmorum Hospital Health and Social Services Trust, Belfast, UK
| |
Collapse
|
19
|
Balza E, Carlone S, Carta S, Piccioli P, Cossu V, Marini C, Sambuceti G, Rubartelli A, Castellani P. Therapeutic efficacy of proton transport inhibitors alone or in combination with cisplatin in triple negative and hormone sensitive breast cancer models. Cancer Med 2022; 11:183-193. [PMID: 34796694 PMCID: PMC8704177 DOI: 10.1002/cam4.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are very aggressive and have a poor prognosis due to lack of efficacious therapies. The only effective treatment is chemotherapy that however is frequently hindered by the occurrence of drug resistance. We approached this problem in vitro and in vivo on a triple negative and a hormone sensitive breast cancer cell lines: 4T1 and TS/A. A main defense mechanism of tumors is the extrusion of intracellular protons derived from the metabolic shift to glycolysis, and necessary to maintain an intracellular pH compatible with life. The resulting acidic extracellular milieu bursts the malignant behavior of tumors and impairs chemotherapy. Therefore, we investigated the efficacy of combined therapies that associate cisplatin (Cis) with proton exchanger inhibitors, such as esomeprazole (ESO) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA). Our results demonstrate that in the 4T1 triple negative model the combined therapy Cis plus EIPA is significantly more effective than the other treatments. Instead, in the TS/A tumor the best therapeutic result is obtained with ESO alone. Remarkably, in both 4T1 and TS/A tumors these treatments correlate with increase of CD8+ T lymphocytes and dendritic cells, and a dramatic reduction of M2 macrophages and other suppressor myeloid cells (MDSC) in the tumor infiltrates.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | | | - Sonia Carta
- Cell Biology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | | | - Vanessa Cossu
- Nuclear MedicineIRCCS Ospedale Policlinico San MartinoGenovaItaly
- Department of Health SciencesUniversity of GenoaGenoaItaly
| | - Cecilia Marini
- Nuclear MedicineIRCCS Ospedale Policlinico San MartinoGenovaItaly
- Bioimaging and Physiology (IBFM)CNR Institute of MolecularMilanItaly
| | - Gianmario Sambuceti
- Nuclear MedicineIRCCS Ospedale Policlinico San MartinoGenovaItaly
- Department of Health SciencesUniversity of GenoaGenoaItaly
| | - Anna Rubartelli
- Cell Biology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | | |
Collapse
|
20
|
Nuñez-Gonzalez L, Carrera N, Garcia-Gonzalez MA. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians. Int J Mol Sci 2021; 22:11414. [PMID: 34768847 PMCID: PMC8584233 DOI: 10.3390/ijms222111414] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies.
Collapse
Affiliation(s)
- Laura Nuñez-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Fundación Pública Galega de Medicina Xenomica—SERGAS, Complexo Hospitalario de Santiago de Compotela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Bakir M, Ibrahim HAG. A Challenging Case of Persisting Hypokalemia Secondary to Gitelman Syndrome. Cureus 2021; 13:e18636. [PMID: 34765380 PMCID: PMC8576546 DOI: 10.7759/cureus.18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 11/09/2022] Open
Abstract
There are several causes of hypokalemia, including transcellular shift, renal loss, gastrointestinal loss, and decreased oral intake. Sometimes it is challenging to know the source of the problem; however, with detailed history, physical examination, and appropriate laboratory investigations, the physician should be able to narrow down the differentials diagnosis to reach the right one. One of the rare causes of hypokalemia is Gitelman syndrome, which is a salt-losing tubulopathy that manifests as renal potassium wasting, metabolic alkalosis, hypokalemia, hypomagnesemia, hypocalciuria, and hyperreninemic hyperaldosteronism. This disorder is inherited in an autosomal recessive pattern with an incidence of 25 instances per million population. We report a challenging case of persistent hypokalemia in a 30-year-old woman who presented with a history of palpitation, bilateral upper and lower limbs numbness, nausea, diarrhea, and generalized fatigue for three days. After history and physical examination, the patient was diagnosed with an episode of enteritis, and laboratory workups revealed low potassium and magnesium levels, and it was thought that these electrolyte abnormalities were secondary to gastrointestinal loss. Therefore, the patient was mainly treated supportively along with potassium and magnesium replacement. However, after one week of replacement, the patient still had low potassium and magnesium levels in spite of being diarrhea-free, so renal loss was suspected. Urine electrolytes revealed high renal potassium loss with low-normal blood pressure, arterial blood gases revealed metabolic alkalosis with a pH of 7.49 and bicarbonate level of 29 mEq/L. Repeated urine chemistry was done to check for chloride level and turned out to be high, and 24-hour urinary excretion of calcium was very low. Therefore, the patient was diagnosed with Gitelman syndrome and was managed with potassium and magnesium replacements intravenously, and was encouraged to consume a diet rich in these electrolytes. After complete resolutions of the symptoms and correction of potassium and magnesium levels, the patient was discharged home in stable condition.
Collapse
Affiliation(s)
- Mohamad Bakir
- Medicine and Surgery, College of Medicine, Alfaisal University, Riyadh, SAU
| | | |
Collapse
|
22
|
Lim M, Gannon D. Diagnosis and outpatient management of Gitelman syndrome from the first trimester of pregnancy. BMJ Case Rep 2021; 14:14/5/e241756. [PMID: 33980557 PMCID: PMC8118020 DOI: 10.1136/bcr-2021-241756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 32-year-old woman presented with an incidental finding of hypokalaemia on routine bloods at 9 weeks of a second pregnancy, on a background of lifelong salt craving. Her previous pregnancy was uncomplicated. She had no previous significant medical or family history. Venous blood gases showed a hypokalaemic, normochloraemic metabolic alkalosis. Urinary potassium was elevated. Escalating doses of oral supplementation of potassium, magnesium, sodium and potassium-sparing diuretics were required through the course of pregnancy, in response to regular electrolyte monitoring. These were later weaned and completely stopped post partum. Delivery was uneventful with no maternal or neonatal complications. Genetic testing performed post partum showed heterogenous mutation of SCL12A3 gene.
Collapse
Affiliation(s)
- Marie Lim
- Colchester General Hospital, Colchester, UK
| | - David Gannon
- Emergency Admission Unit, Colchester General Hospital, Colchester, UK
| |
Collapse
|
23
|
Review and Analysis of Two Gitelman Syndrome Pedigrees Complicated with Proteinuria or Hashimoto's Thyroiditis Caused by Compound Heterozygous SLC12A3 Mutations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9973161. [PMID: 34046503 PMCID: PMC8128541 DOI: 10.1155/2021/9973161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Gitelman syndrome (GS) is an autosomal recessive inherited salt-losing renal tubular disease, which is caused by a pathogenic mutation of SLC12A3 encoding thiazide-sensitive Na-Cl cotransporter, which leads to disturbance of sodium and chlorine reabsorption in renal distal convoluted tubules, resulting in phenotypes such as hypovolemia, renin angiotensin aldosterone system (RAAS) activation, hypokalemia, and metabolic alkalosis. In this study, two GS families with proteinuria or Hashimoto's thyroiditis were analyzed for genetic-phenotypic association. Sanger sequencing revealed that two probands carried SLC12A3 compound heterozygous mutations, and proband A carried two pathogenic mutations: missense mutation Arg83Gln, splicing mutation, or frameshift mutation NC_000016.10:g.56872655_56872667 (gcggacatttttg>accgaaaatttt) in exon 8. Proband B carries two missense mutations: novel Asp839Val and Arg904Gln. Both probands manifested hypokalemia, hypomagnesemia, hypocalcinuria, metabolic alkalosis, and RAAS activation; in addition, the proband A exhibited decreased urinary chloride, phosphorus, and increased magnesium ions excretion, complicated with Hashimoto's Thyroiditis, while the proband B exhibited enhanced urine sodium excretion and proteinuria. The older sister of proband B with GS also had Hashimoto's thyroiditis. Electron microscopy revealed swelling and vacuolar degeneration of glomerular epithelial cells, diffuse proliferation of mesangial cells and matrix, accompanied by a small amount of low-density electron-dense deposition, and segmental fusion of epithelial cell foot processes in proband B. Light microscopy showed mild mesangial hyperplasia in the focal segment of the glomerulus, hyperplasia, and hypertrophy of juxtaglomerular apparatus cells, mild renal tubulointerstitial lesions, and one glomerular sclerosis. So, long-term hypokalemia of GS can cause kidney damage and may also be susceptible to thyroid disease.
Collapse
|
24
|
Jalalzadeh M, Garcia Goncalves de Brito D, Chaudhari S, Poor AD, Baumstein D. Gitelman Syndrome Provisionally Diagnosed During the First Presentation of Diabetic Ketoacidosis. Cureus 2021; 13:e14253. [PMID: 33954067 PMCID: PMC8088595 DOI: 10.7759/cureus.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Gitelman syndrome (GS) is an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. It is caused by mutations in gene SLC12A3 (located in chromosome 16q) encoding NaCl cotransporter. GS is usually asymptomatic for several years and is diagnosed in late childhood or adulthood. The association between GS and diabetic ketoacidosis (DKA) is rare. We present a case of a 25-year-old man with newly diagnosed diabetes mellitus and DKA with profound hypokalemia and hypomagnesemia who was provisionally found to have GS.
Collapse
Affiliation(s)
- Mojgan Jalalzadeh
- Internal Medicine/Nephrology, Metropolitan Hospital Center, New York Medical College, New York, USA
| | | | - Shobhana Chaudhari
- Internal Medicine/Geriatrics, Metropolitan Hospital Center, New York Medical College, New York, USA
| | - Armeen D Poor
- Internal Medicine/Pulmonary Critical Care, Metropolitan Hospital Center, New York Medical College, New York, USA
| | - Donald Baumstein
- Internal Medicine/Nephrology, Metropolitan Hospital Center, New York Medical College, New York, USA
| |
Collapse
|
25
|
Tang W, Huang X, Liu Y, Lv Q, Li T, Song Y, Zhang X, Chen X, Shi Y. A novel homozygous mutation (p.N958K) of SLC12A3 in Gitelman syndrome is associated with endoplasmic reticulum stress. J Endocrinol Invest 2021; 44:471-480. [PMID: 32642858 DOI: 10.1007/s40618-020-01329-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Gitelman syndrome (GS) is an autosomal recessive renal tubular disease that arises as a consequence of mutations in the SLC12A3 gene, which codes for an Na-Cl cotransporter (NCC) in distal renal tubules. This study was designed to explore the mutations associated with GS in an effort to more fully understand the molecular mechanisms governing GS. METHODS We analyzed SLC12A3 mutations in a pedigree including a 42-year-old male with GS as well as four related family members over three generations using Sanger and next generation sequencing approaches. We additionally explored the functional ramifications of identified mutations using both Xenopus oocytes and the HEK293T cell line. RESULTS We found that the subject with GS exhibited characteristic symptoms including sporadic thirst, fatigue, excess urination, and substantial hypokalemia and hypocalciuria, although magnesium levels were normal. Other analyzed subjects in this pedigree had normal laboratory findings and did not exhibit clear signs of GS. Sequencing analyses revealed that the GS subject exhibited a homozygous missense mutation (c.2874C > G, p.N958K) in exon 24 of SLC12A3. Both parents of this GS subject, as well as his older brother and daughter all exhibited heterozygous mutations at this same site. Functional analyses in Xenopus oocytes indicated that this mutated SLC12A3 gene encodes a protein which fails to mediate normal sodium transport, and when this mutant gene was expressed in HEK293T cells, we observed significant increases in endoplasmic reticulum (ER)-stress pathway activation. CONCLUSION The p.N958K mutation in exon 24 of SLC12A3 can trigger GS at least in part via enhancing ER stress responses.
Collapse
Affiliation(s)
- W Tang
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - X Huang
- Department of Ophthalmology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Y Liu
- Department of Gastroenterology, The Third People's Hospital of Honghe Prefecture, Gejiu, 661000, Yunnan, China
| | - Q Lv
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - T Li
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Y Song
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - X Zhang
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - X Chen
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Y Shi
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
26
|
Abstract
Metabolic alkalosis is an increase in blood pH to >7.45 due to a primary increase in serum bicarbonate (HCO3 -). Metabolic alkalosis results from alkali accumulation or acid loss, and it is associated with a secondary increase in carbon dioxide arterial pressure (PaCO2). Metabolic alkalosis is a common acid-base disorder, especially in critically ill patients. The pathogenesis of chronic metabolic alkalosis includes two derangements, generation of metabolic alkalosis via gain of alkali or loss of acid and maintenance of metabolic alkalosis by increased tubular HCO3 - reabsorption (failure of the kidneys to excrete excess alkali). Metabolic alkalosis is the most common acid-base disorder in hospitalized patients, particularly in the surgical critical care unit. Mortality increases as pH increases.
Collapse
Affiliation(s)
- Mohammad Tinawi
- Nephrology, Nephrology Specialists, P.C, Munster, USA
- Medicine, Indiana University School of Medicine Northwest, Gary, USA
| |
Collapse
|
27
|
Veríssimo R, Leite de Sousa L, Carvalho TJ, Fidalgo P. Novel SLC12A3 mutation in Gitelman syndrome. BMJ Case Rep 2021; 14:14/1/e238097. [PMID: 33462018 PMCID: PMC7813350 DOI: 10.1136/bcr-2020-238097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gitelman syndrome (GS) is an autosomal recessive disease characterised by the presence of hypokalaemic metabolic alkalosis with hypomagnesaemia and hypocalciuria. The prevalence of this disease is 1-10/40 000. GS is usually associated with mild and non-specific symptoms and many patients are only diagnosed in adulthood. The disease is caused by mutations in the SLC12A3 gene. We present the case of a 49-year-old man referred to a nephrology appointment due to persistent hypokalaemia and hypomagnesaemia. Complementary evaluation revealed hypokalaemia, hypomagnesaemia, metabolic alkalosis, hyperreninaemia, increased chloride and sodium urinary excretion, and reduced urinary calcium excretion. Renal function, remainder serum and urinary ionogram, and renal ultrasound were normal. A diagnosis of GS was established and confirmed with genetic testing which revealed a novel mutation in SLC12A3 (c.1072del, p.(Ala358Profs*12)). This novel mutation extends the spectrum of known SLC12A3 gene mutations and further supports the allelic heterogeneity of GS.
Collapse
Affiliation(s)
- Rita Veríssimo
- Nephrology Department, Centro Hospitalar de Lisboa Ocidental EPE, Carnaxide, Portugal
| | - Luís Leite de Sousa
- Nephrology Department, Centro Hospitalar de Lisboa Ocidental EPE, Carnaxide, Portugal
| | - Tiago J Carvalho
- Nephrology Department, Centro Hospitalar de Lisboa Ocidental EPE, Carnaxide, Portugal
| | - Pedro Fidalgo
- Nephrology Department, Centro Hospitalar de Lisboa Ocidental EPE, Carnaxide, Portugal
| |
Collapse
|
28
|
Alexandru M, Courbebaisse M, Le Pajolec C, Ménage A, Papon JF, Vargas-Poussou R, Nevoux J, Blanchard A. Investigation of Vestibular Function in Adult Patients with Gitelman Syndrome: Results of an Observational Study. J Clin Med 2020; 9:jcm9113790. [PMID: 33238651 PMCID: PMC7700665 DOI: 10.3390/jcm9113790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022] Open
Abstract
Gitelman syndrome (GS) is a rare salt-losing tubulopathy caused by an inactivating mutation in the SLC12A3 gene, encoding the thiazide-sensitive sodium chloride cotransporter (NCC). Patients with GS frequently complain of vertigo, usually attributed to hypovolemia. Because NCC is also located in the endolymphatic sac, we hypothesized that patients with GS might have vestibular dysfunction. Between April 2013 and September 2016, 20 (22%) out of 90 patients followed at the reference center complained of vertigo in the absence of orthostatic hypotension. Sixteen of them were referred to an otology department for investigation of vestibular function. The vertigo was of short duration and triggered in half of them by head rotation. Seven patients (44%) had a vestibular syndrome. Vestibular syndrome was defined: (1) clinically, as nystagmus triggered by the head shaking test (n = 5); and/or (2) paraclinically, as an abnormal video head impulse test (n = 0), abnormal kinetic test (n = 4) and/or abnormal bithermal caloric test (n = 3). Five patients had associated auditory signs (tinnitus, aural fullness or hearing loss). In conclusion, we found a high frequency of vestibular disorder in GS patients suffering from vertigo, suggesting a role of NCC in the inner ear. Referent physicians of these patients should be aware of this extrarenal manifestation that requires specific investigations and treatment.
Collapse
Affiliation(s)
- Mihaela Alexandru
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
| | - Marie Courbebaisse
- AP-HP, Centre—Université de Paris, Hôpital Européen Georges-Pompidou, Service de Physiologie-Exploration Fonctionnelles Rénales, 75015 Paris, France;
- Faculté de Médecine Paris Descartes, Université de Paris, 75006 Paris, France
- INSERM, U1151-CNRS UMR8253, 75015 Paris, France
| | - Christine Le Pajolec
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
| | - Adeline Ménage
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
| | - Jean-François Papon
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
- Faculté de Médecine, Université Paris-Saclay, F-94275 Le Kremlin-Bicêtre, France
| | - Rosa Vargas-Poussou
- AP-HP, Centre—Université de Paris, Hôpital Européen Georges-Pompidou, Département de Génétique et Biologie Moléculaire, 75015 Paris, France;
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Jérôme Nevoux
- AP-HP, Université Paris Saclay, Hôpital Bicêtre, Service d’Oto-Rhino-Laryngologie, 94270 Le Kremlin-Bicêtre, France; (M.A.); (C.L.P.); (A.M.); (J.-F.P.)
- Faculté de Médecine, Université Paris-Saclay, F-94275 Le Kremlin-Bicêtre, France
- INSERM, U1120, Institut Pasteur, 75724 Paris CEDEX 15, France
- Correspondence: (J.N.); (A.B.); Tel.: +33-1-4521-3688 (J.N.); +33-1-5609-2913 (A.B.)
| | - Anne Blanchard
- Faculté de Médecine Paris Descartes, Université de Paris, 75006 Paris, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), Hôpital Européen Georges-Pompidou, 75015 Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Centre d’Investigation Clinique 1418, 75015 Paris, France
- Correspondence: (J.N.); (A.B.); Tel.: +33-1-4521-3688 (J.N.); +33-1-5609-2913 (A.B.)
| |
Collapse
|
29
|
Courand PY, Marques P, Vargas-Poussou R, Azizi M, Blanchard A. QT Interval in Adult with Chronic Hypokalemia due to Gitelman Syndrome: Not so Frequently Prolonged. Clin J Am Soc Nephrol 2020; 15:1640-1642. [PMID: 32792351 PMCID: PMC7646245 DOI: 10.2215/cjn.07540520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Pierre-Yves Courand
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France .,Hospices Civils de Lyon, Hôpitaux de la Croix-Rousse et Lyon-Sud, Fédération de Cardiologie, Lyon, France.,Université de Lyon, CREATIS Unité Mixte de Recherche 5220, Institut National de la Santé et de la Recherche Médicale U1044, INSA-15 Lyon, Lyon, France
| | - Pedro Marques
- Department of Internal Medicine, S. João C Hospital, Porto, Portugal
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.,Rare Disease Reference Center for Rare Inherited Renal Disease of Adults, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris-Cardiovascular Research Center, Paris, France
| | - Michel Azizi
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France.,Université de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Centre d'Investigation Clinique Pluridisciplinaire 1418, Paris, France.,Assistance Publique Hôpitaux de Paris, Hypertension Unit, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Blanchard
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France.,Rare Disease Reference Center for Rare Inherited Renal Disease of Adults, Paris, France.,Université de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Centre d'Investigation Clinique Pluridisciplinaire 1418, Paris, France
| | | |
Collapse
|
30
|
Chung EY, Ruospo M, Natale P, Bolignano D, Navaneethan SD, Palmer SC, Strippoli GF. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2020; 10:CD007004. [PMID: 33107592 PMCID: PMC8094274 DOI: 10.1002/14651858.cd007004.pub4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Treatment with angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) is used to reduce proteinuria and retard the progression of chronic kidney disease (CKD). However, resolution of proteinuria may be incomplete with these therapies and the addition of an aldosterone antagonist may be added to further prevent progression of CKD. This is an update of a Cochrane review first published in 2009 and updated in 2014. OBJECTIVES To evaluate the effects of aldosterone antagonists (selective (eplerenone), non-selective (spironolactone or canrenone), or non-steroidal mineralocorticoid antagonists (finerenone)) in adults who have CKD with proteinuria (nephrotic and non-nephrotic range) on: patient-centred endpoints including kidney failure (previously know as end-stage kidney disease (ESKD)), major cardiovascular events, and death (any cause); kidney function (proteinuria, estimated glomerular filtration rate (eGFR), and doubling of serum creatinine); blood pressure; and adverse events (including hyperkalaemia, acute kidney injury, and gynaecomastia). SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 13 January 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that compared aldosterone antagonists in combination with ACEi or ARB (or both) to other anti-hypertensive strategies or placebo in participants with proteinuric CKD. DATA COLLECTION AND ANALYSIS Two authors independently assessed study quality and extracted data. Data were summarised using random effects meta-analysis. We expressed summary treatment estimates as a risk ratio (RR) for dichotomous outcomes and mean difference (MD) for continuous outcomes, or standardised mean difference (SMD) when different scales were used together with their 95% confidence interval (CI). Risk of bias were assessed using the Cochrane tool. Evidence certainty was evaluated using GRADE. MAIN RESULTS Forty-four studies (5745 participants) were included. Risk of bias in the evaluated methodological domains were unclear or high risk in most studies. Adequate random sequence generation was present in 12 studies, allocation concealment in five studies, blinding of participant and investigators in 18 studies, blinding of outcome assessment in 15 studies, and complete outcome reporting in 24 studies. All studies comparing aldosterone antagonists to placebo or standard care were used in addition to an ACEi or ARB (or both). None of the studies were powered to detect differences in patient-level outcomes including kidney failure, major cardiovascular events or death. Aldosterone antagonists had uncertain effects on kidney failure (2 studies, 84 participants: RR 3.00, 95% CI 0.33 to 27.65, I² = 0%; very low certainty evidence), death (3 studies, 421 participants: RR 0.58, 95% CI 0.10 to 3.50, I² = 0%; low certainty evidence), and cardiovascular events (3 studies, 1067 participants: RR 0.95, 95% CI 0.26 to 3.56; I² = 42%; low certainty evidence) compared to placebo or standard care. Aldosterone antagonists may reduce protein excretion (14 studies, 1193 participants: SMD -0.51, 95% CI -0.82 to -0.20, I² = 82%; very low certainty evidence), eGFR (13 studies, 1165 participants, MD -3.00 mL/min/1.73 m², 95% CI -5.51 to -0.49, I² = 0%, low certainty evidence) and systolic blood pressure (14 studies, 911 participants: MD -4.98 mmHg, 95% CI -8.22 to -1.75, I² = 87%; very low certainty evidence) compared to placebo or standard care. Aldosterone antagonists probably increase the risk of hyperkalaemia (17 studies, 3001 participants: RR 2.17, 95% CI 1.47 to 3.22, I² = 0%; moderate certainty evidence), acute kidney injury (5 studies, 1446 participants: RR 2.04, 95% CI 1.05 to 3.97, I² = 0%; moderate certainty evidence), and gynaecomastia (4 studies, 281 participants: RR 5.14, 95% CI 1.14 to 23.23, I² = 0%; moderate certainty evidence) compared to placebo or standard care. Non-selective aldosterone antagonists plus ACEi or ARB had uncertain effects on protein excretion (2 studies, 139 participants: SMD -1.59, 95% CI -3.80 to 0.62, I² = 93%; very low certainty evidence) but may increase serum potassium (2 studies, 121 participants: MD 0.31 mEq/L, 95% CI 0.17 to 0.45, I² = 0%; low certainty evidence) compared to diuretics plus ACEi or ARB. Selective aldosterone antagonists may increase the risk of hyperkalaemia (2 studies, 500 participants: RR 1.62, 95% CI 0.66 to 3.95, I² = 0%; low certainty evidence) compared ACEi or ARB (or both). There were insufficient studies to perform meta-analyses for the comparison between non-selective aldosterone antagonists and calcium channel blockers, selective aldosterone antagonists plus ACEi or ARB (or both) and nitrate plus ACEi or ARB (or both), and non-steroidal mineralocorticoid antagonists and selective aldosterone antagonists. AUTHORS' CONCLUSIONS The effects of aldosterone antagonists when added to ACEi or ARB (or both) on the risks of death, major cardiovascular events, and kidney failure in people with proteinuric CKD are uncertain. Aldosterone antagonists may reduce proteinuria, eGFR, and systolic blood pressure in adults who have mild to moderate CKD but may increase the risk of hyperkalaemia, acute kidney injury and gynaecomastia when added to ACEi and/or ARB.
Collapse
Affiliation(s)
- Edmund Ym Chung
- Department of Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Davide Bolignano
- Institute of Clinical Physiology, CNR - Italian National Council of Research, Reggio Calabria, Italy
| | | | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
31
|
Dong B, Chen Y, Liu X, Wang Y, Wang F, Zhao Y, Sun X, Zhao W. Identification of compound mutations of SLC12A3 gene in a Chinese pedigree with Gitelman syndrome exhibiting Bartter syndrome-liked phenotypes. BMC Nephrol 2020; 21:328. [PMID: 32758178 PMCID: PMC7409507 DOI: 10.1186/s12882-020-01996-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Background Gitelman syndrome is a rare salt-losing renal tubular disorder associated with mutation of SLC12A3 gene, which encodes the Na-Cl co-transporter (NCCT). Gitelman syndrome is characterized by hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria, and renin-angiotensin-aldosterone system (RAAS) activation. Different SLC12A3 variants may lead to phenotypic variability and severity. Methods In this study, we reported the clinical features and genetic analysis of a Chinese pedigree diagnosed with Gitelman syndrome. Results The proband exhibited hypokalaemia, hypomagnesemia, metabolic alkalosis, but hypercalciuria and kidney stone formation. The increased urinary calcium excretion made it confused to Bartter syndrome. The persistent renal potassium wasting resulted in renal tubular lesions, and might affect urinary calcium reabsorption and excretion. Genetic analysis revealed mutations of SLC12A3 gene with c.433C > T (p.Arg145Cys), c.1077C > G (p.Asn359Lys), and c.1666C > T (p.Pro556Ser). Potential alterations of structure and function of NCCT protein due to those genetic variations of SLC12A3 are predicted. Interestingly, one sibling of the proband carried the same mutant sites and exhibited similar clinical features with milder phenotypes of hypokalemia and hypomagnesemia, but hypocalciuria rather than hypercalciuria. Family members with at least one wild type copy of SLC12A3 had normal biochemistry. With administration of spironolactone, potassium chloride and magnesium supplement, the serum potassium and magnesium were maintained within normal ranges. Conclusions In this study, we identified compound mutations of SLC12A3 associated with varieties of clinical features. Further efforts are needed to investigate the diversity in clinical manifestations of Gitelman syndrome and its correlation with specific SLC12A3 mutations.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xinying Liu
- Department of Endocrinology, Pingdu People's Hospital, 112 Yangzhou Road, Pingdu, 266700, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yuhang Zhao
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Wenjuan Zhao
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
32
|
Solt SA, Hoffman TM, Sharma MS, Westreich KD, Kihlstrom M, Schwartz SP. Orthotopic Heart Transplantation in a Patient With Gitelman Syndrome and Dilated Cardiomyopathy. World J Pediatr Congenit Heart Surg 2020; 11:520-521. [PMID: 32645769 PMCID: PMC7844390 DOI: 10.1177/2150135120912227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gitelman syndrome (GS) is a rare hereditary tubulopathy affecting the distal tubule leading to significant electrolyte disturbances.1 Although generally a benign condition, rare associations with arrhythmias and sudden cardiac death have been reported.1 A paucity of literature exists associating GS with cardiomyopathy. We present a child with dilated cardiomyopathy and GS who was successfully treated with orthotopic heart transplantation.
Collapse
Affiliation(s)
| | | | - Mahesh S Sharma
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
33
|
Eder M, Darmann E, Haller MC, Bojic M, Peck-Radosavljevic M, Huditz R, Bond G, Vychytil A, Reindl-Schwaighofer R, Kikić Ž. Markers of potassium homeostasis in salt losing tubulopathies- associations with hyperaldosteronism and hypomagnesemia. BMC Nephrol 2020; 21:256. [PMID: 32631286 PMCID: PMC7336449 DOI: 10.1186/s12882-020-01905-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Renal loss of potassium (K+) and magnesium (Mg2+) in salt losing tubulopathies (SLT) leads to significantly reduced Quality of Life (QoL) and higher risks of cardiac arrhythmia. The normalization of K+ is currently the most widely accepted treatment target, however in even excellently designed RCTs the increase of K+ was only mild and rarely normalized. These findings question the role of K+ as the ideal marker of potassium homeostasis in SLT. Aim of this hypothesis-generating study was to define surrogate endpoints for future treatment trials in SLT in terms of their usefulness to determine QoL and important clinical outcomes. METHODS Within this prospective cross-sectional study including 11 patients with SLTs we assessed the biochemical, clinical and cardiological parameters and their relationship with QoL (RAND SF-36). The primary hypothesis was that QoL would be more dependent of higher aldosterone concentration, assessed by the transtubular-potassium-gradient (TTKG). Correlations were evaluated using Pearson's correlation coefficient. RESULTS Included patients were mainly female (82%, mean age 34 ± 12 years). Serum K+ and Mg2+ was 3.3 ± 0.6 mmol/l and 0.7 ± 0.1 mmol/l (mean ± SD). TTKG was 9.5/3.4-20.2 (median/range). While dimensions of mental health mostly correlated with serum Mg2+ (r = 0.68, p = 0.04) and K+ (r = 0.55, p = 0.08), better physical health was associated with lower aldosterone levels (r = -0.61, p = 0.06). TTKG was neither associated with aldosterone levels nor with QoL parameters. No relevant abnormalities were observed in neither 24 h-ECG nor echocardiography. CONCLUSIONS Hyperaldosteronism, K+ and Mg2+ were the most important parameters of QoL. TTKG was no suitable marker for hyperaldosteronism or QoL. Future confirmatory studies in SLT should assess QoL as well as aldosterone, K+ and Mg2+.
Collapse
Affiliation(s)
- Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Elisabeth Darmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Maria C Haller
- Institute of Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Marija Bojic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Department of Internal Medicine and Gastroenterology (IMuG), Hepatology, Endocrinology, Rheumatology, Nephrology and Emergency Medicine (ZAE), Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Rainer Huditz
- Department of Internal Medicine and Gastroenterology (IMuG), Hepatology, Endocrinology, Rheumatology, Nephrology and Emergency Medicine (ZAE), Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Andreas Vychytil
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Željko Kikić
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|
34
|
Syndromes de Bartter–Gitelman. Nephrol Ther 2020; 16:233-243. [DOI: 10.1016/j.nephro.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abstract
In patients with urinary magnesium wasting, oral and intravenous supplementation often fail to adequately improve serum magnesium levels. Glucose intolerance and diabetes mellitus frequently accompany hypomagnesemia. Clinical trials examining inhibitors of the type 2 sodium glucose cotransporter (SGLT2) show small but significant increases in serum magnesium levels in diabetic patients. This report describes dramatic improvement in serum magnesium levels and associated symptoms after initiating SGLT2 inhibitor therapy in 3 patients with refractory hypomagnesemia and diabetes. Each patient received a different SGLT2 inhibitor: canagliflozin, empagliflozin, or dapagliflozin. One patient discontinued daily intravenous magnesium supplements and exhibited higher serum magnesium levels than had been achieved by magnesium infusion. 2 of the 3 patients exhibited reduced urinary fractional excretion of magnesium, suggesting enhanced tubular reabsorption of magnesium. These observations demonstrate that SGLT2 inhibitors can improve the management of patients with otherwise intractable hypomagnesemia, representing a new tool in this challenging clinical disorder.
Collapse
|
36
|
Nozu K, Yamamura T, Horinouchi T, Nagano C, Sakakibara N, Ishikura K, Hamada R, Morisada N, Iijima K. Inherited salt-losing tubulopathy: An old condition but a new category of tubulopathy. Pediatr Int 2020; 62:428-437. [PMID: 31830341 DOI: 10.1111/ped.14089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Bartter syndrome (BS) and Gitelman syndrome (GS) are syndromes associated with congenital tubular dysfunction, characterized by hypokalemia and metabolic alkalosis. Clinically, BS is classified into two types: the severe antenatal/neonatal type, which develops during the fetal period with polyhydramnios and preterm delivery; and the relatively mild classic type, which is usually found during infancy with failure to thrive. GS can be clinically differentiated from BS by its age at onset, usually after school age, or laboratory findings of hypomagnesemia and hypocalciuria. Recent advances in molecular biology have shown that these diseases can be genetically classified into type 1 to 5 BS and GS. As a result, it has become clear that the clinical classification of antenatal/neonatal BS, classic BS, and GS does not always correspond to the clinical symptoms associated with the genotypes in a one-to-one manner; and there is clinically no clear differential border between type 3 BS and GS. This has caused confusion among clinicians in the diagnosis of these diseases. It has been proposed that the disease name "inherited salt-losing tubulopathy" can be used for cases of tubulopathies accompanied by hypokalemia and metabolic alkalosis. It is reasonable to use this term prior to genetic typing into type 1-5 BS or GS, to avoid confusion in a clinical setting. In this article, we review causative genes and phenotypic correlations, diagnosis, and treatment strategies for salt-losing tubulopathy as well as the clinical characteristics of pseudo-BS/GS, which can also be called a "salt-losing disorder".
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Ishikura
- Kitasato University School of Medicine, Sagamihara, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
37
|
Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2020; 97:42-61. [DOI: 10.1016/j.kint.2019.09.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
|
38
|
Urwin S, Willows J, Sayer JA. The challenges of diagnosis and management of Gitelman syndrome. Clin Endocrinol (Oxf) 2020; 92:3-10. [PMID: 31578736 DOI: 10.1111/cen.14104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Gitelman syndrome is an inherited tubulopathy characterized by renal salt wasting from the distal convoluted tubule. Defects in the sodium chloride cotransporter (encoded by SLC12A3) underlie this autosomal recessive condition. This article focuses on the specific challenges of diagnosing and treating Gitelman syndrome, with use of an illustrative case report. Symptoms relate to decreased serum potassium and magnesium levels, which include muscle weakness, tetany, fatigue and palpitations. Sudden cardiac deaths have been reported. Making a diagnosis may be difficult given its rarity but is important. A knowledge of the serum and urine biochemical picture is vital to distinguish it from a broad differential diagnosis, and application of genetic testing can resolve difficult cases. There is a group of Gitelman syndrome heterozygous carriers that experience symptoms and electrolyte disturbance and these patients should be managed in a similar way, though here genetic investigations become key in securing a difficult diagnosis. Potassium and magnesium replacement is the cornerstone of treatment, though practically this can be hard for patients to manage and often does not fully relieve symptoms even when serum levels are normalized. Challenges arise due to the lack of randomized controlled trials focussing on treatment of this rare disease; hence, clinicians endorse strategies in line with correction of the underlying pathophysiology such as sodium loading or pharmacological treatments, which seem to help some patients. Focussed dietary advice and knowing the best tolerated preparations of potassium and magnesium medications are useful tools for the physician, as well as an awareness of the specific burdens that this patient group face in order to signpost appropriate support.
Collapse
Affiliation(s)
- Stephanie Urwin
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jamie Willows
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A Sayer
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Protective effects of camellia oil (Camellia brevistyla) against indomethacin-induced gastrointestinal mucosal damage in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
41
|
Yang W, Zhao S, Xie Y, Mo Z. A novel SLC12A3 homozygous c2039delG mutation in Gitelman syndrome with hypocalcemia. BMC Nephrol 2018; 19:362. [PMID: 30558554 PMCID: PMC6296056 DOI: 10.1186/s12882-018-1163-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background Gitelman syndrome (GS) is a rare autosomal recessive renal tubular disease, caused by mutations in the SLC12A3 gene, which encodes the renal thiazide-sensitive Na/Cl cotransporter (NCCT) in the distal renal tubule. Case presentation A 23-year-old woman was admitted with limb numbness, recurrent tetany and palpitation. Laboratory tests showed hypokalemic alkalosis, hypomagnesemia, hypocalcemia and secondary hyperaldosteronism, as well as hypocalciuria and transient decreased PTH. Next-generation sequencing detected a novel homozygous mutations c.2039delG in the SLC12A3 gene, and her father and children were all heterozygous carriers. Conclusion We reported a case of GS with a novel homozygous frame-shift mutation of SLC12A3, and reviewed recent literatures about diagnosis, differential diagnosis and treatments. Hypocalcemia in Gitelman syndrome is rare, and may be related to inhibited PTH secretion induced by hypomagnesemia. Electronic supplementary material The online version of this article (10.1186/s12882-018-1163-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjun Yang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Shaoli Zhao
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Yanhong Xie
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Zhaohui Mo
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, 410013, China.
| |
Collapse
|
42
|
Başer H, Topaloğlu O, Çakır B. A Rare Reason of Hypokalemia in a Hyperthyroid Patient: Gitelman Syndrome. ANKARA MEDICAL JOURNAL 2018. [DOI: 10.17098/amj.461663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Stewart D, Iancu D, Ashton E, Courtney AE, Connor A, Walsh SB. Transplantation of a Gitelman Syndrome Kidney Ameliorates Hypertension: A Case Report. Am J Kidney Dis 2018; 73:421-424. [PMID: 30201548 DOI: 10.1053/j.ajkd.2018.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/27/2018] [Indexed: 01/16/2023]
Abstract
Gitelman syndrome is caused by inactivating mutations of the gene that encodes the renal sodium/chloride cotransporter (NCC; encoded by SLC12A3), resulting in hypokalemia, hypomagnesemia, hypocalciuria, and metabolic alkalosis. Renal salt wasting commonly provokes mild hypotension. The paucity of previous kidney transplants from donors with known tubulopathies suggests that such conditions may be considered contraindications to donation. A 76-year-old man received a live unrelated kidney transplant from a donor with known Gitelman syndrome secondary to a pathogenic mutation of SLC12A3. Immediate graft function preceded the emergence of the Gitelman syndrome biochemical phenotype and blood pressure subsequently improved. The recipient developed unexpected hyponatremia. Potential causes are discussed, including the possibility that it paralleled the physiologic changes seen in the high-volume state of thiazide-induced hyponatremia. Transplanted kidneys are subject to nephrotoxicity from the use of calcineurin inhibitors. Acquired Gitelman syndrome may confer a potential long-term advantage to the recipient through both improved blood pressure control and protection against the calcineurin inhibitor-induced side-effect profile caused by NCC overactivation. Both the donor and recipient remain well. In conclusion, Gitelman syndrome need not preclude kidney donation and transference of the phenotype may have benefits for the recipient.
Collapse
Affiliation(s)
- Daniel Stewart
- South West Transplant Centre, Derriford Hospital, Plymouth, Devon
| | | | - Emma Ashton
- North East Thames Regional Genetics Service Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London
| | - Aisling E Courtney
- Regional Nephrology & Transplant Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Andrew Connor
- South West Transplant Centre, Derriford Hospital, Plymouth, Devon.
| | | |
Collapse
|
44
|
Rodan AR. Sodium and magnesium in the distal convoluted tubule: no longer a couple? Physiol Rep 2018; 6:e13780. [PMID: 29981200 PMCID: PMC6035333 DOI: 10.14814/phy2.13780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Aylin R. Rodan
- Department of Internal MedicineDivision of Nephrology and HypertensionMolecular Medicine ProgramUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
45
|
Stimson L, Reynolds T. Differential diagnosis for chronic hypokalaemia. BMJ Case Rep 2018; 2018:bcr-2017-223680. [DOI: 10.1136/bcr-2017-223680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
46
|
Kleta R, Bockenhauer D. Salt-Losing Tubulopathies in Children: What's New, What's Controversial? J Am Soc Nephrol 2018; 29:727-739. [PMID: 29237739 PMCID: PMC5827598 DOI: 10.1681/asn.2017060600] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Renal tubulopathies provide insights into the inner workings of the kidney, yet also pose therapeutic challenges. Because of the central nature of sodium in tubular transport physiology, disorders of sodium handling may affect virtually all aspects of the homeostatic functions of the kidney. Yet, owing to the rarity of these disorders, little clinical evidence regarding treatment exists. Consequently, treatment can vary widely between individual physicians and centers and is based mainly on understanding of renal physiology, reported clinical observations, and individual experiences. Salt-losing tubulopathies can affect all tubular segments, from the proximal tubule to the collecting duct. But the more frequently observed disorders are Bartter and Gitelman syndrome, which affect salt transport in the thick ascending limb of Henle's loop and/or the distal convoluted tubule, and these disorders generate the greatest controversies regarding management. Here, we review clinical and molecular aspects of salt-losing tubulopathies and discuss novel insights provided mainly by genetic investigations and retrospective clinical reviews. Additionally, we discuss controversial topics in the management of these disorders to highlight areas of importance for future clinical trials. International collaboration will be required to perform clinical studies to inform the treatment of these rare disorders.
Collapse
Affiliation(s)
- Robert Kleta
- UCL Centre for Nephrology and Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Detlef Bockenhauer
- UCL Centre for Nephrology and Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
47
|
Lemoine S, Cochat P, Bertholet-Thomas A, Levi C, Bonnefoy C, Sellier-Leclerc AL, Bacchetta J. Néphrologie pédiatrique : que doit savoir un néphrologue d’adulte sur ces pathologies ? Nephrol Ther 2017; 13:495-504. [DOI: 10.1016/j.nephro.2017.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
48
|
Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, Ellison DH, Karet Frankl FE, Knoers NVAM, Konrad M, Lin SH, Vargas-Poussou R. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2017; 91:24-33. [PMID: 28003083 DOI: 10.1016/j.kint.2016.09.046] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Gitelman syndrome (GS) is a rare, salt-losing tubulopathy characterized by hypokalemic metabolic alkalosis with hypomagnesemia and hypocalciuria. The disease is recessively inherited, caused by inactivating mutations in the SLC12A3 gene that encodes the thiazide-sensitive sodium-chloride cotransporter (NCC). GS is usually detected during adolescence or adulthood, either fortuitously or in association with mild or nonspecific symptoms or both. The disease is characterized by high phenotypic variability and a significant reduction in the quality of life, and it may be associated with severe manifestations. GS is usually managed by a liberal salt intake together with oral magnesium and potassium supplements. A general problem in rare diseases is the lack of high quality evidence to inform diagnosis, prognosis, and management. We report here on the current state of knowledge related to the diagnostic evaluation, follow-up, management, and treatment of GS; identify knowledge gaps; and propose a research agenda to substantiate a number of issues related to GS. This expert consensus statement aims to establish an initial framework to enable clinical auditing and thus improve quality control of care.
Collapse
Affiliation(s)
- Anne Blanchard
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique, Paris, France; Centre d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; UMR 970, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Detlef Bockenhauer
- Centre for Nephrology, University College London, London, UK; Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, UK
| | - Davide Bolignano
- Institute of Clinical Physiology, National Research Council, Reggio, Calabria, Italy
| | - Lorenzo A Calò
- Department of Medicine, Nephrology, University of Padova, Padova, Italy
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health and Science University, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Fiona E Karet Frankl
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals National Health Service Trust, Cambridge, UK; Division of Renal Medicine, University of Cambridge and Cambridge University Hospitals National Health Service Trust, Cambridge, UK
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Rosa Vargas-Poussou
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France
| |
Collapse
|
49
|
Robinson CM, Karet Frankl FE. Magnesium lactate in the treatment of Gitelman syndrome: patient-reported outcomes. Nephrol Dial Transplant 2017; 32:508-512. [PMID: 26940126 PMCID: PMC5837242 DOI: 10.1093/ndt/gfw019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/24/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Gitelman syndrome (GS) is a rare recessively inherited renal tubulopathy associated with renal potassium (K) and magnesium (Mg) loss. It requires lifelong K and Mg supplementation at high doses that are at best unpalatable and at worst, intolerable. In particular, gastrointestinal side effects often limit full therapeutic usage. Methods: We report here the analysis of a cohort of 28 adult patients with genetically proven GS who attend our specialist tubular disorders clinic, in whom we initiated the use of a modified-release Mg preparation (slow-release Mg lactate) and who were surveyed by questionnaire. Results: Twenty-five patients (89%) preferred the new treatment regimen. Of these 25, 17 (68%) regarded their symptom burden as improved and seven reported no worsening. Of the 25 who were not Mg-treatment naïve, 13 (59%) patients reported fewer side effects, 7 (32%) described them as the same and only 2 (9%) considered side effects to be worse. Five were able to increase their dose without ill-effect. Overall, biochemistry improved in 91% of the 23 patients switched from therapy with other preparations who chose to continue the modified-release Mg preparation. Eleven (48%) improved both their Mg and K mean levels, 3 (13%) improved Mg levels only and in 7 cases (30%), K levels alone rose. Conclusions: Patient-reported and biochemical outcomes using modified-release Mg supplements were very favourable, and patient choice should play a large part in choosing Mg supplements with GS patients.
Collapse
Affiliation(s)
- Caroline M Robinson
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Fiona E Karet Frankl
- Division of Renal Medicine and Division of Experimental Medicine, University of Cambridge, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrookes Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
50
|
Peng X, Jiang L, Chen C, Qin Y, Yuan T, Wang O, Xing X, Li X, Nie M, Chen L. Increased urinary prostaglandin E2 metabolite: A potential therapeutic target of Gitelman syndrome. PLoS One 2017; 12:e0180811. [PMID: 28700713 PMCID: PMC5507263 DOI: 10.1371/journal.pone.0180811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gitelman syndrome (GS), an inherited autosomal recessive salt-losing renal tubulopathy caused by mutations in SLC12A3 gene, has been associated with normal prostaglandin E2 (PGE2) levels since 1995 by a study involving 11 clinically diagnosed patients. However, it is difficult to explain why cyclooxygenase-2 (COX2) inhibitors, which pharmacologically reduce PGE2 synthesis, are helpful to patients with GS, and few studies performed in the last 20 years have measured PGE2 levels. The relationships between the clinical manifestations and PGE2 levels were never thoroughly analyzed. METHODS This study involved 39 GS patients diagnosed by SLC12A3 gene sequencing. Plasma and 24-h urine samples as well as the clinical data were collected at admission. PGE2 and PGEM levels were detected in plasma and urine samples by enzyme immunoassays. The in vivo function of the sodium-chloride co-transporter (NCC) in GS patients was evaluated using a modified thiazide test. The association among PGE2 levels, clinical manifestations and the function of NCC in GS patients were analyzed. RESULTS Significantly higher levels of urinary and plasma PGEM were observed in GS patients than in the healthy volunteers. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction estimated by the increase of Cl- clearance. A higher PGEM level was found in male GS patients, who showed earlier onset age and more severe hypokalemia, hypochloremia and metabolic alkalosis than female GS patients. No relationship between renin angiotensin aldosterone system activation and PGEM level was observed. CONCLUSIONS Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction in GS patients. COX2 inhibition might be a potential therapeutic target in GS patients with elevated PGEM levels.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lanping Jiang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Genetics, Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Qin
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Yuan
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|