1
|
Lee SR, Lee HE, Yoo JY, An EJ, Song SJ, Han KH, Cha DR, Bae YS. Nox4-SH3YL1 complex is involved in diabetic nephropathy. iScience 2024; 27:108868. [PMID: 38318360 PMCID: PMC10839645 DOI: 10.1016/j.isci.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Nox4-derived H2O2 generation plays an important role in the pathogenesis of chronic kidney diseases (CKDs) such as diabetic nephropathy (DN). Here, we showed that SH3 domain-containing Ysc84-like 1 (SH3YL1), a Nox4 cytosolic activator, regulated DN. Streptozotocin (STZ)-induced type Ⅰ diabetic models in SH3YL1 whole-body knockout (KO) mice and podocyte-specific SH3YL1 conditional KO (Nphs2-Cre/SH3YL1fl/fl) mice were established to investigate the function of SH3YL1 in DN. The expression of fibrosis markers and inflammatory cytokines, the generation of oxidative stress, and the loss of podocytes were suppressed in diabetic SH3YL1 KO and Nphs2-Cre/SH3YL1fl/fl mice, compared to diabetic control mice. To extrapolate the observations derived from diabetic mice to clinical implication, we measured the protein level of SH3YL1 in patients DN. In fact, the SH3YL1 level was increased in patients DN. Overall, the SH3YL1-Nox4 complex was identified to play an important role in renal inflammation and fibrosis, resulting in the development of DN.
Collapse
Affiliation(s)
- Sae Rom Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hye Eun Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Jung An
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Jin Song
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 15355, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
2
|
Jaikumkao K, Thongnak L, Htun KT, Pengrattanachot N, Phengpol N, Sutthasupha P, Promsan S, Montha N, Sriburee S, Kothan S, Lungkaphin A. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166912. [PMID: 37816397 DOI: 10.1016/j.bbadis.2023.166912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Considering the effects of sodium-glucose cotransporter inhibitors and metformin on the kidneys, a combination of both agents is postulated to provide protection against diabetic nephropathy (DN). We examined the potential protective effects of dapagliflozin, metformin, and their combination on kidney injury in rats with type 2 diabetes. Diabetic (DM) rats were administered dapagliflozin (1.0 mg/kg/day), metformin (100 mg/kg/day), or a combination (dapagliflozin 0.5 mg/kg/day plus metformin 50 mg/kg/day) by oral gavage for 4 weeks. Dapagliflozin monotherapy or in combination with metformin was more effective than metformin monotherapy in attenuating renal dysfunction, improving renal organic anion transporter 3 expression, and activating renal autophagy by modulating the AMPK/mTOR/SIRT1 axis in DM rats. Interestingly, dapagliflozin monotherapy exhibited greater efficacy in suppressing renal oxidative stress in DM rats than metformin or the combination treatment. Renal and pancreatic injury scores decreased in all treatment groups. Apoptotic markers were predominantly reduced in dapagliflozin monotherapy and combination treatment groups. The low-dose combination treatment, through synergistic coordination, appeared to modulate oxidative, autophagic, and apoptotic signaling and confer significant renoprotective effects against DM-induced complications. In addition, a low dose of the combination might be beneficial to patients by avoiding the risk of side effects of the medication. Future clinical trials are necessary to study the nephroprotective effects of the combined treatment at a low dosage in patients with diabetes.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sompong Sriburee
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Foods for Health and Disease, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
4
|
Regulation of Mitochondrial Homeostasis and Nrf2 in Kidney Disease: Timing Is Critical. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9275056. [PMID: 35528519 PMCID: PMC9072027 DOI: 10.1155/2022/9275056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Abnormal regulation of mitochondrial homeostasis plays a critical role in the progression of renal disease. Recent studies have shown that activation of nuclear factor erythroid 2-related factor 2 (Nrf2) has time-dependent protective effects, which can be explained by the differing regulation of mitochondrial homeostasis during the various stages of kidney disease. In this review, we summarize the mechanisms whereby mitochondrial homeostasis is regulated and the nature of the dysregulation of mitochondrial homeostasis in renal disease. In addition, we summarize the dual roles of Nrf2 in kidney disease by discussing the studies that have shown the importance of the timing of its activation in the regulation of mitochondrial homeostasis. This should provide a theoretical basis for therapeutic strategies aimed at activating Nrf2 in kidney disease.
Collapse
|
5
|
Hirudo Lyophilized Powder Ameliorates Renal Injury in Diabetic Rats by Suppressing Oxidative Stress and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6657673. [PMID: 33688363 PMCID: PMC7920712 DOI: 10.1155/2021/6657673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 12/25/2022]
Abstract
As diabetic nephropathy (DN) is one of the most common and destructive microvascular complications of diabetes mellitus, the goal of this study, therefore, was to investigate the renal protective effect and latent mechanisms of Hirudo lyophilized powder on diabetic rats. In this study, all rats were randomly assigned into the control group and diabetic group. The rats of diabetic group were injected with low-dose STZ (35 mg/kg) intraperitoneal plus high-fat diet to induce diabetes. Then, the successful diabetic model rats were weighed and randomly assigned into four groups: (1) diabetic model group (DM group); (2) Hirudo lyophilized powder 0.3 g/kg treatment group (SL group); (3) Hirudo lyophilized powder 0.6 g/kg treatment group (SM group); (4) Hirudo lyophilized powder 1.2 g/kg treatment group (SH group). Their fasting blood glucoses (FBG) were measured every 4 weeks. After treatment with Hirudo lyophilized powder at a corresponding dose once a day for 16 weeks, their metabolic and biochemical as well as oxidative stress parameters were tested, and the kidney weight (KW)/body weight (BW) was calculated. The renal tissues were used for histological, mRNA, and protein expression analysis. The results showed that Hirudo lyophilized powder could protect against the structural damages and functional changes of diabetic renal tissue by inhibiting oxidative stress, inflammation, and fibrosis. Furthermore, it was found in the further research that inhibiting the NOX4 expression and JAK2/STAT1/STAT3 pathway activation might be the underlying mechanisms. Collectively, Hirudo lyophilized powder might be a promising therapeutic agent for the treatment of DN.
Collapse
|
6
|
Chen ZQ, Sun XH, Li XJ, Xu ZC, Yang Y, Lin ZY, Xiao HM, Zhang M, Quan SJ, Huang HQ. Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway. Acta Pharmacol Sin 2020; 41:1587-1596. [PMID: 32724174 PMCID: PMC7921128 DOI: 10.1038/s41401-020-0475-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
We previously found that polydatin could attenuate renal oxidative stress in diabetic mice and improve renal fibrosis. Recent evidence shows that NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) contribute to inflammatory and fibrotic processes in diabetic kidneys. In this study we investigated whether polydatin attenuated renal fibrosis by regulating Nox4 in vitro and in vivo. In high glucose-treated rat glomerular mesangial cells, polydatin significantly decreased the protein levels of Nox4 by promoting its K48-linked polyubiquitination, thus inhibited the production of ROS, and eventually decreasing the expression of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1), the main factors that exacerbate diabetic renal fibrosis. Overexpression of Nox4 abolished the inhibitory effects of polydatin on FN and ICAM-1 expression. In addition, the expression of Connexin32 (Cx32) was significantly decreased, which was restored by polydatin treatment. Cx32 interacted with Nox4 and reduced its protein levels. Knockdown of Cx32 abolished the inhibitory effects of polydatin on the expression of FN and ICAM-1. In the kidneys of streptozocin-induced diabetic mice, administration of polydatin (100 mg·kg-1·d-1, ig, 6 days a week for 12 weeks) increased Cx32 expression and reduced Nox4 expression, decreased renal oxidative stress levels and the expression of fibrotic factors, eventually attenuating renal injury and fibrosis. In conclusion, polydatin promotes K48-linked polyubiquitination and degradation of Nox4 by restoring Cx32 expression, thereby decreasing renal oxidative stress levels and ultimately ameliorating the pathological progress of diabetic renal fibrosis. Thus, polydatin reduces renal oxidative stress levels and attenuates diabetic renal fibrosis through regulating the Cx32-Nox4 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Quan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Hong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Juan Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Zhan-Chi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ze-Yuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Ming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Jian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - He-Qing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, Lin Z, Yang Y, Liu P, Huang H. Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation. Br J Pharmacol 2020; 177:145-160. [PMID: 31465542 PMCID: PMC6976783 DOI: 10.1111/bph.14853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Nox4 is the major isoform of NADPH oxidase found in the kidney and contributes to the pathogenesis of diabetic nephropathy. However, the molecular mechanisms of increased Nox4 expression induced by hyperglycaemia remain to be elucidated. Here, the role of the connexin32-Nox4 signalling axis in diabetic nephropathy and its related mechanisms were investigated. EXPERIMENTAL APPROACH Diabetes was induced in mice by low-dose streptozotocin (STZ) combined with a high-fat diet. Effects of connexin32 on Nox4 expression and on renal function and fibrosis in STZ-induced diabetic mice were investigated using adenovirus-overexpressing connexin32 and connexin32-deficient mice. Interactions between connexin32 and Nox4 were analysed by co-immunoprecipitation and immunofluorescence assays. KEY RESULTS Connexin32 was down-regulated in the kidneys of STZ-induced diabetic mice. Overexpression of connexin32 reduced expression of Nox4 and improved renal function and fibrosis in diabetic mice, whereas connexin32 deficiency had opposite effects. Down-regulation of fibronectin expression by connexin32 was not dependent on gap junctional intercellular communication involving connexin32. Connexin32 interacted with Nox4 and reduced the generation of hydrogen peroxide, leading to the down-regulation of fibronectin expression. Mechanistically, connexin32 decreased Nox4 expression by promoting its K48-linked polyubiquitination. Interestingly, Smurf1 overexpression inhibited K48-linked polyubiquitination of Nox4. Furthermore, connexin32 interacted with Smurf1 and inhibited its expression. CONCLUSION AND IMPLICATIONS Connexin32 ameliorated renal fibrosis in diabetic mice by promoting K48-linked Nox4 polyubiquitination and degradation via inhibition of Smurf1 expression. Targeting the connexin32-Nox4 signalling axis may contribute to the development of novel treatments for diabetic nephropathy.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Department of Pharmacology, School of PharmacyGuangxi Medical UniversityNanningChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohong Sun
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Qiuhong Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Lan
- Department of Pharmacology, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Kaipeng Huang
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Wu W, Jin Y, Teng L, Shao X, Wang Y, Feng S, Wang C, Jiang H, Wu J. Mitochondria-related reversal of early-stage diabetic nephropathy in donor kidney after transplantation in mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:801. [PMID: 32042817 DOI: 10.21037/atm.2019.12.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Renal diabetic changes are frequent in kidney transplantation (KTx) donors. Whether these diabetic changes are reversible remains a topic of debate. This study aimed to test the hypothesized reversibility of diabetic changes after KTx. Methods C57BL/6J mice were randomly divided into three groups: the control group, early-stage group (ESG), and advanced-stage group (ASG). Diabetes mellitus (DM) was induced in mice by intraperitoneal injection of streptozotocin (STZ) at 50 mg/kg body weight for five consecutive days. Blood glucose levels ≥16.7 mmol/L were indicative of diabetic mice. The kidneys from ESG and ASG were transplanted to control mice 12 or 32 weeks after STZ injection. Kidney tissue, blood, and 24-hour urine specimens of donor and recipient mice were collected before KTx and 28 days after KTx, respectively. We measured the body weight, blood glucose, histological changes, reactive oxygen species (ROS), apoptosis. Electron microscopy was also performed to evaluate the mitochondrial morphology. The expression of NADPH oxidases (NOXs) was assessed by qRT-PCR. Results Kidneys from early-stage diabetic mice showed evidence of lesion reversal four weeks after KTx, including decreased urinary albumin and reversal of histological changes. Besides, mitochondrial swelling, oxidative stress, apoptosis, and overexpression of NOXs in the kidneys were also suppressed. Conversely, no changes were observed in kidneys from advanced-stage diabetic mice after KTx. Conclusions We confirmed that early-stage but not advanced-stage diabetic nephropathy (DN) is reversible, which is related to reduced NOX expression and improvement in mitochondrial function. These results indicated that kidneys with early-stage DN could be used for KTx in clinical practice, as the disease may be reversed following KTx.
Collapse
Affiliation(s)
- Weinan Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Yiming Jin
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China.,Department of Nephropathy, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Lisha Teng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Xue Shao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Shi Feng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou 310003, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou 310000, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou 310000, China.,Institute of Nephropathy, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
9
|
Modulation of Adipogenesis and Oxidative Status by Quercetin and Ochratoxin A: Positive or Negative Impact on Rat Adipocyte Metabolism? Molecules 2019; 24:molecules24203726. [PMID: 31623151 PMCID: PMC6832986 DOI: 10.3390/molecules24203726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Impaired adipose tissue function leads to the development of metabolic disorders. Reactive oxygen species play a key role in the regulation of adipogenesis and insulin-stimulated glucose uptake by adipocytes. Quercetin (QCT) regulates adipogenesis by affecting the redox state of preadipocytes. Ochratoxin A (OTA) is one of the most prevalent mycotoxins contaminating food. It has cytotoxic, genotoxic, pro-inflammatory, and anti-adipogenic effects. Antioxidants are believed to protect cells from the cytotoxicity and genotoxicity induced by OTA. The aim of this study was to investigate the effect of QCT and OTA application on preadipocyte differentiation, oxidative status, and adipocyte metabolism. (2) Methods: Primary rat preadipocytes were isolated from subcutaneous adipose tissue of Wistar rats. Gene expressions were determined by qPCR. Cell viability, reactive oxygen species (ROS) production, glucose uptake, and lipid accumulation were determined using commercially available kits. (3) Results: A dose-dependent inhibitory effect of QCT on adipogenic differentiation was observed, which was accompanied by a decrease in ROS production. Reduced ROS formation is closely related to impaired glucose uptake by adipocytes. (4) Conclusions: The results of this study indicate a key role of ROS in regulating adipogenesis and metabolic pathways, which is affected by the application of QCT and/or OTA.
Collapse
|
10
|
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Park CW, Kim HS. Inhibition of p300/CBP-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of NF-kB and Nrf2. Int J Mol Sci 2019; 20:ijms20071554. [PMID: 30925687 PMCID: PMC6479343 DOI: 10.3390/ijms20071554] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022] Open
Abstract
p300/CBP-associated factor (PCAF), a histone acetyltransferase, is involved in many cellular processes such as differentiation, proliferation, apoptosis, and reaction to cell damage by modulating the activities of several genes and proteins through the acetylation of either the histones or transcription factors. Here, we examined a pathogenic role of PCAF and its potential as a novel therapeutic target in the progression of renal tubulointerstitial fibrosis induced by non-diabetic unilateral ureteral obstruction (UUO) in male C57BL/6 mice. Administration of garcinol, a PCAF inhibitor, reversed a UUO-induced increase in the renal expression of total PCAF and histone 3 lysine 9 acetylation and reduced positive areas of trichrome and α-smooth muscle actin and collagen content. Treatment with garcinol also decreased mRNA levels of transforming growth factor-β, matrix metalloproteinase (MMP)-2, MMP-9, and fibronectin. Furthermore, garcinol suppressed nuclear factor-κB (NF-κB) and pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6, whereas it preserved the nuclear expression of nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and levels of Nrf2-dependent antioxidants including heme oxygense-1, catalase, superoxide dismutase 1, and NAD(P)H:quinone oxidoreductase 1. These results suggest that the inhibition of inordinately enhanced PCAF could mitigate renal fibrosis by redressing aberrant balance between inflammatory signaling and antioxidant response through the modulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
11
|
Liu JJ, Liu S, Gurung RL, Ching J, Kovalik JP, Tan TY, Lim SC. Urine Tricarboxylic Acid Cycle Metabolites Predict Progressive Chronic Kidney Disease in Type 2 Diabetes. J Clin Endocrinol Metab 2018; 103:4357-4364. [PMID: 30060124 DOI: 10.1210/jc.2018-00947] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Metabolites in the tricarboxylic acid (TCA) cycle are not only involved in energy metabolism but also play important roles in non-energy production activities. OBJECTIVE To study whether baseline urine key TCA cycle metabolites (lactate, pyruvate, citrate, α-ketoglutaric acid, succinate, fumarate, and malate) independently predict risk of chronic kidney disease (CKD) progression [fast estimated glomerular filtration rate (eGFR) decline] in individuals with type 2 diabetes mellitus (T2DM). DESIGN One discovery and one validation nested case-control studies in two independent T2DM cohorts. SETTING AND PARTICIPANTS Subjects with T2DM were recruited and followed in a regional hospital and at a primary care facility. MAIN OUTCOME MEASURES eGFR trajectory (slope) was estimated by linear regression. Progressive CKD was defined as eGFR decline of ≥5 mL/min/1.73 m2 per year. RESULTS As compared with those with stable renal function (n = 271), participants who experienced progressive CKD (n = 116) had a lower level of urine citrate but significantly higher levels of lactate, fumarate, and malate levels at baseline. Both fumarate and malate predicted progressive CKD independent of traditional cardio-renal risk factors, including eGFR and albuminuria. Fumarate interacted with sex (P for interaction = 0.03) and independently predicted progressive CKD in male but not female participants. All these findings were reproducible in a validation study (case n = 96, control n = 402). Exploratory analysis suggested that fumarate might partially mediate the effect of oxidative stress on CKD progression. CONCLUSIONS Key TCA cycle metabolites, especially fumarate, may be involved in the pathophysiologic pathway independent of traditional cardio-renal risk factors, leading to CKD progression in patients with T2DM.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | | | - Su Chi Lim
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
12
|
Yang Q, Wu FR, Wang JN, Gao L, Jiang L, Li HD, Ma Q, Liu XQ, Wei B, Zhou L, Wen J, Ma TT, Li J, Meng XM. Nox4 in renal diseases: An update. Free Radic Biol Med 2018; 124:466-472. [PMID: 29969717 DOI: 10.1016/j.freeradbiomed.2018.06.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species derived from NADPH oxidase contribute to a wide variety of renal diseases. Nox4, the major NADPH isoform in kidney, produces mainly H2O2 that regulates physiological functions. Nox4 contributes to redox processes involved in diabetic nephropathy, acute kidney injury, obstructive nephropathy, hypertensive nephropathy, renal cell carcinoma and other renal diseases by activating multiple signaling pathways. Although Nox4 is found in a variety of cell types, including epithelial cells, podocytes, mesangial cells, endothelial cells and fibroblasts, its role is not clear and even controversial. In some conditions, Nox4 protects cells by promoting cell survival in response to harmful stimuli. In other scenarios it induces cell apoptosis, inflammation or fibrogenesis. This functional variability may be attributed to distinct cell types, subcellular localization, molecular concentrations, disease type or stage, and other factors yet unexplored. In this setting, we reviewed the function and mechanism of Nox4 in renal diseases, highlighted the contradictions in Nox4 literature, and discussed promising therapeutic strategies targeting Nox4 in the treatment of certain types of renal diseases.
Collapse
Affiliation(s)
- Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Fan-Rong Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ling Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qiuying Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Luyu Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jiagen Wen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Tao Tao Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China.
| |
Collapse
|
13
|
Aseer KR, Silvester AJ, Kumar A, Choi MS, Yun JW. SPARC paucity alleviates superoxide-mediated oxidative stress, apoptosis, and autophagy in diabetogenic hepatocytes. Free Radic Biol Med 2017; 108:874-895. [PMID: 28499910 DOI: 10.1016/j.freeradbiomed.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is known to play a previously unappreciated role in diabetes, but its precise mechanism in liver/hepatocyte pathology remains unknown. Inhibition of SPARC is critical in resolving candidate pathogenic events such as production of reactive oxygen species (ROS), which are broadly considered for their roles in diabetes, and is capable of protecting functional hepatocytes. Here, we provide in vitro and in vivo evidence demonstrating pathological correlations between SPARC and streptozotocin (STZ)-induced diabetic rat livers as well as cultured hepatocytes induced by diabetogenic stimuli. Under these conditions, transient SPARC silencing was carried out to investigate the role of SPARC in the pathogenesis of pro-diabetic hepatocyte damage and dysfunction. The constitutive expression of SPARC in hepatocytes was up-regulated under a diabetic environment. In addition, Nox4-dependent superoxide generation contributed to increased expression of SPARC, and this was inhibited by tiron and pharmacological or genetic inactivation of Nox4-containing NADPH oxidase. Remarkably, SPARC deficiency inhibited diabetic stimuli-induced elevation of superoxide production and resolved salient features of hepatocyte damage such as impaired cytoprotection, inflammation, apoptosis, and autophagy. At the same time, links between SPARC, integrin-β1, Nox4-derived superoxide, and JNK signaling provide a basis for these phenotypes. Taken together with the observations that SPARC deficiency had protective effects on hepatocytes via a favorable inhibition profile, functional knowledge of SPARC may offer a unique therapeutic approach to preserve hepatocellular fate decisions in diabetes.
Collapse
Affiliation(s)
- Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | | | - Anuj Kumar
- Bioinformatics and Documentation Laboratory, Uttarakhand Council for Biotechnology, Dehradun 248007, India
| | - Myung-Sook Choi
- Department of Food Science and Nutrition & Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea.
| |
Collapse
|
14
|
Ma R, Chaudhari S, Li W. Canonical Transient Receptor Potential 6 Channel: A New Target of Reactive Oxygen Species in Renal Physiology and Pathology. Antioxid Redox Signal 2016; 25:732-748. [PMID: 26937558 PMCID: PMC5079416 DOI: 10.1089/ars.2016.6661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Regulation of Ca2+ signaling cascade by reactive oxygen species (ROS) is becoming increasingly evident and this regulation represents a key mechanism for control of many fundamental cellular functions. Canonical transient receptor potential (TRPC) 6, a member of Ca2+-conductive channel in the TRPC family, is widely expressed in kidney cells, including glomerular mesangial cells, podocytes, tubular epithelial cells, and vascular myocytes in renal microvasculature. Both overproduction of ROS and dysfunction of TRPC6 channel are involved in renal injury in animal models and human subjects. Although regulation of TRPC channel function by ROS has been well described in other tissues and cell types, such as vascular smooth muscle, this important cell regulatory mechanism has not been fully reviewed in kidney cells. Recent Advances: Accumulating evidence has shown that TRPC6 is a redox-sensitive channel, and modulation of TRPC6 Ca2+ signaling by altering TRPC6 protein expression or TRPC6 channel activity in kidney cells is a downstream mechanism by which ROS induce renal damage. CRITICAL ISSUES This review highlights how recent studies analyzing function and expression of TRPC6 channels in the kidney and their response to ROS improve our mechanistic understanding of oxidative stress-related kidney diseases. FUTURE DIRECTIONS Although it is evident that ROS regulate TRPC6-mediated Ca2+ signaling in several types of kidney cells, further study is needed to identify the underlying molecular mechanism. We hope that the newly identified ROS/TRPC6 pathway will pave the way to new, promising therapeutic strategies to target kidney diseases such as diabetic nephropathy. Antioxid. Redox Signal. 25, 732-748.
Collapse
Affiliation(s)
- Rong Ma
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|