1
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
2
|
Dolla G, Nicolas S, Dos Santos LR, Bourgeois A, Pardossi-Piquard R, Bihl F, Zaghrini C, Justino J, Payré C, Mansuelle P, Garbers C, Ronco P, Checler F, Lambeau G, Petit-Paitel A. Ectodomain shedding of PLA2R1 is mediated by the metalloproteases ADAM10 and ADAM17. J Biol Chem 2024; 300:107480. [PMID: 38897568 PMCID: PMC11301074 DOI: 10.1016/j.jbc.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by β- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.
Collapse
Affiliation(s)
- Guillaume Dolla
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Sarah Nicolas
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Ligia Ramos Dos Santos
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Alexandre Bourgeois
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Franck Bihl
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Christelle Zaghrini
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Joana Justino
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Christine Payré
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Pascal Mansuelle
- Plateforme de Protéomique de l'Institut de Microbiologie de la Méditerranée (IMM), Marseille Protéomique (MaP), Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS) FR3479, Marseille, France
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Pierre Ronco
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S1155, Paris, France; Sorbonne Université, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Frédéric Checler
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France.
| | - Agnès Petit-Paitel
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France.
| |
Collapse
|
3
|
Huang Y, Geng J, Wang M, Liu W, Hu H, Shi W, Li M, Huo G, Huang G, Xu A. A simple protocol to establish a conditionally immortalized mouse podocyte cell line. Sci Rep 2024; 14:11591. [PMID: 38773220 PMCID: PMC11109129 DOI: 10.1038/s41598-024-62547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.
Collapse
Affiliation(s)
- Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mei Li
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Abdel-Bakky MS, Aldakhili ASA, Ali HM, Babiker AY, Alhowail AH, Mohammed SAA. Evaluation of Cisplatin-Induced Acute Renal Failure Amelioration Using Fondaparinux and Alteplase. Pharmaceuticals (Basel) 2023; 16:910. [PMID: 37513824 PMCID: PMC10383028 DOI: 10.3390/ph16070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Acute renal failure (ARF) is a deleterious condition with increased mortality or healthcare costs or dialysis-dependent end-stage renal disease. The study aims to compare prophylaxis with fondaparinux (Fund) vs. treatment with alteplase (Alt) in ameliorating cisplatin (Cis)-induced ARF. Sixty male mice were equally divided randomly into six groups of control, Cis, Alt, and Cis + Alt groups receiving normal saline for 10 days. All four groups except for the control received Cis (30 mg/kg, i.p.) on day 7, and 6 h later, both the Alt groups received Alt (0.9 mg/kg, i.v.). The animal groups Fund and Fund + Cis received Fund (5 mg/kg, i.p.) for 10 days, and the Fund + Cis group on day 7 received Cis. All the animal groups were euthanized 72 h after the Cis dose. The Fund + Cis group showed significantly increased expression levels of platelet count, retinoid X receptor alpha (RXR-α) and phosphorylated Akt (p-Akt) in addition to decreased levels of urea, blood urea nitrogen (BUN), uric acid, white blood cells (WBCs), red blood cells (RBCs), relative kidney body weight, kidney injury score, glucose, prothrombin (PT), A Disintegrin And Metalloproteinases-10 (ADAM10), extracellular matrix deposition, protease-activated receptor 2 (PAR-2), and fibrinogen expression when compared to the Cis-only group. Meanwhile, the Cis + Alt group showed increased caspase-3 expression in addition to decreased levels of urea, BUN, uric acid, WBCs, RBCs, glucose, platelet count and PT expression with a marked decrease in PAR-2 protein expression compared to the Cis group. The creatinine levels for both the Fund + Cis and Cis + Alt groups were found to be comparable to those of the Cis-only group. The results demonstrate that the coagulation system's activation through the stimulation of PAR-2 and fibrinogen due to Cis-induced ADAM10 protein expression mediated the apoptotic pathway, as indicated by caspase-3 expression through the p-Akt pathway. This is normally accompanied by the loss of RXR-α distal and proximal tubules as lipid droplets. When the animals were pre-treated with the anticoagulant, Fund, the previous deleterious effect was halted while the fibrinolytic agent, Alt, most of the time failed to treat Cis-induced toxicity.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Anas S A Aldakhili
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hussein M Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Ali Y Babiker
- Department of Medical Laboratories, College of Applied Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023; 42:1438-1452. [PMID: 36922678 PMCID: PMC10154218 DOI: 10.1038/s41388-023-02650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Peritoneal metastasis is a key feature of advanced ovarian cancer, but the critical protein required for ovarian cancer metastasis and progression is yet to be defined. Thus, an unbiased high throughput and in-depth study is warranted to unmask the mechanism. Transcriptomic sequencing of paired primary ovarian tumors and metastases unveiled that MAP4K4, a serine/threonine kinase belongs to the Ste20 family of kinases, was highly expressed in metastatic sites. Increased MAP4K4 expression in metastasis was further validated in other independent patients, with higher MAP4K4 expression associated with poorer survival, higher level of CA125 and more advanced FIGO stage. Down regulation of MAP4K4 inhibited cancer cell adhesion, migration, and invasion. Notably, MAP4K4 was found to stabilize N-cadherin. Further results showed that MAP4K4 mediated phosphorylation of ADAM10 at Ser436 results in suppression of N-cadherin cleavage by ADAM10, leading to N-cadherin stabilization. Pharmacologic inhibition of MAP4K4 abrogated peritoneal metastases. Overall, our data reveal MAP4K4 as a significant promoter in ovarian cancer metastasis. Targeting MAP4K4 may be a potential therapeutic approach for ovarian cancer patients.
Collapse
|
6
|
Cai XY, Wang ZF, Ge SW, Xu G. Identification of Hub Genes and Immune-Related Pathways for Membranous Nephropathy by Bioinformatics Analysis. Front Physiol 2022; 13:914382. [PMID: 35812314 PMCID: PMC9263269 DOI: 10.3389/fphys.2022.914382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE: We aim to explore the detailed molecular mechanisms of membrane nephropathy (MN) related genes by bioinformatics analysis.METHODS: Two microarray datasets (GSE108109 and GSE104948) with glomerular gene expression data from 65 MN patients and 9 healthy donors were obtained from the Gene Expression Omnibus (GEO) database. After processing the raw data, DEGs screening was conducted using the LIMMA (linear model for microarray data) package and Gene set enrichment analysis (GSEA) was performed with GSEA software (v. 3.0), followed by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network analysis was carried out to determine the hub genes, by applying the maximal clique centrality (MCC) method, which was visualized by Cytoscape. Finally, utilizing the Nephroseq v5 online platform, we analyzed subgroups associated with hub genes. The findings were further validated by immunohistochemistry (IHC) staining in renal tissues from MN or control patients.RESULTS: A sum of 370 DEGs (188 up-regulated genes, 182 down-regulated genes) and 20 hub genes were ascertained. GO and KEGG enrichment analysis demonstrated that DEGs of MN were preponderantly associated with cell damage and complement cascade-related immune responses. Combined with literature data and hub gene-related MN subset analysis, CTSS, ITGB2, and HCK may play important roles in the pathological process of MN.CONCLUSION: This study identified novel hub genes in MN using bioinformatics. We found that some hub genes such as CTSS, ITGB2, and HCK might contribute to MN immunopathological process, providing new insights for further study of the molecular mechanisms underlying glomerular injury of MN.
Collapse
Affiliation(s)
| | | | | | - Gang Xu
- *Correspondence: Shu-Wang Ge, ; Gang Xu,
| |
Collapse
|
7
|
Liu W, Huang G, Rui H, Geng J, Hu H, Huang Y, Huo G, Liu B, Xu A. Course monitoring of membranous nephropathy: Both autoantibodies and podocytes require multidimensional attention. Autoimmun Rev 2021; 21:102976. [PMID: 34757091 DOI: 10.1016/j.autrev.2021.102976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
A variety of podocyte antigens have been identified in human membranous nephropathy (MN), which is divided into various antigen-dominated subtypes, confirming the concept that MN is the common pattern of glomerular injury in multiple autoimmune responses. The detection of autoantibodies has been widely used, which promoted the clinical practice of MN toward personalized precision medicine. However, given the potential risks of immunosuppressive therapy, more autoantibodies and biomarkers need to be identified to predict the prognosis and therapeutic response of MN more accurately. In this review, we attempted to summarize the autoantigens/autoantibodies and autoimmune mechanisms that can predict disease states based on the current understanding of MN pathogenesis, especially the podocyte injury manifestations. In conclusion, both the autoimmune response and podocyte injury require multidimensional attention in the disease course of MN.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|