1
|
Zhang C, Liang D, Liu Z. Primary immunodeficiency as a cause of immune-mediated kidney diseases. Nephrol Dial Transplant 2024; 39:1772-1784. [PMID: 38772735 PMCID: PMC11522874 DOI: 10.1093/ndt/gfae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024] Open
Abstract
Primary immunodeficiency (PID) is no longer defined by infections alone, and autoimmunity is an accompanying manifestation of PID. Recurrent infections may trigger autoimmunity through molecular mimicry, bystander activation or superantigens. The diagnosis of PID is still challenging, but genetic analysis reveals the underlying link between PID and autoimmunity. Mutations in relevant genes affecting central and peripheral immune tolerance, regulatory T-cell function, expansion of autoreactive lymphocytes, antigen clearance, hyperactivation of type I interferon and nuclear factor-κB pathways have all been implicated in triggering autoimmunity in PID. Autoimmunity in PID leads to chronic inflammation, tissue damage and organ failure, and increases the mortality of patients with PID. The kidneys are inextricably linked with the immune system, and kidney diseases can be mediated by both infection and autoimmunity/inflammation in PID patients. The manifestations of kidney involvement in PID patients are very heterogeneous and include lupus nephritis, C3 glomerulopathy, kidney thrombotic microangiopathy, vasculitis and interstitial nephritis. Patients with PID-caused kidney diseases have defined immune function defects and may benefit from pathway-based biologics, stem cell transplantation or gene therapy. Early diagnosis and appropriate treatment of PID are crucial for reducing the mortality rate and improving organ function and quality of life.
Collapse
Affiliation(s)
- Changming Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
4
|
Zhou Y, Song HM. Type I interferon pathway in pediatric systemic lupus erythematosus. World J Pediatr 2024; 20:653-668. [PMID: 38914753 PMCID: PMC11269505 DOI: 10.1007/s12519-024-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The role of type I interferon (IFN-I) signaling in systemic lupus erythematosus (SLE) has been well established. However, unanswered questions remain regarding the applicability of these findings to pediatric-onset SLE. The aim of this review is to provide an overview of the novel discoveries on IFN-I signaling in pediatric-onset SLE. DATA SOURCES A literature search was conducted in the PubMed database using the following keywords: "pediatric systemic lupus erythematosus" and "type I interferon". RESULTS IFN-I signaling is increased in pediatric SLE, largely due to the presence of plasmacytoid dendritic cells and pathways such as cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase 1 and Toll-like receptor (TLR)4/TLR9. Neutrophil extracellular traps and oxidative DNA damage further stimulate IFN-I production. Genetic variants in IFN-I-related genes, such as IFN-regulatory factor 5 and tyrosine kinase 2, are linked to SLE susceptibility in pediatric patients. In addition, type I interferonopathies, characterized by sustained IFN-I activation, can mimic SLE symptoms and are thus important to distinguish. Studies on interferonopathies also contribute to exploring the pathogenesis of SLE. Measuring IFN-I activation is crucial for SLE diagnosis and stratification. Both IFN-stimulated gene expression and serum IFN-α2 levels are common indicators. Flow cytometry markers such as CD169 and galectin-9 are promising alternatives. Anti-IFN therapies, such as sifalimumab and anifrolumab, show promise in adult patients with SLE, but their efficacy in pediatric patients requires further investigation. Janus kinase inhibitors are another treatment option for severe pediatric SLE patients. CONCLUSIONS This review presents an overview of the IFN-I pathway in pediatric SLE. Understanding the intricate relationship between IFN-I and pediatric SLE may help to identify potential diagnostic markers and targeted therapies, paving the way for improved patient care and outcomes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
5
|
Liu H, Yang H, You M, Zhang S, Huang S, Tan X, Liu Q, Jiang C, Xie L. Discovery of Potential Drug Targeting Key Genes in Alzheimer's Disease: Insights from Transcriptome Analysis and Molecular Docking. J Mol Neurosci 2024; 74:56. [PMID: 38802701 DOI: 10.1007/s12031-024-02208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that presents a significant global health challenge. To explore drugs targeting key genes in AD, R software was used to analyze the data of single nuclei transcriptome from human cerebral frontal cortex in AD, and the differentially expressed genes (DEGs) were screened. Then the gene ontology (GO) analysis, Kyoto gene and genome encyclopedia (KEGG) pathway enrichment and protein-protein interaction (PPI) network were analyzed. The hub genes were calculated by Cytoscape software. Molecular docking and molecular dynamics simulation were used to evaluate and visualize the binding between candidate drugs and key genes. A total of 564 DEGs were screened, and the hub genes were ISG15, STAT1, MX1, IFIT3, IFIT2, RSAD2, IFIT1, IFI44, IFI44L and DDX58. Enrichment terms mainly included response to virus, IFN-γ signaling pathway and virus infection. Diclofenac had good binding effect with IFI44 and IFI44L. Potential drugs may act on key gene targets and then regulate biological pathways such as virus response and IFN-γ-mediated signal pathway, so as to achieve anti-virus, improve immune balance and reduce inflammatory response, and thus play a role in anti-AD.
Collapse
Affiliation(s)
- Hanjie Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hui Yang
- Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, 610200, Sichuan, China
| | - Maochun You
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Siyu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Sihan Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xin Tan
- Affiliated Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610041, Sichuan, China
| | - Qi Liu
- Acupuncture and Tuina School, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Cen Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lushuang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
6
|
Qin Y, Ma J, Vinuesa CG. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr Opin Rheumatol 2024; 36:191-200. [PMID: 38420886 PMCID: PMC7616038 DOI: 10.1097/bor.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the genes and molecular pathways involved in monogenic lupus, the implications for genome diagnosis, and the potential therapies targeting these molecular mechanisms. RECENT FINDINGS To date, more than 30 genes have been identified as contributors to monogenic lupus. These genes are primarily related to complement deficiency, activation of the type I interferon (IFN) pathway, disruption of B-cell and T-cell tolerance and metabolic pathways, which reveal the multifaceted nature of systemic lupus erythematosus (SLE) pathogenesis. SUMMARY In-depth study of the causes of monogenic lupus can provide valuable insights into of pathogenic mechanisms of SLE, facilitate the identification of effective biomarkers, and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Qin
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianyang Ma
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Carola G. Vinuesa
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int J Mol Sci 2024; 25:2497. [PMID: 38473743 PMCID: PMC10931919 DOI: 10.3390/ijms25052497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.
Collapse
Affiliation(s)
| | | | - Eunsil Hahm
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA; (A.P.J.-U.); (S.M.)
| |
Collapse
|
8
|
Ma L, Shen R, Jiao J, Lin X, Zhai B, Xu A, Luo H, Lu L, Shao D. Gasdermin D promotes hyperuricemia-induced renal tubular injury through RIG-I/caspase-1 pathway. iScience 2023; 26:108463. [PMID: 38187191 PMCID: PMC10767184 DOI: 10.1016/j.isci.2023.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Renal tubular epithelial cells injury is one of the most important pathological features in hyperuricemic nephropathy (HN). However, the involvement of gasdermin D (GSDMD)-mediated pyroptosis in HN remains obscure. We found GSDMD was upregulated in the kidney tissue of HN mice, which was accompanied by the loss of renal function, renal tubular fibrosis, and reduced body weight. These changes in HN mice were inhibited by GSDMD knockout. Knockdown of GSDMD inhibited the high uric acid-induced injury in cultured cells (NRK-52E). Mechanistically, co-immunoprecipitation showed that RIG-I exist in a complex with caspase-1. Overexpression of RIG-I induced increased expression of caspase-1 protein and caspase-1 activity. Caspase-1 interference significantly reduced the increase of caspase-1 activity and IL-1β production caused by RIG-I overexpression. Knockdown of RIG-I or caspase-1 decreased high uric acid-induced injury in NRK-52E. This work illustrates that targeting the RIG-I/caspase-1/GSDMD may provide potential therapeutic benefits to HN.
Collapse
Affiliation(s)
- Lisha Ma
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Ruiqin Shen
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Jie Jiao
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Xiadong Lin
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Bin Zhai
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Aiping Xu
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Hao Luo
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Decui Shao
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, Wuhu 241002, China
| |
Collapse
|
9
|
Lin M, Zhong Y, Zhou D, Guan B, Hu B, Wang P, Liu F. Proximal tubule cells in blood and urine as potential biomarkers for kidney disease biopsy. PeerJ 2023; 11:e16499. [PMID: 38077419 PMCID: PMC10710128 DOI: 10.7717/peerj.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Early diagnosis and treatment are crucial for managing kidney disease, yet there remains a need to further explore pathological mechanisms and develop minimally invasive diagnostic methods. In this study, we employed single-cell RNA sequencing (scRNA-seq) to assess the cellular heterogeneity of kidney diseases. We analyzed gene expression profiles from renal tissue, peripheral blood mononuclear cells (PBMCs), and urine of four patients with nephritis. Our findings identified 12 distinct cell subsets in renal tissues and leukocytes. These subsets encompassed fibroblast cells, mesangial cells, epithelial cells, proximal tubule cells (PTCs), and six immune cell types: CD8+ T cells, macrophages, natural killer cells, dendritic cells, B cells, and neutrophils. Interestingly, PTCs were present in both PBMCs and urine samples but absent in healthy blood samples. Furthermore, several populations of fibroblast cells, mesangial cells, and PTCs exhibited pro-inflammatory or pro-apoptotic behaviors. Our gene expression analysis highlighted the critical role of inflammatory PTCs and fibroblasts in nephritis development and progression. These cells showed high expression of pro-inflammatory genes, which could have chemotactic and activating effect on neutrophils. This was substantiated by the widespread in these cells. Notably, the gene expression profiles of inflammatory PTCs in PBMCs, urine, and kidney tissues had high similarity. This suggests that PTCs in urine and PBMCs hold significant potential as alternative markers to invasive kidney biopsies.
Collapse
Affiliation(s)
- Minwa Lin
- Depament of Nephrology, The First People’s Hospital of Foshan, Foshan, China
| | - Yingxue Zhong
- Depament of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Zhou
- Cancer Center, The First People’s Hospital of Foshan, Foshan, China
| | - Baozhang Guan
- Depament of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Hu
- Depament of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Panpan Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fanna Liu
- Depament of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Zhang J, Lee PY, Aksentijevich I, Zhou Q. How to Build a Fire: The Genetics of Autoinflammatory Diseases. Annu Rev Genet 2023; 57:245-274. [PMID: 37562411 DOI: 10.1146/annurev-genet-030123-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
11
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
12
|
李 永, 吴 小. [Research progress in systemic lupus erythematosus from 2021 to 2022]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:785-790. [PMID: 37668024 PMCID: PMC10484082 DOI: 10.7499/j.issn.1008-8830.2302150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 09/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organ systems, presenting a complex and diverse clinical manifestation. The heterogeneous treatment response and prognosis of SLE pose significant challenges to its diagnosis, classification, and homogeneous treatment. The emergence of new technologies and fields, such as synthetic biology, genomics, and proteomics, has contributed to a deeper exploration of the pathogenesis and biomarkers of SLE, facilitating precision diagnosis and treatment. This review summarizes the latest research data and achievements in SLE for the years 2021-2022, providing an overview and summary of relevant studies conducted in the past two years.
Collapse
|
13
|
Zhang C, Han X, Jin Y, Chen X, Gong C, Peng J, Wang Y, Luo X, Yang Z, Zhang Y, Wan W, Liu X, Mao J, Yu H, Li J, Liu L, Sun L, Yang S, An Y, Liu Z, Gao E, Zhu H, Chen Y, Yu X, Zhou Q, Liu Z. Pathogenic Gene Spectrum and Clinical Implication in Chinese Patients with Lupus Nephritis. Clin J Am Soc Nephrol 2023; 18:869-880. [PMID: 37099456 PMCID: PMC10356117 DOI: 10.2215/cjn.0000000000000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Lupus nephritis is a rare immunological disorder. Genetic factors are considered important in its causation. We aim to systematically investigate the rare pathogenic gene variants in patients with lupus nephritis. METHODS Whole-exome sequencing was used to screen pathogenic gene variants in 1886 probands with lupus nephritis. Variants were interpreted on the basis of known pathogenic variants or the American College of Medical Genetics and Genomics guidelines and studied by functional analysis, including RNA sequencing, quantitative PCR, cytometric bead array, and Western blotting. RESULTS Mendelian form of lupus nephritis was confirmed in 71 probands, involving 63 variants in 39 pathogenic genes. The detection yield was 4%. The pathogenic genes enriched in nuclear factor kappa-B (NF-κB), type I interferon, phosphatidylinositol-3-kinase/serine/threonine kinase Akt (PI3K/AKT), Ras GTPase/mitogen-activated protein kinase (RAS/MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Clinical manifestation patterns were diverse among different signaling pathways. More than 50% of the pathogenic gene variants were reported to be associated with lupus or lupus nephritis for the first time. The identified pathogenic gene variants of lupus nephritis overlapped with those of autoinflammatory and immunodeficiency diseases. Inflammatory signatures, such as cytokine levels of IL-6, IL-8, IL-1 β , IFN α , IFN γ , and IP10 in serum and transcriptional levels of interferon-stimulated genes in blood, were significantly higher in patients with pathogenic gene variants compared with controls. The overall survival rate of patients with pathogenic gene variants was lower than those without pathogenic gene variants. CONCLUSIONS A small fraction of patients with lupus nephritis had identifiable pathogenic gene variants, primarily in NF-κB, type I interferon, PI3K/AKT, JAK/STAT, RAS/MAPK, and complement pathways.
Collapse
Affiliation(s)
- Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xu Han
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cheng Gong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxin Luo
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Zhaohui Yang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weiguo Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Liu
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiguo Yu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China
| | - Li Liu
- Children's Hospital of Tianjin University, Tianjin, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Honghao Zhu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
14
|
Raupov R, Suspitsin E, Belozerov K, Gabrusskaya T, Kostik M. IFIH1 and DDX58 gene variants in pediatric rheumatic diseases. World J Clin Pediatr 2023; 12:107-114. [PMID: 37342449 PMCID: PMC10278078 DOI: 10.5409/wjcp.v12.i3.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The IFIH1 gene codes the MDA5 protein and the DDX58 gene codes the RIG-I receptor. Both proteins are parts of the interferon (IFN) I signaling pathway and are responsible for antiviral defense and innate immune response. IFIH1 and DDX58 polymorphisms are associated with a spectrum of autoimmune diseases. Rare gain-of-function IFIH1 mutations have been found in Singleton-Merten and Aicardi-Goutières syndrome, while DDX58 mutation can cause atypical Singleton-Merten syndrome.
AIM To characterize children with pediatric rheumatic diseases (PRD) carrying DDX58 or IFIH1 variants.
METHODS Clinical exome sequencing was performed on 92 children with different PRD. IFIH1 and DDX58 variants have been detected in 14 children. IFN-I score has been analyzed and the clinical characteristics of patients have been studied.
RESULTS A total of seven patients with systemic lupus erythematosus (SLE) (n = 2), myelodysplastic syndrome with SLE features at the onset of the disease (n = 1), mixed connective tissue disease (MCTD) (n = 1), undifferentiated systemic autoinflammatory disease (uSAID) (n = 3) have 5 different variants of the DDX58 gene. A common non-pathogenic variant p.D580E has been found in five children. A rare variant of uncertain significance (VUS) p.N354S was found in one patient with uSAID, a rare likely non-pathogenic variant p.E37K in one patient with uSAID, and a rare likely pathogenic variant p.Cys864fs in a patient with SLE. Elevated IFN-I score was detected in 6 of 7 patients with DDX58 variants. Seven patients had six different IFIH1 variants. They were presented with uSAID (n = 2), juvenile dermatomyositis (JDM) (n = 1), SLE-like disease (n = 1), Periodic fever with aphthous stomatitis, pharyngitis, and adenitis syndrome (n = 1), and systemic onset juvenile idiopathic arthritis (n = 1). Three patients have VUS p.E627X, one patient has benign variant p.I923V. Rare VUS p.R595H was detected in the JDM patient. Another rare VUS p.L679Ifs*2 and previously not reported variant p.V599Ffs*5 were detected in the patient with uSAID. One patient with uSAID has rare VUS p.T520A. All patients had elevated IFN-I scores.
CONCLUSION Rare compound-heterozygous IFIH1 variant (p.L679Ifs*2 and p.V599Ffs*5), heterozygous IFIH1 variant (p.T520A) and heterozygous DDX58 variant (p.Cys864fs) are probably disease causative for uSAID and SLE. The majority of patients with different DDX58 and IFI1 variants had hyperactivation of the IFN I signaling pathway.
Collapse
Affiliation(s)
- Rinat Raupov
- Department of Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia
| | - Evgeny Suspitsin
- Department of Genetics, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia
| | - Konstantin Belozerov
- Department of Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia
| | - Tatiana Gabrusskaya
- Department of Gastrointestinal Diseases, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia
| | - Mikhail Kostik
- Department of Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia
| |
Collapse
|
15
|
Doke T, Mukherjee S, Mukhi D, Dhillon P, Abedini A, Davis JG, Chellappa K, Chen B, Baur JA, Susztak K. NAD + precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury. Nat Metab 2023; 5:414-430. [PMID: 36914909 PMCID: PMC10230446 DOI: 10.1038/s42255-023-00761-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Our understanding of how global changes in cellular metabolism contribute to human kidney disease remains incompletely understood. Here we show that nicotinamide adenine dinucleotide (NAD+) deficiency drives mitochondrial dysfunction causing inflammation and kidney disease development. Using unbiased global metabolomics in healthy and diseased human kidneys, we identify NAD+ deficiency as a disease signature. Furthermore using models of cisplatin- or ischaemia-reperfusion induced kidney injury in male mice we observed NAD+ depletion Supplemental nicotinamide riboside or nicotinamide mononucleotide restores NAD+ levels and improved kidney function. We find that cisplatin exposure causes cytosolic leakage of mitochondrial RNA (mtRNA) and activation of the cytosolic pattern recognition receptor retinoic acid-inducible gene I (RIG-I), both of which can be ameliorated by restoring NAD+. Male mice with RIG-I knock-out (KO) are protected from cisplatin-induced kidney disease. In summary, we demonstrate that the cytosolic release of mtRNA and RIG-I activation is an NAD+-sensitive mechanism contributing to kidney disease.
Collapse
Affiliation(s)
- Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Mukherjee
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhanunjay Mukhi
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Poonam Dhillon
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Amin Abedini
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - James G Davis
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beishan Chen
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|