1
|
Interleukin-13 overexpressing mice represent an advanced pre-clinical model for detecting the distribution of anti-mycobacterial drugs within centrally necrotizing granulomas. Antimicrob Agents Chemother 2021; 66:e0158821. [PMID: 34871095 PMCID: PMC9211424 DOI: 10.1128/aac.01588-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Mycobacterium tuberculosis-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the preclinical validation of novel drug candidates. M. tuberculosis-infected interleukin-13-overexpressing (IL-13tg) mice develop a TB pathology very similar to patients and, in contrast to other mouse models, also share pathogenetic mechanisms. Accordingly, IL-13tg animals represent an ideal model for analyzing the penetration of novel anti-TB drugs into various compartments of necrotic granulomas by matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MS imaging). In the present study, we evaluated the suitability of BALB/c IL-13tg mice for determining the antibiotic distribution within necrotizing lesions. To this end, we established a workflow based on the inactivation of M. tuberculosis by gamma irradiation while preserving lung tissue integrity and drug distribution, which is essential for correlating drug penetration with lesion pathology. MALDI-MS imaging analysis of clofazimine, pyrazinamide, and rifampicin revealed a drug-specific distribution within different lesion types, including cellular granulomas, developing in BALB/c wild-type mice, and necrotic granulomas in BALB/c IL-13tg animals, emphasizing the necessity of preclinical models reflecting human pathology. Most importantly, our study demonstrates that BALB/c IL-13tg mice recapitulate the penetration of antibiotics into human lesions. Therefore, our workflow in combination with the IL-13tg mouse model provides an improved and accelerated evaluation of novel anti-TB drugs and new regimens in the preclinical stage.
Collapse
|
2
|
Reichler MR, Hirsch C, Yuan Y, Khan A, Dorman SE, Schluger N, Sterling TR. Predictive value of TNF-α, IFN-γ, and IL-10 for tuberculosis among recently exposed contacts in the United States and Canada. BMC Infect Dis 2020; 20:553. [PMID: 32736606 PMCID: PMC7394686 DOI: 10.1186/s12879-020-05185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We examined cytokine immune response profiles among contacts to tuberculosis patients to identify immunologic and epidemiologic correlates of tuberculosis. METHODS We prospectively enrolled 1272 contacts of culture-confirmed pulmonary tuberculosis patients at 9 United States and Canadian sites. Epidemiologic characteristics were recorded. Blood was collected and stimulated with Mycobacterium tuberculosis culture filtrate protein, and tumor necrosis factor (TNF-α), interferon gamma (IFN-γ), and interleukin 10 (IL-10) concentrations were determined using immunoassays. RESULTS Of 1272 contacts, 41 (3.2%) were diagnosed with tuberculosis before or < 30 days after blood collection (co-prevalent tuberculosis) and 19 (1.5%) during subsequent four-year follow-up (incident tuberculosis). Compared with contacts without tuberculosis, those with co-prevalent tuberculosis had higher median baseline TNF-α and IFN-γ concentrations (in pg/mL, TNF-α 129 versus 71, P < .01; IFN-γ 231 versus 27, P < .001), and those who subsequently developed incident tuberculosis had higher median baseline TNF-α concentrations (in pg/mL, 257 vs. 71, P < .05). In multivariate analysis, contact age < 15 years, US/Canadian birth, and IFN or TNF concentrations > the median were associated with co-prevalent tuberculosis (P < .01 for each); female sex (P = .03) and smoking (P < .01) were associated with incident tuberculosis. In algorithms combining young age, positive skin test results, and elevated CFPS TNF-α, IFN-γ, and IL-10 responses, the positive predictive values for co-prevalent and incident tuberculosis were 40 and 25%, respectively. CONCLUSIONS Cytokine concentrations and epidemiologic factors at the time of contact investigation may predict co-prevalent and incident tuberculosis.
Collapse
Affiliation(s)
- Mary R Reichler
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Mailstop E-10, 1600 Clifton Road NE, 30329-4027, Atlanta, GA, USA.
| | - Christina Hirsch
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Yuan
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Mailstop E-10, 1600 Clifton Road NE, 30329-4027, Atlanta, GA, USA
| | - Awal Khan
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Mailstop E-10, 1600 Clifton Road NE, 30329-4027, Atlanta, GA, USA
| | - Susan E Dorman
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neil Schluger
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
3
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
4
|
Multifunctional T Cell Response to DosR and Rpf Antigens Is Associated with Protection in Long-Term Mycobacterium tuberculosis-Infected Individuals in Colombia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:813-824. [PMID: 27489136 DOI: 10.1128/cvi.00217-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
Abstract
Multifunctional T cells have been shown to be protective in chronic viral infections. In mycobacterial infections, however, evidence for a protective role of multifunctional T cells remains inconclusive. Short-term cultures of peripheral blood mononuclear cells stimulated with the Mycobacterium tuberculosis RD1 antigens 6-kDa early secretory antigenic target (ESAT6) and 10-kDa culture filtrate antigen (CFP10), which are induced in the early infection phase, have been mainly used to assess T cell multifunctionality, although long-term culture assays have been proposed to be more sensitive than short-term assays for assessment of memory T cells, which are essential for long-term immunity. Here we used a long-term culture assay system to study the T cell immune responses to the M. tuberculosis latency-associated DosR antigens and reactivation-associated Rpf antigens, compared to ESAT6 and CFP10, in patients with pulmonary tuberculosis (PTB) and household contacts of PTB patients with long-term latent tuberculosis infection (ltLTBI), in a community in which M. tuberculosis is endemic. Our results showed that the DosR antigens Rv1737c (narK2) and Rv2029c (pfkB) and the Rv2389c (rpfD) antigen of M. tuberculosis induced higher frequencies of CD4+ or CD8+ mono- or bifunctional (but not multifunctional) T cells producing interferon gamma (IFN-γ) and/or tumor necrosis alpha (TNF-α) in ltLTBI, compared to PTB. Moreover, the frequencies of CD4+ and/or CD8+ T cells with a CD45RO+ CD27+ phenotype were higher in ltLTBI than in PTB. Thus, the immune responses to selected DosR and Rpf antigens may be associated with long-term latency, correlating with protection from M. tuberculosis reactivation in ltLTBI. Further study of the functional and memory phenotypes may contribute to further discrimination between the different states of M. tuberculosis infections.
Collapse
|
5
|
Modulation of Human Macrophage Responses to Mycobacterium tuberculosis by Silver Nanoparticles of Different Size and Surface Modification. PLoS One 2015; 10:e0143077. [PMID: 26580078 PMCID: PMC4651328 DOI: 10.1371/journal.pone.0143077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/31/2015] [Indexed: 11/19/2022] Open
Abstract
Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.
Collapse
|
6
|
Francisco NM, Hsu NJ, Keeton R, Randall P, Sebesho B, Allie N, Govender D, Quesniaux V, Ryffel B, Kellaway L, Jacobs M. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation 2015; 12:125. [PMID: 26112704 PMCID: PMC4488051 DOI: 10.1186/s12974-015-0345-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. Methods We generated neuron-specific TNF-deficient (NsTNF−/−) mice and compared outcomes of disease against TNFf/f control and global TNF−/− mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). Results Intracerebral M. tuberculosis infection of TNF−/− mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF−/− mice were resistant to infection and presented with a phenotype similar to that in TNFf/f control mice. Impaired immunity in TNF−/− mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. Conclusion Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB.
Collapse
Affiliation(s)
- Ngiambudulu M Francisco
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Nai-Jen Hsu
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Roanne Keeton
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Philippa Randall
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Boipelo Sebesho
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Nasiema Allie
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,Division for Postgraduate Studies, University of the Western Cape, Bellville, South Africa.
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,National Health Laboratory Service, Johannesburg, South Africa.
| | - Valerie Quesniaux
- Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France. .,CNRS UMR7355, Orleans, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France. .,CNRS UMR7355, Orleans, France.
| | - Lauriston Kellaway
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Muazzam Jacobs
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
7
|
Keeton R, Allie N, Dambuza I, Abel B, Hsu NJ, Sebesho B, Randall P, Burger P, Fick E, Quesniaux VFJ, Ryffel B, Jacobs M. Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis. J Clin Invest 2014; 124:1537-51. [PMID: 24569452 DOI: 10.1172/jci45005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/19/2013] [Indexed: 11/17/2022] Open
Abstract
Development of host protective immunity against Mycobacterium tuberculosis infection is critically dependent on the inflammatory cytokine TNF. TNF signals through 2 receptors, TNFRp55 and TNFRp75; however, the role of TNFRp75-dependent signaling in immune regulation is poorly defined. Here we found that mice lacking TNFRp75 exhibit greater control of M. tuberculosis infection compared with WT mice. TNFRp75-/- mice developed effective bactericidal granulomas and demonstrated increased pulmonary recruitment of activated DCs. Moreover, IL-12p40-dependent migration of DCs to lung draining LNs of infected TNFRp75-/- mice was substantially higher than that observed in WT M. tuberculosis-infected animals and was associated with enhanced frequencies of activated M. tuberculosis-specific IFN-γ-expressing CD4+ T cells. In WT mice, TNFRp75 shedding correlated with markedly reduced bioactive TNF levels and IL-12p40 expression. Neutralization of TNFRp75 in M. tuberculosis-infected WT BM-derived DCs (BMDCs) increased production of bioactive TNF and IL-12p40 to a level equivalent to that produced by TNFRp75-/- BMDCs. Addition of exogenous TNFRp75 to TNFRp75-/- BMDCs infected with M. tuberculosis decreased IL-12p40 synthesis, demonstrating that TNFRp75 shedding regulates DC activation. These data indicate that TNFRp75 shedding downmodulates protective immune function and reduces host resistance and survival; therefore, targeting TNFRp75 may be beneficial for improving disease outcome.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Dendritic Cells/immunology
- Female
- Granuloma/pathology
- Host-Pathogen Interactions/immunology
- Interleukin-12 Subunit p40/metabolism
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Signal Transduction/immunology
- Solubility
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Tumor Necrosis Factor Decoy Receptors/deficiency
- Tumor Necrosis Factor Decoy Receptors/genetics
- Tumor Necrosis Factor Decoy Receptors/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
|
8
|
Kumar NP, Gopinath V, Sridhar R, Hanna LE, Banurekha VV, Jawahar MS, Nutman TB, Babu S. IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary tuberculosis. PLoS One 2013; 8:e59572. [PMID: 23544075 PMCID: PMC3609860 DOI: 10.1371/journal.pone.0059572] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/15/2013] [Indexed: 12/14/2022] Open
Abstract
Background Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB), their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL) and latent tuberculosis (LTB) have not been well studied. Aim and Methods To identify cytokine responses associated with pulmonary tuberculosis (TB), TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA. Results PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2); Type 2 (IL-4) and Type 17 (IL-17A and IL-17F) cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially) the suppression of cytokine responses in PTB. Conclusion Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
- National Institute for Research in Tuberculosis, Chennai, India
| | - Venugopal Gopinath
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Luke E. Hanna
- National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Subash Babu
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Shaler CR, Kugathasan K, McCormick S, Damjanovic D, Horvath C, Small CL, Jeyanathan M, Chen X, Yang PC, Xing Z. Pulmonary mycobacterial granuloma increased IL-10 production contributes to establishing a symbiotic host-microbe microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1622-34. [PMID: 21406169 PMCID: PMC3078470 DOI: 10.1016/j.ajpath.2010.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/09/2023]
Abstract
The granuloma, a hallmark of host defense against pulmonary mycobacterial infection, has long been believed to be an active type 1 immune environment. However, the mechanisms regarding why granuloma fails to eliminate mycobacteria even in immune-competent hosts, have remained largely unclear. By using a model of pulmonary Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, we have addressed this issue by comparing the immune responses within the airway luminal and granuloma compartments. We found that despite having a similar immune cellular profile to that in the airway lumen, the granuloma displayed severely suppressed type 1 immune cytokine but enhanced chemokine responses. Both antigen-presenting cells (APCs) and T cells in granuloma produced fewer type 1 immune molecules including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and nitric oxide. As a result, the granuloma APCs developed a reduced capacity to phagocytose mycobacteria and to induce T-cell proliferation. To examine the molecular mechanisms, we compared the levels of immune suppressive cytokine IL-10 in the airway lumen and granuloma and found that both granuloma APCs and T cells produced much more IL-10. Thus, IL-10 deficiency restored type 1 immune activation within the granuloma while having a minimal effect within the airway lumen. Hence, our study provides the first experimental evidence that, contrary to the conventional belief, the BCG-induced lung granuloma represents a symbiotic host-microbe microenvironment characterized by suppressed type 1 immune activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhou Xing
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. ACTA ACUST UNITED AC 2010; 11:27-60. [PMID: 20173386 DOI: 10.1159/000289196] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor kappaB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus.
Collapse
Affiliation(s)
- James V Falvo
- Immune Disease Institute and Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
11
|
Babu S, Bhat SQ, Kumar NP, Kumaraswami V, Nutman TB. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J Infect Dis 2010; 201:20-31. [PMID: 19929695 DOI: 10.1086/648735] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The factors governing latency in tuberculosis are not well understood but appear to involve both the pathogen and the host. We have used tuberculin skin test (TST) positivity as a tool to study cytokine responses in latent tuberculosis. METHODS To identify the host factors that are important in the maintenance of TST positivity, we examined mycobacteria-specific immune responses of TST-positive (latent tuberculosis) or TST-negative individuals in South India, where TST positivity can define tuberculosis latency. RESULTS Although purified protein derivative-specific and Mycobacterium tuberculosis culture filtrate antigen-specific Th1 and Th2 cytokines were not statistically significantly different between the 2 groups, the Th17 cytokines (interleukin 17 and interleukin 23) were statistically significantly decreased in TST-positive individuals, compared with those in TST-negative individuals. This Th17 cytokine modulation was associated with statistically significantly increased expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) and Foxp3. Although CTLA-4 blockade failed to restore full production of interleukin 17 and interleukin 23 in TST-positive individuals, depletion of regulatory T cells significantly increased production of these cytokines. CONCLUSION TST positivity is characterized by increased activity of regulatory T cells and a coincident down-regulation of the Th17 response.
Collapse
Affiliation(s)
- Subash Babu
- National Institutes of Health-International Center for Excellence in Research, India.
| | | | | | | | | |
Collapse
|
12
|
Histamine plays an essential regulatory role in lung inflammation and protective immunity in the acute phase of Mycobacterium tuberculosis infection. Infect Immun 2009; 77:5359-68. [PMID: 19822651 DOI: 10.1128/iai.01497-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Recent data suggest a regulatory role of histamine not only in the innate but also in the adaptive immune response. We used a model of pulmonary Mycobacterium tuberculosis infection in histamine-deficient mice lacking histidine decarboxylase (HDC(-/-)), the histamine-synthesizing enzyme. To confirm that mycobacterial infection induced histamine production, we exposed mice to M. tuberculosis and compared responses in C57BL/6 (wild-type) and HDC(-/-) mice. Histamine levels increased around fivefold above baseline in infected C57BL/6 mice at day 28 of infection, whereas only small amounts were detected in the lungs of infected HDC(-/-) mice. Blocking histamine production decreased both neutrophil influx into lung tissue and the release of proinflammatory mediators, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), in the acute phase of infection. However, the accumulation and activation of CD4(+) T cells were augmented in the lungs of infected HDC(-/-) mice and correlated with a distinct granuloma formation that contained abundant lymphocytic infiltration and reduced numbers of mycobacteria 28 days after infection. Furthermore, the production of IL-12, gamma interferon, and nitric oxide, as well as CD11c(+) cell influx into the lungs of infected HDC(-/-) mice, was increased. These findings indicate that histamine produced after M. tuberculosis infection may play a regulatory role not only by enhancing the pulmonary neutrophilia and production of IL-6 and TNF-alpha but also by impairing the protective Th1 response, which ultimately restricts mycobacterial growth.
Collapse
|