1
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Environmental impact and source-controlled approaches for emerging micropollutants: Current status and future prospects. Food Chem Toxicol 2024; 193:115038. [PMID: 39384093 DOI: 10.1016/j.fct.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Emerging micropollutants, originating from diverse sources, including pharmaceutical, pesticides, and industrial effluents, are a serious environmental concern. Their presence in natural water bodies has negative effects on ecosystems and human health. To address this issue, the importance of a source-controlled approach has grown, highlighting the use of advanced technologies such as oxidation processes, membrane filtration, and adsorption to prevent micropollutants from entering the environment. Therefore, this review provides a comprehensive overview of emerging micropollutants, their analytical detection methods, and their environmental impacts, with a focus on aquatic ecosystems, human health, and terrestrial environments. It also highlights the importance of using a source-controlled approach and provides insights into the benefits and drawbacks of this strategy. The primary micropollutants identified in this review were erythromycin, ibuprofen, and triclocarban, originating from the pharmaceutical industries for their use as antibiotics, analgesic, and antibacterial drugs. The primary analytical methods used for detection involved hybrid techniques that integrate chromatography with spectroscopy. Thus, this review emphasizes the source-controlled approach's benefits and drawbacks, focusing on emerging micropollutants, their detection, and impacts on ecosystems and health.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, 315000, China.
| |
Collapse
|
2
|
Mofokeng NN, Madikizela LM, Tiggelman I, Chimuka L. Emerging contaminants as unintentional substances in paper and board: A case of unexpected pharmaceuticals detection in the paper recycling chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134419. [PMID: 38691993 DOI: 10.1016/j.jhazmat.2024.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The contamination of paper products by various chemicals has been reported on a global level, but to date, no published research has investigated pharmaceutical contamination of paper-based products. In this study, pharmaceutical analysis was conducted on 42 samples collected from various points of the recycled paper value chain in Cape Town, South Africa, which included the various grades that may be included in the manufacturing of recycled paperboard. The analysis was achieved by ultrasonic-assisted extraction of paper samples before detection by UHPLC-Q Orbitrap. Quantification limits ranged from 1.15 pg/g for ketoprofen to 46.07 pg/g for methocarbamol. Pharmaceuticals identified in newspaper samples were dexamethasone, ketoprofen, and 17β-estradiol. The latter was also detected in paper shopping bags (up to 697.49 ng/g), infant bathtub packaging (280.62 ng/g), battery packaging (137.43 ng/g), and an egg carton (170.47 ng/g). Carbamazepine was also prominent with its concentration reaching 13.02 ng/g in a vegetable box. Suspect screening tentatively identified 14 additional pharmaceuticals in paper samples, with minocycline, prazepam, and anabolic steroids appearing more prominently. This pioneering study indicated that unintentional pharmaceutical exposure had expanded beyond environmental media to consumer products.
Collapse
Affiliation(s)
- Nondumiso N Mofokeng
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg 2000, South Africa; Mpact Operations Pty (Ltd), Innovation, Research & Development, Devon Valley Road, Stellenbosch 7600, South Africa
| | - Lawrence M Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 28 Pioneer Ave, Roodepoort, Johannesburg 1709, South Africa.
| | - Ineke Tiggelman
- Mpact Operations Pty (Ltd), Innovation, Research & Development, Devon Valley Road, Stellenbosch 7600, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg 2000, South Africa
| |
Collapse
|
3
|
Milovac T. Pharmaceuticals in the Water: The Need for Environmental Bioethics. THE JOURNAL OF MEDICAL HUMANITIES 2023; 44:245-250. [PMID: 36564672 PMCID: PMC9789304 DOI: 10.1007/s10912-022-09774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/07/2023]
Abstract
Pharmaceuticals are present in various water sources used by wildlife and as drinking water for humans. Research shows that certain pharmaceuticals, sold over the counter and by prescription only, can harm wildlife. Moreover, the human ingestion of water contaminated by polypharmacy presents a potential cause for concern for human health. Despite the wide scope of this problem, environmental bioethics has not adequately engaged with this topic and, instead, has concerned itself with healthcare waste products more generally. The present essay calls for more ethical investigation on the topic.
Collapse
Affiliation(s)
- Thomas Milovac
- Department of Philosophy, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
4
|
Ravele T, Fuku XG, Hlongwa NW, Nkambule TTI, Gumbi NN, Sekhosana KE. Advances in Electrochemical Systems for Detection of Anti‐Androgens in Water Bodies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Thompho Ravele
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Xolile G. Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Ntuthuko W. Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| |
Collapse
|
5
|
Jovanoski Kostić A, Kanas N, Rajić V, Sharma A, Bhattacharya SS, Armaković S, Savanović MM, Armaković SJ. Evaluation of Photocatalytic Performance of Nano-Sized Sr 0.9La 0.1TiO 3 and Sr 0.25Ca 0.25Na 0.25Pr 0.25TiO 3 Ceramic Powders for Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4193. [PMID: 36500815 PMCID: PMC9736647 DOI: 10.3390/nano12234193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Water pollution is a significant issue nowadays. Among the many different technologies for water purification, photocatalysis is a very promising and environment-friendly approach. In this study, the photocatalytic activity of Sr0.9La0.1TiO3 (SLTO) and Sr0.25Ca0.25Na0.25Pr0.25TiO3 (SCNPTO) nano-sized powders were evaluated by degradation of pindolol in water. Pindolol is almost entirely insoluble in water due to its lipophilic properties. The synthesis of the SCNPTO was performed using the reverse co-precipitation method using nitrate precursors, whereas the SLTO was produced by spray pyrolysis (CerPoTech, Trondheim Norway). The phase purity of the synthesized powders was validated by XRD, while HR-SEM revealed particle sizes between 50 and 70 nm. The obtained SLTO and SCNPTO powders were agglomerated but had relatively similar specific surface areas of about 27.6 m2 g-1 and 34.0 m2 g-1, respectively. The energy band gaps of the SCNPTO and SLTO were calculated (DFT) to be about 2.69 eV and 3.05 eV, respectively. The photocatalytic performances of the materials were examined by removing the pindolol from the polluted water under simulated solar irradiation (SSI), UV-LED irradiation, and UV irradiation. Ultra-fast liquid chromatography was used to monitor the kinetics of the pindolol degradation with diode array detection (UFLC-DAD). The SLTO removed 68%, 94%, and 100% of the pindolol after 240 min under SSI, UV-LED, and UV irradiation, respectively. A similar but slightly lower photocatalytic activity was obtained with the SCNPTO under identical conditions, resulting in 65%, 84%, and 93% degradation of the pindolol, respectively. Chemical oxygen demand measurements showed high mineralization of the investigated mixtures under UV-LED and UV irradiation.
Collapse
Affiliation(s)
- Aleksandra Jovanoski Kostić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
| | - Nikola Kanas
- University of Novi Sad, Institute BioSense, 21000 Novi Sad, Serbia
| | - Vladimir Rajić
- University of Belgrade, INS Vinča, Department of Atomic Physics, 11000 Belgrade, Serbia
| | - Annu Sharma
- Nanofunctional Materials Technology Centre, Department of MME, IIT Madras, Chennai 600001, India
| | | | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Maria M. Savanović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Sanja J. Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Gayosso-Morales MA, Rivas-Castillo AM, Lucas-Gómez I, López-Fernández A, Calderón AV, Fernández-Martínez E, Bernal JO, González-Pérez BK. Microalgae, a current option for the bioremediation of pharmaceuticals: a review. Folia Microbiol (Praha) 2022; 68:167-179. [PMID: 36367638 DOI: 10.1007/s12223-022-01013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.
Collapse
Affiliation(s)
- Manuel Aaaron Gayosso-Morales
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Andrea M Rivas-Castillo
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Isaac Lucas-Gómez
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
- Doctorado en Nanociencias Y Nanotecnología, Centro de Investigación Y de Estudios Avanzados, Instituto Politécnico Nacional, Av, Instituto Politécnico Nacional C. P, 07360, Ciudad de Mexico, México
| | - Abelardo López-Fernández
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Alejandro Valdez Calderón
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Center for Research in Biology of Reproduction, Medicine Department, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Calle Dr. Eliseo Ramírez Ulloa No 400, Col. Doctores, Pachuca, Hidalgo, México
| | | | - Brenda Karen González-Pérez
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México.
| |
Collapse
|
7
|
Adeola AO, Forbes PBC. Antiretroviral Drugs in African Surface Waters: Prevalence, Analysis, and Potential Remediation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:247-262. [PMID: 34033688 DOI: 10.1002/etc.5127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The sources, ecotoxicological impact, and potential remediation strategies of antiretroviral drugs (ARVDs) as emerging contaminants in surface waters are reviewed based on recent literature. The occurrence of ARVDs in water bodies raises concern because many communities in Africa depend on rivers for water resources. Southern Africa is a potential hotspot regarding ARVD contamination due to relatively high therapeutic application and detection thereof in water bodies. Efavirenz and nevirapine are the most persistent in effluents and are prevalent in surface water based on environmental concentrations. Whereas the highest concentration of efavirenz reported in Kenya was 12.4 µg L-1 , concentrations as high as 119 and 140 µg L-1 have been reported in Zambia and South Africa, respectively. Concentrations of ARVDs ranging from 670 to 34 000 ng L-1 (influents) and 540 to 34 000 ng L-1 (effluents) were determined in wastewater treatment plants in South Africa, compared with Europe, where reported concentrations range from less than limit of detection (LOD) to 32 ng L-1 (influents) and less than LOD to 22 ng L-1 (effluents). The present African-based review suggests the need for comprehensive toxicological and risk assessment of these emerging pollutants in Africa, with the intent of averting environmental hazards and the development of sustainable remediation strategies. Environ Toxicol Chem 2022;41:247-262. © 2021 SETAC.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
8
|
Dos S Grignet R, Barros MGA, Panatta AAS, Bernal SPF, Ottoni JR, Passarini MRZ, da C S Gonçalves C. Medicines as an emergent contaminant: the review of microbial biodegration potential. Folia Microbiol (Praha) 2022; 67:157-174. [PMID: 34978661 DOI: 10.1007/s12223-021-00941-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Emerging environmental contaminants, such as medicine waste, are of great concern to the scientific community and to the local environmental and health departments because of their potential long-term effects and ecotoxicological risk. Besides the prolonged use of medicines for the development of modern society, the elucidation of their effect on the ecosystem is relatively recent. Medicine waste and its metabolites can, for instance, cause alterations in microbial dynamics and disturb fish behavior. Bioremediation is an efficient and eco-friendly technology that appears as a suitable alternative to conventional methods of water waste and sludge treatment and has the capacity to remove or reduce the presence of emerging contaminants. Thus, this review has the objective of compiling information on environmental contamination by common medicines and their microbial biodegradation, focusing on five therapeutic classes: analgesics, antibiotics, antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and contraceptives. Their effects in the environment will also be analyzed, as well as the possible routes of degradation by microorganisms.
Collapse
Affiliation(s)
- Rosane Dos S Grignet
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Maria G A Barros
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Andressa A S Panatta
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Suzan P F Bernal
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Julia R Ottoni
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Caroline da C S Gonçalves
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil.
| |
Collapse
|
9
|
Abstract
Currently, thanks to the development of sensitive analytical techniques, the presence of different emerging pollutants in aquatic ecosystems has been evidenced; however, most of them have not been submitted to any regulation so far. Among emerging contaminants, antimicrobials have received particular attention in recent decades, mainly due to the concerning development of antibiotic resistance observed in bacteria, but little is known about the toxicological and ecological impact that antimicrobials can have on aquatic ecosystems. Their high consumption in human and veterinary medicine, food-producing animals and aquaculture, as well as persistence and poor absorption have caused antimicrobials to be discharged into receiving waters, with or without prior treatment, where they have been detected at ng-mg L−1 levels with the potential to cause effects on the various organisms living within aquatic systems. This review presents the current knowledge on the occurrence of antimicrobials in aquatic ecosystems, emphasizing their occurrence in different environmental matrixes and the effects on aquatic organisms (cyanobacteria, microalgae, invertebrates and vertebrates).
Collapse
|
10
|
Makhathini TP, Mulopo J, Bakare BF. Sulfidogenic fluidized-bed bioreactor kinetics for co-treatment of hospital wastewater and acid mine drainage. ACTA ACUST UNITED AC 2021; 32:e00683. [PMID: 34745909 PMCID: PMC8551841 DOI: 10.1016/j.btre.2021.e00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/05/2022]
Abstract
Bioremediation process for acidic mine water co-treatment with hospital wastewater. Metal precipitation reached 98% and soluble concentrations of Fe and Zn were less than 0.1 mg/l. SO42− removal was above 90% in the sulfidogenic bioreactor. Naproxen, ibuprofen, ketoprofen, and diclofenac partially removed during the co-treatment process.
A passive co-treatment of acid mine drainage and hospital wastewater previously demonstrated a promising bioremediation viable approach for both toxic streams. The study of inhibition kinetics and microbial communities is essential to understand better the diverse species and the reaction mechanisms within the system. The kinetics and microbiology diversity in the sulfidogenic fluidized-bed reactor (at 30 °C) for co-treatment of hospital wastewater and metal-containing acidic water were examined. The alkalinity from organic oxidation raised the pH of the effluent from 2.3 to 6.1–8.2. Michaelis-Menten modeling yielded (Km =7.3 mg/l, Vmax = 0.12 mg/l min−1) in the batch bioreactor treatment using sulfate-reducing bacteria. For COD oxidation, the dissolved sulfide inhibition constant (Ki) was 3.6 mg/l, and the Ki value for H2S was 9 mg/l. The dominant species in the treatment process belong to the Proteobacteria group (especially Deltaproteobacteria). The ibuprofen and diclofenac compounds achieved the highest removal rates in the bioreactor of 58.6% and 52.3%, respectively; while, ketoprofen and naproxen of 41.9% and 46.6%, respectively. The findings in COD kinetics, sulfate-reducing bacteria abundance, and selected pharmaceutical concentration reduction provide insight into this co-treatment process's capability.
Collapse
Affiliation(s)
- Thobeka Pearl Makhathini
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P/Bag 3, Wits 2050, Johannesburg, South Africa.,Department of Chemical Engineering, Mangosuthu University of Technology, 511 Mangosuthu Highway, Umlazi, Durban 4031, South Africa
| | - Jean Mulopo
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P/Bag 3, Wits 2050, Johannesburg, South Africa
| | - Babatunde Femi Bakare
- Department of Chemical Engineering, Mangosuthu University of Technology, 511 Mangosuthu Highway, Umlazi, Durban 4031, South Africa
| |
Collapse
|
11
|
Anchique L, Alcázar JJ, Ramos-Hernandez A, Méndez-López M, Mora JR, Rangel N, Paz JL, Márquez E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers (Basel) 2021; 13:1620. [PMID: 34067695 PMCID: PMC8156938 DOI: 10.3390/polym13101620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
The occurrence, persistence, and accumulation of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) represent a new environmental problem due to their harmful effects on human and aquatic life. A suitable absorbent for a particular type of pollutant does not necessarily absorb other types of compounds, so knowing the compatibility between a particular pollutant and a potential absorbent before experimentation seems to be fundamental. In this work, the molecular interactions between some pharmaceuticals (amoxicillin, ibuprofen, and tetracycline derivatives) with two potential absorbers, chitosan and graphene oxide models (pyrene, GO-1, and coronene, GO-2), were studied using the ωB97X-D/6-311G(2d,p) level of theory. The energetic interaction order found was amoxicillin/chitosan > amoxicillin/GO-1 > amoxicillin/GO-2 > ibuprofen/chitosan > ibuprofen/GO-2 > ibuprofen/GO-1, the negative sign for the interaction energy in all complex formations confirms good compatibility, while the size of Eint between 24-34 kcal/mol indicates physisorption processes. Moreover, the free energies of complex formation were negative, confirming the spontaneity of the processes. The larger interaction of amoxicillin Gos, compared to ibuprofen Gos, is consistent with previously reported experimental results, demonstrating the exceptional predictability of these methods. The second-order perturbation theory analysis shows that the amoxicillin complexes are mainly driven by hydrogen bonds, while van der Waals interactions with chitosan and hydrophobic interactions with graphene oxides are modelled for the ibuprofen complexes. Energy decomposition analysis (EDA) shows that electrostatic energy is a major contributor to the stabilization energy in all cases. The results obtained in this work promote the use of graphene oxides and chitosan as potential adsorbents for the removal of these emerging pollutants from water.
Collapse
Affiliation(s)
- Leonardo Anchique
- Programa de Química, Grupo Química Supramolecular Aplicada, Facultad de Ciencias Básicas, Semillero Electroquímica Aplicada, Universidad del Atlántico, Barranquilla 081001, Colombia; (L.A.); (A.R.-H.)
| | - Jackson J. Alcázar
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile;
| | - Andrea Ramos-Hernandez
- Programa de Química, Grupo Química Supramolecular Aplicada, Facultad de Ciencias Básicas, Semillero Electroquímica Aplicada, Universidad del Atlántico, Barranquilla 081001, Colombia; (L.A.); (A.R.-H.)
| | - Maximiliano Méndez-López
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José R. Mora
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Norma Rangel
- TecNM/Instituto Tecnológico de Aguascalientes-División de Estudios de Posgrado e Investigación, Ave. Adolfo López Mateos #1801Ote. Fracc. Bona Gens, Aguascalientes 20256, Mexico;
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru;
| | - Edgar Márquez
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| |
Collapse
|