1
|
Fu CL, Dong BC, Jiang X, Li D, Yao J. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson's disease mouse model. Heliyon 2024; 10:e24234. [PMID: 38293351 PMCID: PMC10826648 DOI: 10.1016/j.heliyon.2024.e24234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and loss of DA transmission in the striatum, thus making cell transplantation an effective treatment strategy. Here, we develop a cellular therapy based on induced pluripotent stem cell (iPSC)-derived midbrain organoids. By transplanting midbrain organoid cells into the striatum region of a 6-OHDA-lesioned PD mouse model, we found that the transplanted cells survived and highly efficiently differentiated into DA neurons. Further, using a dopamine sensor, we observed that the differentiated human DA neurons could efficiently release dopamine and were integrated into the neural network of the PD mice. Moreover, starting from four weeks after transplantation, the motor function of the transplanted mice could be significantly improved. Therefore, cell therapy based on iPSC-derived midbrain organoids can be a potential strategy for the clinical treatment of PD.
Collapse
Affiliation(s)
- Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Bo-Cheng Dong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers (Basel) 2022; 14:1153. [PMID: 35335484 PMCID: PMC8955974 DOI: 10.3390/polym14061153] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Manuela Ceraulo
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
3
|
Talebi A, Labbaf S, Atari M, Parhizkar M. Polymeric Nanocomposite Structures Based on Functionalized Graphene with Tunable Properties for Nervous Tissue Replacement. ACS Biomater Sci Eng 2021; 7:4591-4601. [PMID: 34461017 DOI: 10.1021/acsbiomaterials.1c00744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electroconductive scaffolds can be a promising approach to repair conductive tissues when natural healing fails. Recently, nerve tissue engineering constructs have been widely investigated due to the challenges in creating a structure with optimized physiochemical and mechanical properties close to the native tissue. The goal of the current study was to fabricate graphene-containing polycaprolactone/gelatin/polypyrrole (PCL/gelatin/PPy) and polycaprolactone/polyglycerol-sebacate/polypyrrole (PCL/PGS/PPy) with intrinsic electrical properties through an electrospinning process. The effect of graphene on the properties of PCL/gelatin/PPy and PCL/PGS/PPy were investigated. Results demonstrated that graphene incorporation remarkably modulated the physical and mechanical properties of the scaffolds such that the electrical conductivity increased from 0.1 to 3.9 ± 0.3 S m-1 (from 0 to 3 wt % graphene) and toughness was found to be 76 MPa (PCL/gelatin/PPy 3 wt % graphene) and 143.4 MPa (PCL/PGS/PPy 3 wt % graphene). Also, the elastic moduli of the scaffolds with 0, 1, and 2 wt % graphene were reported as 210, 300, and 340 kPa in the PCL/gelatin/PPy system and 72, 85, and 92 kPa for the PCL/PGS/PPy system. A cell viability study demonstrated the noncytotoxic nature of the resultant scaffolds. The sum of the results presented in this study suggests that both PCL/gelatin/PPy/graphene and PCL/PGS/PPy/graphene compositions could be promising biomaterials for a range of conductive tissue replacement or regeneration applications.
Collapse
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Atari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Parhizkar
- School of Pharmacy, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
4
|
Chen L, Cheng L, Wang Z, Zhang J, Mao X, Liu Z, Zhang Y, Cui W, Sun X. Conditioned medium-electrospun fiber biomaterials for skin regeneration. Bioact Mater 2020; 6:361-374. [PMID: 32954054 PMCID: PMC7481508 DOI: 10.1016/j.bioactmat.2020.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
Conditioned medium (CM) contains variety of factors secreted by cells, which directly regulate cellular processes, showing tremendous potential in regenerative medicine. Here, for the first time, we proposed a novel regenerative therapy mediated by biodegradable micro-nano electrospun fibers loaded with highly active conditioned medium of adipose-derived stem cells (ADSC-CM). ADSC-CM was successfully loaded into the nanofibers with biological protection and controllable sustained-release properties by emulsion electrospinning and protein freeze-drying technologies. In vitro, ADSC-CM released by the fibers accelerated the migration rate of fibroblasts; inhibited the over proliferation of fibroblasts by inducing apoptosis and damaging cell membrane; in addition, ADSC-CM inhibited the transformation of fibroblasts into myofibroblasts and suppressed excessive production of extracellular matrix (ECM). In vivo, the application of CM-biomaterials significantly accelerated wound closure and improved regeneration outcome, showing superior pro-regenerative performance. This study pioneered the application of CM-biomaterials in regenerative medicine, and confirmed the practicability and significant biological effects of this innovative biomaterials.
Collapse
Affiliation(s)
- Lu Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Liying Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Zhimo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| |
Collapse
|
5
|
Srikanth M, Asmatulu R, Cluff K, Yao L. Material Characterization and Bioanalysis of Hybrid Scaffolds of Carbon Nanomaterial and Polymer Nanofibers. ACS OMEGA 2019; 4:5044-5051. [PMID: 30949614 PMCID: PMC6441941 DOI: 10.1021/acsomega.9b00197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The interconnected porous structures that mimic the extracellular matrix support cell growth in tissue engineering. Nanofibers generated by electrospinning can act as a vehicle for therapeutic cell delivery to a neural lesion. The incorporation of carbon nanomaterials with excellent electrical conductivity in nanofibers is an attractive aspect for design of a nanodevice for neural tissue regeneration. In this study, nanoscaffolds were created by electrospinning poly(ε-caprolactone) (PCL) and three different types of carbon nanomaterials, which are carbon nanotubes, graphene, and fullerene. The component of carbon nanomaterials in nanofibers was confirmed by Fourier transform infrared spectroscopy. The fiber diameter was determined by scanning electron microscopy, and it was found that the diameter varied depending on the type of nanomaterial in the fibers. The incorporation of carbon nanotubes and graphene in the PCL fibers increased the contact angle significantly, while the incorporation of fullerene reduced the contact angle significantly. Incorporation of CNT, fullerene, and graphene in the PCL fibers increased dielectric constant. Astrocytes isolated from neonatal rats were cultured on PCL-nanomaterial nanofibers. The cell viability assay showed that the PCL-nanomaterial nanofibers were not toxic to the cultured astrocytes. The immunolabeling showed the growth and morphology of astrocytes on nanofiber scaffolds. SEM was performed to determine the cell attachment and interaction with the nanoscaffolds. This study indicates that PCL nanofibers containing nanomaterials are biocompatible and could be used for cell and drug delivery into the nervous system.
Collapse
Affiliation(s)
- Madhulika Srikanth
- Department
of Mechanical Engineering, Wichita State
University, 1845 Fairmount Street, Wichita, Kansas 67260-0133, United States
| | - Ramazan Asmatulu
- Department
of Mechanical Engineering, Wichita State
University, 1845 Fairmount Street, Wichita, Kansas 67260-0133, United States
| | - Kim Cluff
- Department
of Biomedical Engineering, Wichita State
University, 1845 Fairmount Street, Wichita, Kansas 67260-0066, United States
| | - Li Yao
- Department
of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260-0026, United States
| |
Collapse
|
6
|
Wu P, Zhang P, Zheng H, Zuo B, Duan X, Chen J, Wang X, Shen Y. Biological effects different diameters of Tussah silk fibroin nanofibers on olfactory ensheathing cells. Exp Ther Med 2019; 17:123-130. [PMID: 30651772 PMCID: PMC6307394 DOI: 10.3892/etm.2018.6933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) has potential for treating spinal cord and brain injury. However, they are void of an extracellular matrix to support cell growth and migration. Engineering of tissue to mimic the extracellular matrix is a potential solution for neural repair. Tussah silk fibroin (TSF) has good biocompatibility and an Arg-Gly-Asp tripeptide sequence. A small number of studies have assessed the effect of the diameter of TSF nanofibers on cell adhesion, growth and migration. In the present study, TSF nanofibers with a diameter of 400 and 1,200 nm were prepared using electrospinning technology; these were then used as scaffolds for OECs. The structure and morphology of the TSF nanofibers were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy. An inverted-phase contrast microscope and SEM were used to observe the morphology of OECs on the TSF nanofibers. The effect on the adhesion of the cells was observed following crystal violet staining. The phenotype of the cells and the maximum axon length on the scaffolds were evaluated by immunostaining for nerve growth factor receptor p75. Cell proliferation and viability were assessed by an MTT assay and a Live/Dead reagent kit. The migration efficiency of OECs was observed using live-cell microscopy. The results indicated that a 400-nm TSF fiber scaffold was more conducive to OEC adhesion, growth and migration compared with a 1,200-nm TSF scaffold. The phenotype of the OECs was normal, and no difference in OEC phenotype was observe when comparing those on TSF nanofibers to those on PLL. The present study may provide guidance regarding the preparation of tissue-engineered materials for neural repair.
Collapse
Affiliation(s)
- Peng Wu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hanjiang Zheng
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaofeng Duan
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Junjun Chen
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Xinhong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
7
|
Kazem-Arki M, Kabiri M, Rad I, Roodbari NH, Hosseinpoor H, Mirzaei S, Parivar K, Hanaee-Ahvaz H. Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology 2018; 70:1487-1498. [PMID: 30083791 PMCID: PMC6269372 DOI: 10.1007/s10616-018-0226-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Recent developments in bone tissue engineering have paved the way for more efficient and cost-effective strategies. Additionally, utilization of autologous sources has been considered very desirable and is increasingly growing. Recently, activated platelet rich plasma (PRP) has been widely used in the field of bone tissue engineering, since it harbours a huge number of growth factors that can enhance osteogenesis and bone regeneration. In the present study, the osteogenic effects of PRP coated nanofibrous PES/PVA scaffolds on adipose-derived mesenchymal stem cells have been investigated. Common osteogenic markers were assayed by real time PCR. Alkaline phosphate activity, calcium deposition and Alizarin red staining assays were performed as well. The results revealed that the highest osteogenic differentiation occurred when cells were cultured on PRP coated PES/PVA scaffolds. Interestingly, direct application of PRP to culture media had no additive effects on osteogenesis of cells cultured on PRP coated PES/PVA scaffolds or those receiving typical osteogenic factors. The highest osteogenic effects were achieved by the simplest and most cost-effective method, i.e. merely by using PRP coated scaffolds. PRP coated PES/PVA scaffolds can maximally induce osteogenesis with no need for extrinsic factors. The major contribution of this paper to the current researches on bone regeneration is to suggest an easy, cost-effective approach to enhance osteogenesis via PRP coated scaffolds, with no additional external growth factors.
Collapse
Affiliation(s)
- Mandana Kazem-Arki
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Iman Rad
- Stem Cell Technology Research Center, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
8
|
Rodriguez-Losada N, Aguirre JA. The impact of graphene on neural regenerative medicine. Neural Regen Res 2017; 12:1071-1072. [PMID: 28852385 PMCID: PMC5558482 DOI: 10.4103/1673-5374.211181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Noela Rodriguez-Losada
- Department of Human Physiology, Faculty of Medicine, University of Malaga and Biomedicine Biomedical Research Institute of Malaga (IBIMA), Campus de Teatinos, Malaga, Spain
| | - Jose A Aguirre
- Department of Human Physiology, Faculty of Medicine, University of Malaga and Biomedicine Biomedical Research Institute of Malaga (IBIMA), Campus de Teatinos, Malaga, Spain
| |
Collapse
|
9
|
Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol 2017; 101:7227-7238. [DOI: 10.1007/s00253-017-8456-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
10
|
Rodriguez-Losada N, Romero P, Estivill-Torrús G, Guzmán de Villoria R, Aguirre JA. Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos. PLoS One 2017; 12:e0173978. [PMID: 28334019 PMCID: PMC5363826 DOI: 10.1371/journal.pone.0173978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
Regenerative medicine requires, in many cases, physical supports to facilitate appropriate cellular architecture, cell polarization and the improvement of the correct differentiation processes of embryonic stem cells, induced pluripotent cells or adult cells. Because the interest in carbon nanomaterials has grown within the last decade in light of a wide variety of applications, the aim of this study was to test and evaluate the suitability and cytocompatibility of a particular nanometer-thin nanocrystalline glass-like carbon film (NGLC) composed of curved graphene flakes joined by an amorphous carbon matrix. This material is a disordered structure with high transparency and electrical conductivity. For this purpose, we used a cell line (SN4741) from substantia nigra dopaminergic cells derived from transgenic mouse embryos. Cells were cultured either in a powder of increasing concentrations of NGLC microflakes (82±37μm) in the medium or on top of nanometer-thin films bathed in the same culture medium. The metabolism activity of SN4741 cells in presence of NGLC was assessed using methylthiazolyldiphenyl-tetrazolium (MTT) and apoptosis/necrosis flow cytometry assay respectively. Growth and proliferation as well as senescence were demonstrated by western blot (WB) of proliferating cell nuclear antigen (PCNA), monoclonal phosphorylate Histone 3 (serine 10) (PH3) and SMP30 marker. Specific dopaminergic differentiation was confirmed by the WB analysis of tyrosine hydroxylase (TH). Cell maturation and neural capability were characterized using specific markers (SYP: synaptophysin and GIRK2: G-protein-regulated inward-rectifier potassium channel 2 protein) via immunofluorescence and coexistence measurements. The results demonstrated cell positive biocompatibility with different concentrations of NGLC. The cells underwent a process of adaptation of SN4741 cells to NGLC where their metabolism decreases. This process is related to a decrease of PH3 expression and significant increase SMP30 related to senescence processes. After 7 days, the cells increased the expression of TH and PCNA that is related to processes of DNA replication. On the other hand, cells cultured on top of the film showed axonal-like alignment, edge orientation, and network-like images after 7 days. Neuronal capability was demonstrated to a certain extent through the analysis of significant coexistence between SYP and GIRK2. Furthermore, we found a direct relationship between the thickness of the films and cell maturation. Although these findings share certain similarities to our previous findings with graphene oxide and its derivatives, this particular nanomaterial possesses the advantages of high conductivity and transparency. In conclusion, NGLC could represent a new platform for biomedical applications, such as for use in neural tissue engineering and biocompatible devices.
Collapse
Affiliation(s)
- Noela Rodriguez-Losada
- Department of Human Physiology, Faculty of Medicine, University of Malaga and Biomedicine Biomedical Research Institute of Malaga (IBIMA), Campus de Teatinos, Boulevard Louis Pasteur, Malaga, Spain
| | - Pablo Romero
- IMDEA Material Institute, C/Eric Kandel 2, Getafe, Madrid, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Clínica de Neurociencia, Biomedical Research Institute of Malaga (IBIMA), Regional University Hospital Malaga, Av. de Carlos Haya, s/n, Málaga, Spain
| | - Roberto Guzmán de Villoria
- IMDEA Material Institute, C/Eric Kandel 2, Getafe, Madrid, Spain
- FIDAMC. Foundation for the Research, Development and Application of Composite Materials Avda. Rita Levi-Montalcini 29, Getafe, Madrid, Spain
| | - Jose A. Aguirre
- Department of Human Physiology, Faculty of Medicine, University of Malaga and Biomedicine Biomedical Research Institute of Malaga (IBIMA), Campus de Teatinos, Boulevard Louis Pasteur, Malaga, Spain
| |
Collapse
|
11
|
Scaffaro R, Maio A, Lopresti F, Botta L. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers (Basel) 2017; 9:E76. [PMID: 30970753 PMCID: PMC6432463 DOI: 10.3390/polym9020076] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Andrea Maio
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Francesco Lopresti
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| |
Collapse
|