1
|
de Oliveira FMG, Lyrio MVV, Filgueiras PR, de Castro EVR, Kuster RM. ESI(-)FT-ICR MS for the determination of best conditions for producing extract abundant in phenolic compounds from leaves of E. uniflora and FTIR-PCA as a sample screening method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3701-3713. [PMID: 38805183 DOI: 10.1039/d3ay00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
E. uniflora leaves are a rich source of phenolic compounds with biological activities, including myricitrin. In this study, the chemical profile of nine extracts prepared with leaves collected in three regions (mountain, beach, and mangrove) and at three different times of the day (8 am, 1 pm, and 6 pm) was evaluated from spectra originating from ultra-high resolution mass spectrometry (Fourier transform ion cyclotron resonance, FT-ICR) coupled to electrospray ionisation (ESI). The best time of the day and location for collecting the leaves of E. uniflora used as raw materials for producing extracts and the best ethanol concentration for obtaining an extract more abundant in compounds of interest were verified. Several flavonoids and phenolic acids were detected in their deprotonated form in the regions from m/z 200 to 1200. Myricitrin ([C21H20O12-H]-, m/ztheo 463.08820), its chloride adduct ([C21H20O12+Cl]-, m/ztheo 499.06488), other myricitrin derivatives, and some tannins were the main compounds detected. Considering obtaining an extract rich in phenolic compounds, including myricitrin, the best place and time of the day to collect E. uniflora leaves is in the beach region at 1 pm. In contrast, the best ethanol concentration for extract production is 70 wt%. Therefore, extraction at 96 wt% ethanol is better for obtaining an extract more abundant in phenolic acids, although 70 wt% ethanol also extracted these compounds. FTIR-PCA models were used to check for possible similarities in the data according to collection time of the day and location. These models demonstrated an excellent solution for sample screening.
Collapse
Affiliation(s)
- Fernanda M G de Oliveira
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Marcos V V Lyrio
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Paulo R Filgueiras
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Eustáquio V R de Castro
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Ricardo M Kuster
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Muñoz AL, Cuéllar AF, Arévalo G, Santamaría BD, Rodríguez AK, Buendia-Atencio C, Reyes Chaparro A, Tenorio Barajas AY, Segura NA, Bello F, Suárez AI, Rangel HR, Losada-Barragán M. Antiviral activity of myricetin glycosylated compounds isolated from Marcetia taxifolia against chikungunya virus. EXCLI JOURNAL 2023; 22:716-731. [PMID: 37662709 PMCID: PMC10471840 DOI: 10.17179/excli2023-6242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
The chikungunya virus (CHIKV) has produced epidemic outbreaks of significant public health impact. The clinical symptoms of this disease are fever, polyarthralgia, and skin rash, generally self-limiting, although patients may develop a chronic disabling condition or suffer lethal complications. Unfortunately, there is no specific treatment or vaccine available. Thus, the search for effective therapies to control CHIKV infection is an urgent need. This study evaluated the antiviral activity of flavonoids isolated from Marcetia taxifolia by in vitro and in silico analysis. Cytotoxicity of compounds was determined by MTT assay and viral load was assessed in cell substrates supernatants by plaque-forming and RT-qPCR assays. Selected molecules were analyzed by molecular docking assays. Myricetin 3-rhamnoside (MR) and myricetin 3-(6-rhamnosylgalactoside) (MRG) were tested for antiviral assays and analyzed by the TCID50 method and RT-qPCR. MR exhibited dose-dependent antiviral activity, reducing viral titer at concentrations of 150-18.8 μg/mL by at least 1-log. Similarly, MRG showed a significant decrease in viral titer at concentrations of 37.5, 9.4, and 2.3 μg/mL. RT-qPCR analysis also displayed a substantial reduction of CHIKV RNA for both flavonoids. Furthermore, molecular docking of the selected flavonoids proposed the nsP3 macrodomain as a possible target of action. Our study reveals that MR and MRG could be considered promising anti-CHIKV therapeutic agents. Molecular modeling studies showed MR and MRG ligands with a high affinity for the N-terminal region of the nsP3 macrodomain, postulating them as a potential target of action for the CHIKV control.
Collapse
Affiliation(s)
- Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Gabriela Arévalo
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Anny K. Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Andrés Reyes Chaparro
- Escuela Nacional de Ciencias Biológicas (ENCB), Departamento de Morfología, del Instituto Politécnico Nacional (IPN), Mexico
| | - Aldo Yair Tenorio Barajas
- Facultad de Ciencias Físicomatemáticas, Benemérita Universidad Autónoma de Puebla C.U. Puebla, Puebla, Mexico
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110141, Colombia
| | - Alírica I. Suárez
- Natural Products Laboratory, Faculty of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| | - Héctor R. Rangel
- Molecular Virology Laboratory, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | |
Collapse
|
3
|
Wu CC, Lee TY, Cheng YJ, Cho DY, Chen JY. The Dietary Flavonol Kaempferol Inhibits Epstein-Barr Virus Reactivation in Nasopharyngeal Carcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238158. [PMID: 36500249 PMCID: PMC9736733 DOI: 10.3390/molecules27238158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Kaempferol (KP, 3,4',5,7-tetrahydroxyflavone), a dietary flavonol, has anti-cancer, antioxidant, anti-inflammatory, antimicrobial, and antimutagenic functions. However, it is unknown whether kaempferol possesses anti-Epstein-Barr virus (EBV) activity. Previously, we demonstrated that inhibition of EBV reactivation represses nasopharyngeal carcinoma (NPC) tumourigenesis, suggesting the importance of identifying EBV inhibitors. In this study, Western blotting, immunofluorescence staining, and virion detection showed that kaempferol repressed EBV lytic gene protein expression and subsequent virion production. Specifically, kaempferol was found to inhibit the promoter activities of Zta and Rta (Zp and Rp) under various conditions. A survey of the mutated Zp constructs revealed that Sp1 binding regions are critical for kaempferol inhibition. Kaempferol treatment repressed Sp1 expression and decreased the activity of the Sp1 promoter, suggesting that Sp1 expression was inhibited. In conclusion, kaempferol efficiently inhibits EBV reactivation and provides a novel choice for anti-EBV therapy and cancer prevention.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.)
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.)
| |
Collapse
|
4
|
Šudomová M, Berchová-Bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan STS. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022; 14:v14030592. [PMID: 35336999 PMCID: PMC8949561 DOI: 10.3390/v14030592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein–Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Alena Mazurakova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Trga Dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
5
|
Ortega JT, Jastrzebska B. Neuroinflammation as a Therapeutic Target in Retinitis Pigmentosa and Quercetin as Its Potential Modulator. Pharmaceutics 2021; 13:pharmaceutics13111935. [PMID: 34834350 PMCID: PMC8623264 DOI: 10.3390/pharmaceutics13111935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The retina is a multilayer neuronal tissue located in the back of the eye that transduces the environmental light into a neural impulse. Many eye diseases caused by endogenous or exogenous harm lead to retina degeneration with neuroinflammation being a major hallmark of these pathologies. One of the most prevalent retinopathies is retinitis pigmentosa (RP), a clinically and genetically heterogeneous hereditary disorder that causes a decline in vision and eventually blindness. Most RP cases are related to mutations in the rod visual receptor, rhodopsin. The mutant protein triggers inflammatory reactions resulting in the activation of microglia to clear degenerating photoreceptor cells. However, sustained insult caused by the abnormal genetic background exacerbates the inflammatory response and increases oxidative stress in the retina, leading to a decline in rod photoreceptors followed by cone photoreceptors. Thus, inhibition of inflammation in RP has received attention and has been explored as a potential therapeutic strategy. However, pharmacological modulation of the retinal inflammatory response in combination with rhodopsin small molecule chaperones would likely be a more advantageous therapeutic approach to combat RP. Flavonoids, which exhibit antioxidant and anti-inflammatory properties, and modulate the stability and folding of rod opsin, could be a valid option in developing treatment strategies against RP.
Collapse
|
6
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
7
|
Buendia-Atencio C, Pieffet GP, Montoya-Vargas S, Martínez Bernal JA, Rangel HR, Muñoz AL, Losada-Barragán M, Segura NA, Torres OA, Bello F, Suárez A, Rodríguez AK. Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its Implications to Dengue Virus. ACS OMEGA 2021; 6:6134-6143. [PMID: 33718704 PMCID: PMC7948243 DOI: 10.1021/acsomega.0c04719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 06/01/2023]
Abstract
Dengue and Zika are two mosquito-borne diseases of great impact on public health around the world in tropical and subtropical countries. DENV and ZIKV belong to the Flaviviridae family and the Flavivirus genus. Currently, there are no effective therapeutic agents to treat or prevent these pathologies. The main objective of this work was to evaluate potential inhibitors from active compounds obtained from Marcetia taxifolia by performing inverse molecular docking on ZIKV-NS3-helicase and ZIKV-NS5-RNA polymerase as targets. This computational strategy is based on renormalizing the binding scores of the compounds to these two proteins, allowing a direct comparison of the results across the proteins. The crystallographic structures of the ZIKV-NS3-helicase and ZIKV-NS5-RNA-polymerase proteins share a great similarity with DENV homologous proteins. The P-loop active site of the crystallographic structure of ZIKV-NS3-helicase presents a high percentage of homology with the four dengue serotypes. It was found that most ligands of the active compounds (5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (5DP); 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5HH); myricetin-3-O-rhamnoside (M3OR)) from Marcetia taxifolia had a better affinity for ZIKV-NS3-helicase than for ZIKV-NS5-RNA polymerase, as indicated by the negative multiple active site correction (MASC) score, except for M3RG that showed a higher affinity for ZIKV-NS5-RNA polymerase. On the other hand, the AutoDock Vina scores showed that M3OR had the highest score value (-9.60 kcal/mol) and the highest normalized score (1.13) against ZIKV-NS3-helicase. These results in silico demonstrated that the nonstructural proteins NS3-helicase and NS5-RNA polymerase, which share similar molecular structures between the selected viruses, could become therapeutic targets for some bioactive compounds derived from Marcetia taxifolia.
Collapse
Affiliation(s)
| | - Gilles Paul Pieffet
- Faculty
of Science, Universidad Antonio Nariño
(UAN), Bogotá 110231, Colombia
| | | | | | - Héctor Rafael Rangel
- Laboratory
of Molecular Virology, Instituto Venezolano
de Investigaciones Científicas, Caracas 1204, Venezuela
| | - Ana Luisa Muñoz
- PhD
Program of Health Science, Universidad Antonio
Nariño (UAN), Bogotá 110231, Colombia
| | | | - Nidya Alexandra Segura
- Faculty
of Science, Universidad Pedagógica
y Tecnológica de Colombia, Tunja150003, Colombia
| | - Orlando A. Torres
- Faculty
of
Veterinary Medicine, Universidad Antonio
Nariño (UAN), Bogotá 110231, Colombia
| | - Felio Bello
- Faculty
of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110131 Colombia
| | - Alírica
Isabel Suárez
- Natural
Products Laboratory, Faculty of Pharmacy, Universidad Central de Venezuela, Caracas 1050, Venezuela
| | | |
Collapse
|
8
|
Ortega JT, Pujol FH, Jastrzebska B, Rangel HR. Mutations in the SARS-CoV-2 spike protein modulate the virus affinity to the human ACE2 receptor, an in silico analysis. EXCLI JOURNAL 2021; 20:585-600. [PMID: 33883984 PMCID: PMC8056063 DOI: 10.17179/excli2021-3471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The increasing number of SARS-CoV-2 variants associated with highly transmissible phenotypes is a health-public concern in the current pandemic scenario. Herein, we developed a comprehensive in silico analysis of the changes occurring upon mutations in the viral spike. We focused on mutants located in the receptor-binding domain of the viral spike protein and analyzed whether these mutants modulate the interaction with the human host receptor angiotensin-converting enzyme II (ACE2). Thirty-two highly prevalent mutants were retrieved from the GISAID database, and their structural models were built using the SWISS-Model server. The stabilization effect for each mutation was assessed by the DUET and DeepDGG software. By applying molecular docking using both Z-Dock and Haddock software we found that multiple mutations, including A475V, V455E, V445L, and V445I, resulted in the higher binding free energy as compared to the wild type (WT) spike protein, thus had a destabilizing effect on the binding to ACE2. On the other hand, several mutants, including the most prevalent N501Y and B.1.1.7 variants, as well as the K444R, L455F, Q493R, and Y505W variants exhibited lower binding free energy as compared to the WT spike. These mutants showed an increased number of electrostatic interactions with ACE2 than the WT spike protein, and they changed the interaction pattern of the neighboring residues. Together, the results presented in this study contribute to a better understanding of the changes in the interaction between SARS-CoV-2 and the human host ACE2 receptor associated with point mutations in the viral spike protein.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 20632, Caracas 1020A, Venezuela
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Hector R. Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 20632, Caracas 1020A, Venezuela
| |
Collapse
|
9
|
Ghallab A. Editor's choice 2019: Oxidative stress and antineoplastic agents. EXCLI JOURNAL 2020; 19:1607-1609. [PMID: 33408597 PMCID: PMC7783469 DOI: 10.17179/excli2020-3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022]
Affiliation(s)
- Ahmed Ghallab
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,*To whom correspondence should be addressed: Ahmed Ghallab, Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, E-mail:
| |
Collapse
|
10
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:271-283. [PMID: 32948973 PMCID: PMC7500501 DOI: 10.1007/s13659-020-00257-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are now considered as an indispensable component in a variety of nutraceutical and pharmaceutical applications. Most recent researches have focused on the health aspects of flavonoids for humans. Especially, different flavonoids have been investigated for their potential antiviral activities, and several natural flavonoids exhibited significant antiviral properties both in vitro and in vivo. This review provides a survey of the literature regarding the evidence for antiviral bioactivities of natural flavonoids, highlights the cellular and molecular mechanisms of natural flavonoids on viruses, and presents the details of most reported flavonoids. Meanwhile, future perspectives on therapeutic applications of flavonoids against viral infections were discussed.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ailin Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, 017000, China
| | - Sha Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhang Wen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
12
|
Rangel HR, Ortega JT, Maksoud S, Pujol FH, Serrano ML. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors. Virus Res 2020; 289:198154. [PMID: 32918944 PMCID: PMC7480320 DOI: 10.1016/j.virusres.2020.198154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
The role in host selectivity of ACE2, Tmprss2 and GPR78 in SARS-CoV-2 was explored. Differences in the SARS-CoV-2 RBD binding mode with ACE2 of secondary hosts could be associated with host permissiveness. Nafamostat could be considered a good inhibitor of mammalian hosts TMPRSS2 proteins. In silico studies confirm that the spike protein could interact with GRP78 in studied mammalian hosts. TMPRSS2 and GRP78 do not seem to play a role in host selectivity.
Recent reports have shown that small and big felines could be infected by SARS-CoV-2, while other animals, like swines and mice, are apparently not susceptible to this infection. These findings raise the question of the role of cell factors associated with early stages of the viral infection in host selectivity. The cellular receptor for SARS-CoV-2 is the Angiotensin Converting Enzyme (ACE2). Transmembrane protease serine 2 (TMPRSS2) has been shown to prime the viral spike for its interaction with its receptor. GRP78 has also been proposed as a possible co-receptor. In this study, we used several bioinformatics approaches to bring clues in the interaction of ACE2, TMPRSS2, and GRP78 with SARS-CoV-2. We selected several mammalian hosts that could play a key role in viral spread by acting as secondary hosts (cats, dogs, pigs, mice, and ferrets) and evaluated their predicted permissiveness by in silico analysis. Results showed that ionic pairs (salt bridges, N–O pair, and long-range interactions) produced between ACE2 and the viral spike has an essential function in the host interaction. On the other hand, TMPRSS2 and GRP78 are proteins with high homology in all the evaluated hosts. Thus, these proteins do not seem to play a role in host selectivity, suggesting that other factors may play a role in the non-permissivity in some of these hosts. These proteins represent however interesting cell targets that could be explored in order to control the virus replication in humans and in the intermediary hosts.
Collapse
Affiliation(s)
- H R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J T Ortega
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - S Maksoud
- Department of Neurology and Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, MA 02129, USA
| | - F H Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M L Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
| |
Collapse
|
13
|
Ortega JT, Serrano ML, Jastrzebska B. Class A G Protein-Coupled Receptor Antagonist Famotidine as a Therapeutic Alternative Against SARS-CoV2: An In Silico Analysis. Biomolecules 2020; 10:E954. [PMID: 32599963 PMCID: PMC7355875 DOI: 10.3390/biom10060954] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The pandemic associated with Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2) and its disease named COVID-19 challenged the scientific community to discover effective therapeutic solutions in a short period. Repurposing existing drugs is one viable approach that emphasizes speed during these urgent times. Famotidine, a class A G protein-coupled receptor antagonist used for the treatment of gastroesophageal reflux was recently identified in an in silico screening. Additionally, a recent retrospective clinical report showed that the treatment with famotidine provided a good outcome in patients infected with SARS-CoV2. A clinical trial testing effectiveness of famotidine in combination with hydroxychloroquine is currently ongoing in the United States (US). In the 1990s, famotidine was described as an antiviral agent against human immunodeficiency virus (HIV). Interestingly, some HIV protease inhibitors are presently being used against SARS-CoV2. However, it is not clear if famotidine could be effective against SARS-CoV2. Thus, by using a computational analysis, we aimed to examine if the antiviral effect of famotidine could be related to the inhibition of proteases involved in the virus replication. Our results showed that famotidine could interact within the catalytic site of the three proteases associated with SARS-CoV2 replication. However, weak binding affinity of famotidine to these proteases suggests that a successful famotidine therapy could likely be achieved only in combination with other antiviral drugs. Finally, analysis of famotidine's pharmacokinetic parameters indicated that its effect against SARS-CoV2 infection could be reached only upon intravenous administration. This work will contribute to the pharmacological knowledge of famotidine as an antiviral agent against SARS-CoV2.
Collapse
Affiliation(s)
- Joseph T. Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Luisa Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela;
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI JOURNAL 2020; 19:410-417. [PMID: 32210742 PMCID: PMC7081066 DOI: 10.17179/excli2020-1167] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023]
Abstract
Many human viral diseases are a consequence of a zoonotic event. Some of the diseases caused by these zoonotic events have affected millions of people around the world, some of which have resulted in high rates of morbidity/mortality in humans. Changes in the viral proteins that function as ligands of the host receptor may promote the spillover between species. The most recent of these zoonotic events that have caused an ongoing epidemic of high magnitude is the Covid-19 epidemics caused by SARS-CoV-2. The aim of this study was to determine the mutation(s) in the sequence of the spike protein of the SARS-CoV-2 that might be favoring human to human transmission. An in silico approach was performed, and changes were detected in the S1 subunit of the receptor-binding domain of spike. The observed changes have significant effect on SARS-CoV-2 spike/ACE2 interaction and produce a reduction in the binding energy, compared to the one of the Bat-CoV to this receptor. The data presented in this study suggest a higher affinity of the SARS-Cov-2 spike protein to the human ACE2 receptor, compared to the one of Bat-CoV spike and ACE2. This could be the cause of the rapid viral spread of SARS-CoV-2 in humans.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Luisa Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Hector Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
15
|
Ortega JT, Serrano ML, Pujol FH, Rangel HR. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI JOURNAL 2020; 19:400-409. [PMID: 32210741 PMCID: PMC7081067 DOI: 10.17179/excli2020-1189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Direct-acting antivirals are effective tools to control viral infections. SARS-CoV-2 is a coronavirus associated with the epidemiological outbreak in late 2019. Previous reports showed that HIV-1 protease inhibitors could block SARS-CoV main protease. Based on that and using an in silico approach, we evaluated SARS-CoV-2 main protease as a target for HIV-1 protease inhibitors to reveal the structural features related to their antiviral effect. Our results showed that several HIV inhibitors such as lopinavir, ritonavir, and saquinavir produce strong interaction with the active site of SARS-CoV-2 main protease. Furthermore, broad library protease inhibitors obtained from PubChem and ZINC (www.zinc.docking.org) were evaluated. Our analysis revealed 20 compounds that could be clustered into three groups based on their chemical features. Then, these structures could serve as leading compounds to develop a series of derivatives optimizing their activity against SARS-CoV-2 and other coronaviruses. Altogether, the results presented in this work contribute to gain a deep understanding of the molecular pharmacology of SARS-CoV-2 treatment and validate the use of protease inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Luisa Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Hector Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
16
|
Flavonoids as Antiviral Agents for Enterovirus A71 ( EV-A71). Viruses 2020; 12:v12020184. [PMID: 32041232 PMCID: PMC7077323 DOI: 10.3390/v12020184] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Flavonoids are natural biomolecules that are known to be effective antivirals. These biomolecules can act at different stages of viral infection, particularly at the molecular level to inhibit viral growth. Enterovirus A71 (EV-A71), a non-enveloped RNA virus, is one of the causative agents of hand, foot and mouth disease (HFMD), which is prevalent in Asia. Despite much effort, no clinically approved antiviral treatment is available for children suffering from HFMD. Flavonoids from plants serve as a vast reservoir of therapeutically active constituents that have been explored as potential antiviral candidates against RNA and DNA viruses. Here, we reviewed flavonoids as evidence-based natural sources of antivirals against non-picornaviruses and picornaviruses. The detailed molecular mechanisms involved in the inhibition of EV-A71 infections are discussed.
Collapse
|