1
|
Nkune NW, Abrahamse H. The phototoxic effect of a gold-antibody-based nanocarrier of phthalocyanine on melanoma monolayers and tumour spheroids. RSC Adv 2024; 14:19490-19504. [PMID: 38895533 PMCID: PMC11184583 DOI: 10.1039/d4ra03858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, photodynamic therapy (PDT) has garnered significant attention in cancer treatment due to its increased potency and non-invasiveness compared to conventional therapies. Active-targeted delivery of photosensitizers (PSs) is a mainstay strategy to significantly reduce its off-target toxicity and enhance its phototoxic efficacy. The anti-melanoma inhibitory activity (MIA) antibody is a targeting biomolecule that can be integrated into a nanocarrier system to actively target melanoma cells due to its specific binding to MIA antigens that are highly expressed on the surface of melanoma cells. Gold nanoparticles (AuNPs) are excellent nanocarriers due to their ability to encapsulate a variety of therapeutics, such as PSs, and their ability to bind with targeting moieties for improved bioavailability in cancer cells. Hence, we designed a nanobioconjugate (NBC) composed of zinc phthalocyanine tetrasulfonic acid (ZnPcS4), AuNPs and anti-MIA Ab to improve ZnPcS4 bioavailability and phototoxicity in two and three-dimensional tumour models. In summary, we demonstrated that this nanobioconjugate showed significant inhibitory effects on both melanoma models due to increased ROS yields and bioavailability of the melanoma cells compared to free ZnPcS4.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa +27-11-559-655
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa +27-11-559-655
| |
Collapse
|
2
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Shilyagina N, Shestakova L, Peskova N, Lermontova S, Lyubova T, Klapshina L, Balalaeva I. Cyanoarylporphyrazine dyes: multimodal compounds for personalised photodynamic therapy. Biophys Rev 2023; 15:971-982. [PMID: 37975009 PMCID: PMC10643710 DOI: 10.1007/s12551-023-01134-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
Photodynamic therapy is known as an effective primary and adjuvant anticancer treatment. Compounds with improved properties or additional modalities are still needed to create an 'ideal' photosensitizer. In this article, we review cyanoarylporphyrazine dyes for photodynamic (anticancer) therapy that we have synthesised to date. The review provides information on the chemistry of cyanoarylporphyrazines, photophysical properties, cellular uptake features and the use of various carriers for selective delivery of cyanoarylporphyrazines to the tumour. The potential of cyanoarylporphyrazines as photodynamic anti-tumour agents also has been evaluated. The most interesting feature of cyanoarylporphyrazines is the dependence of the fluorescence quantum yield and excited state lifetime on the viscosity of the medium, which makes it possible to use them as viscosity sensors in photodynamic therapy. In the future, we expect that the unique combination of photosensitizer and viscosity sensor properties of cyanoarylporphyrazines will provide a tool for dosimetry and tailoring treatment regimens in photodynamic therapy to the individual characteristics of each patient.
Collapse
Affiliation(s)
- N.Yu. Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
| | - L.N. Shestakova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - N.N. Peskova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
| | - S.A. Lermontova
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - T.S. Lyubova
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - L.G. Klapshina
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - I.V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Nkune NW, Abrahamse H. The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids. Pharmaceutics 2023; 15:2264. [PMID: 37765232 PMCID: PMC10535874 DOI: 10.3390/pharmaceutics15092264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma remains a major public health concern that is highly resistant to standard therapeutic approaches. Photodynamic therapy (PDT) is an underutilised cancer therapy with an increased potency and negligible side effects, and it is non-invasive compared to traditional treatment modalities. Three-dimensional multicellular tumour spheroids (MCTS) closely resemble in vivo avascular tumour features, allowing for the more efficient and precise screening of novel anticancer agents with various treatment combinations. In this study, we utilised A375 human melanoma spheroids to screen the phototoxic effect of zinc phthalocyanine tetrasulfonate (ZnPcS4) conjugated to gold nanoparticles (AuNP). The nanoconjugate was synthesised and characterised using ultraviolet-visible spectroscopy, a high-resolution transmission electron microscope (TEM), dynamic light scattering (DLS), and zeta potential (ZP). The phototoxicity of the nanoconjugate was tested on the A375 MCTS using PDT at a fluency of 10 J/cm2. After 24 h, the cellular responses were evaluated via microscopy, an MTT viability assay, an ATP luminescence assay, and cell death induction using annexin propidium iodide. The MTT viability assay demonstrated that the photoactivated ZnPcS4, at a concentration of 12.73 µM, caused an approximately 50% reduction in the cell viability of the spheroids. When conjugated to AuNPs, the latter significantly increased the cellular uptake and cytotoxicity in the melanoma spheroids via the induction of apoptosis. This novel Zinc Phthalocyanine Nanoconjugate shows promise as a more effective PDT treatment modality.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
5
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
6
|
Abdelrahim AA, Hong S, Song JM. Integrative In Situ Photodynamic Therapy-Induced Cell Death Measurement of 3D-Bioprinted MCF-7 Tumor Spheroids. Anal Chem 2022; 94:13936-13943. [PMID: 36167500 DOI: 10.1021/acs.analchem.2c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new in vitro models that closely mimic the tumor microenvironment (TME) to evaluate the efficacy of anticancer drugs has received great attention. In this study, a three-dimensional (3D) bioprinted Michigan Cancer Foundation-7 (MCF-7) cancer spheroid-embedded hydrogel model was suggested for integrative in situ determination of the half-maximal inhibitory concentration (IC50) values of photosensitizers (PSs). The MCF-7 cell-laden alginate/gelatin hydrogel was printed for the fabrication of tumor spheroids. The hydrogel was used to mimic the extracellular matrix (ECM) surrounding the cancer cells in the TME. The fluorescence intensities corresponding to photodynamic therapy (PDT)-induced death of tumor spheroids probed by the laser showed a random distribution in the hydrogel, regardless of the focus of the laser and the vertical-axis direction in which the laser was passed. These results enabled integrative in situ measurement of all tumor spheroids probed by the laser without needing to separate the tumor spheroids in the hydrogel and measure them individually. When compared with two-dimensional (2D) monolayer cultures, very large IC50 values of the PSs, chlorin e6 (Ce6) and sulfonated tetraphenyl porphyrin (sTPP), were achieved in MCF-7 spheroid-embedded hydrogels mainly due to the drug resistance of the tumor spheroids. Additionally, the heterogenic PDT response of single MCF-7 cancer cells in a single tumor spheroid was observed through 3D imaging of irregular apoptosis in a single spheroid since single tumor spheroids showed a heterogenic PDT response. Furthermore, the laser-power-dependent IC50 values of PSs were obtained using the MCF-7 spheroid-embedded hydrogel model.
Collapse
Affiliation(s)
- Ayman A Abdelrahim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|