1
|
Burgart YV, Makhaeva GF, Khudina OG, Krasnykh OP, Kovaleva NV, Elkina NA, Boltneva NP, Rudakova EV, Lushchekina SV, Shchegolkov EV, Triandafilova GA, Malysheva KO, Serebryakova OG, Borisevich SS, Ilyina MG, Zhilina EF, Saloutin VI, Charushin VN, Richardson RJ. 2-Arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropanoic acids as selective and effective carboxylesterase inhibitors with powerful antioxidant potential. Bioorg Med Chem 2024; 115:117938. [PMID: 39504592 DOI: 10.1016/j.bmc.2024.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
A series of 2-arylhydrazinylidene-3-oxo acids (AHOAs) was prepared by dealkylation of alkyl-2-arylhydrazinylidene-3-oxo-3-alkanoates with AlBr3. Using X-Ray, NMR spectroscopy, and quantum mechanical calculations (QM), the existence of AHOAs in a thermodynamically favorable Z-form stabilized by two intramolecular H-bonds was established. All AHOAs had acceptable ADME parameters. The esterase profile study showed that polyfluoroalkyl-AHOAs were effective and selective carboxylesterase (CES) inhibitors, while they were inactive against acetyl- and butyrylcholinesterase. In agreement with molecular docking, the most effective CES inhibitors (IC50 as low as 42 nM) were compounds bearing long polyfluoroalkyl substituents. The acids were also active against hCES1 and hCES2, and CF3-containing acids possessed selectivity against hCES2. Non-fluorinated acids did not inhibit CES, but they exhibited potent antioxidant capability. AHOAs having unsubstituted phenyl or electron-donating groups in the arylhydrazinylidene moiety displayed high primary antioxidant activity in the ABTS, FRAP, and ORAC tests, which did not depend on the substituent in the acyl fragment in the ABTS and ORAC assays. The radical-scavenging mechanism of AHOAs was investigated using QM calculations, showing a preference for cleavage of NH rather than OH bonds. For the lead antioxidants, 4-methoxysubstituted AHOAs, protective effects on erythrocyte membranes in AAPH-induced oxidative stress conditions were shown, including membrane stabilizing activity, inhibition of AAPH-induced lipid peroxidation of erythrocyte membranes, and Fe(II)-chelating ability. Thus, a new class of potent and selective CES inhibitors with powerful antioxidant potential has been developed as promising co-drugs capable of regulating the metabolism of esterified drugs and scavenging reactive radicals that form during Phase I biotransformation.
Collapse
Affiliation(s)
- Yanina V Burgart
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Olga G Khudina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Olga P Krasnykh
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm 614990,Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Natalia A Elkina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Sofya V Lushchekina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | | | - Ksenia O Malysheva
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm 614990,Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa 450078, Russia
| | - Margarita G Ilyina
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa 450078, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Powerful Potential of Polyfluoroalkyl-Containing 4-Arylhydrazinylidenepyrazol-3-ones for Pharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010059. [PMID: 36615256 PMCID: PMC9821843 DOI: 10.3390/molecules28010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 μg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.
Collapse
|
3
|
Elkina NA, Shchegolkov EV, Burgart YV, Agafonova NA, Perminova AN, Gerasimova NA, Makhaeva GF, Rudakova EV, Kovaleva NV, Boltneva NP, Serebryakova OG, Borisevich SS, Evstigneeva NP, Zilberberg NV, Kungurov NV, Saloutin VI. Synthesis and biological evaluation of polyfluoroalkyl-containing 4-arylhydrazinylidene-isoxazoles as antifungal agents with antioxidant activity. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Makhaeva GF, Lushchekina SV, Boltneva NP, Serebryakova OG, Kovaleva NV, Rudakova EV, Elkina NA, Shchegolkov EV, Burgart YV, Stupina TS, Terentiev AA, Radchenko EV, Palyulin VA, Saloutin VI, Bachurin SO, Richardson RJ. Novel potent bifunctional carboxylesterase inhibitors based on a polyfluoroalkyl-2-imino-1,3-dione scaffold. Eur J Med Chem 2021; 218:113385. [PMID: 33831780 DOI: 10.1016/j.ejmech.2021.113385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023]
Abstract
An expanded series of alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates (HOPs) 3 was obtained via Cu(OAc)2-catalyzed azo coupling. All were nanomolar inhibitors of carboxylesterase (CES), while moderate or weak inhibitors of acetylcholinesterase and butyrylcholinesterase. Steady-state kinetics studies showed that HOPs 3 are mixed type inhibitors of the three esterases. Molecular docking studies demonstrated that two functional groups in the structure of HOPs, trifluoromethyl ketone (TFK) and ester groups, bind to the CES active site suggesting subsequent reactions: formation of a tetrahedral adduct, and a slow hydrolysis reaction. The results of molecular modeling allowed us to explain some structure-activity relationships of CES inhibition by HOPs 3: their selectivity toward CES in comparison with cholinesterases and the high selectivity of pentafluoroethyl-substituted HOP 3p to hCES1 compared to hCES2. All compounds were predicted to have good intestinal absorption and blood-brain barrier permeability, low cardiac toxicity, good lipophilicity and aqueous solubility, and reasonable overall drug-likeness. HOPs with a TFK group and electron-donor substituents in the arylhydrazone moiety were potent antioxidants. All compounds possessed low cytotoxicity and low acute toxicity. Overall, a new promising type of bifunctional CES inhibitors has been found that are able to interact with the active site of the enzyme with the participation of two functional groups. The results indicate that HOPs have the potential to be good candidates as human CES inhibitors for biomedicinal applications.
Collapse
Affiliation(s)
- Galina F Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia; Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, 119334, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Natalia A Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Tatyana S Stupina
- Institute of Problems of Chemical Physics Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Alexey A Terentiev
- Institute of Problems of Chemical Physics Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Eugene V Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Khudina OG, Makhaeva GF, Elkina NA, Boltneva NP, Serebryakova OG, Shchegolkov EV, Rudakova EV, Lushchekina SV, Burgart YV, Bachurin SO, Richardson RJ, Saloutin VI. Synthesis of 2-arylhydrazinylidene-3-oxo-4,4,4-trifluorobutanoic acids as new selective carboxylesterase inhibitors and radical scavengers. Bioorg Med Chem Lett 2019; 29:126716. [DOI: 10.1016/j.bmcl.2019.126716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
|
8
|
Makhaeva GF, Elkina NA, Shchegolkov EV, Boltneva NP, Lushchekina SV, Serebryakova OG, Rudakova EV, Kovaleva NV, Radchenko EV, Palyulin VA, Burgart YV, Saloutin VI, Bachurin SO, Richardson RJ. Synthesis, molecular docking, and biological evaluation of 3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors. Bioorg Chem 2019; 91:103097. [DOI: 10.1016/j.bioorg.2019.103097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
|