1
|
Wan C, Hua R, Li K, Hong X, Fang D, Yang W. Automatic Diagnosis of Different Types of Retinal Vein Occlusion Based on Fundus Images. INT J INTELL SYST 2023; 2023:1-13. [DOI: 10.1155/2023/1587410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Retinal vein occlusion (RVO) is the second common cause of blindness following diabetic retinopathy. The manual screening of fundus images to detect RVO is time consuming. Deep-learning techniques have been used for screening RVO due to their outstanding performance in many applications. However, unlike other images, medical images have smaller lesions, which require a more elaborate approach. To provide patients with an accurate diagnosis, followed by timely and effective treatment, we developed an intelligent method for automatic RVO screening on fundus images. Swin Transformer learns the hierarchy of low-to high-level features like the convolutional neural network. However, Swin Transformer extracts features from fundus images through attention modules, which pay more attention to the interrelationship between the features and each other. The model is more universal, does not rely entirely on the data itself, and focuses not only on local information but has a diffusion mechanism from local to global. To suppress overfitting, we adopt a regularization strategy, label smoothing, which uses one-hot to add noise to reduce the weight of the categories of true sample labels when calculating the loss function. The choice of different models using a 5-fold cross-validation on our own datasets indicates that Swin Transformer performs better. The accuracy of classifying all datasets is 98.75 ± 0.000, and the accuracy of identifying MRVO, CRVO, BRVO, and normal, using the method proposed in the paper, is 94.49 ± 0.094, 99.98 ± 0.015, 98.88 ± 0.08, and 99.42 ± 0.012, respectively. The method will be useful to diagnose RVO and help decide grade through fundus images, which has the potency to provide patients with further diagnosis and treatment.
Collapse
Affiliation(s)
- Cheng Wan
- College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Rongrong Hua
- College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Kunke Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Dong Fang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Weihua Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| |
Collapse
|
2
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Xiao YM, Gan F, Liu H, Zhong YL. Altered synchronous neural activities in retinal vein occlusion patients: A resting-state fMRI study. Front Hum Neurosci 2022; 16:961972. [PMID: 36188177 PMCID: PMC9524247 DOI: 10.3389/fnhum.2022.961972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveRetinal vein occlusion (RVO) is the second most common retinal vascular disorder after diabetic retinopathy, which is the main cause of vision loss. Retinal vein occlusion might lead to macular edema, causing severe vision loss. Previous neuroimaging studies of patients with RVO demonstrated that RVO was accompanied by cerebral changes, and was related to stroke. The purpose of the study is to investigate synchronous neural activity changes in patients with RVO.MethodsA total of 50 patients with RVO and 48 healthy subjects with matched sex, age, and education were enrolled in the study. The ReHo method was applied to investigate synchronous neural activity changes in patients with RVO.ResultsCompared with HC, patients with RVO showed increased ReHo values in the bilateral cerebellum_4_5. On the contrary, patients with RVO had decreased ReHo values in the bilateral middle occipital gyrus, right cerebelum_crus1, and right inferior temporal gyrus.ConclusionOur study demonstrated that patients with RVO were associated with abnormal synchronous neural activities in the cerebellum, middle occipital gyrus, and inferior temporal gyrus. These findings shed new insight into neural mechanisms of vision loss in patients with RVO.
Collapse
Affiliation(s)
- Yu Mei Xiao
- Department of Operation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Fan Gan
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Liu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yu Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Yu Lin Zhong,
| |
Collapse
|
4
|
Wu YQ, Wang YN, Zhang LJ, Liu LQ, Pan YC, Su T, Liao XL, Shu HY, Kang M, Ying P, Xu SH, Shao Y. Regional Homogeneity in Patients With Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Imaging Study. Front Aging Neurosci 2022; 14:877281. [PMID: 35493938 PMCID: PMC9050296 DOI: 10.3389/fnagi.2022.877281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022] Open
Abstract
Objective To analyze the potential changes in brain neural networks in resting state functional magnetic resonance imaging (rs-fMRI) scans by regional homogeneity (ReHo) in patients with mild cognitive impairment (MCI). Methods We recruited and selected 24 volunteers, including 12 patients (6 men and 6 women) with MCI and 12 healthy controls matched by age, sex, and lifestyle. All subjects were examined with rs-fMRI to evaluate changes in neural network connectivity, and the data were analyzed by ReHo method. Correlation analysis was used to investigate the relationship between ReHo values and clinical features in different brain regions of MCI patients. The severity of MCI was determined by the Mini-Mental State Examination (MMSE) scale. Results The signals of the right cerebellum areas 4 and 5, left superior temporal, right superior temporal, left fusiform, and left orbital middle frontal gyri in the patient group were significantly higher than those in the normal group (P < 0.01 by t-test of paired samples). The signal intensity of the right inferior temporal and left inferior temporal gyri was significantly lower than that of the normal group (P < 0.01). The ReHO value for the left inferior temporal gyrus correlated negatively with disease duration, and the value for the right inferior temporal gyrus correlated positively with MMSE scores. Conclusion Mild cognitive impairment in patients with pre- Alzheimer's disease may be related to the excitation and inhibition of neural networks in these regions. This may have a certain guiding significance for clinical diagnosis.
Collapse
Affiliation(s)
- Yu-Qian Wu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Ning Wang
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Juan Zhang
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Qi Liu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Cong Pan
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Hui-Ye Shu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - San-Hua Xu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yi Shao,
| |
Collapse
|