1
|
Tohidi E, Ghaemi M, Golvajouei MS. A review on camelid nanobodies with potential application in veterinary medicine. Vet Res Commun 2024; 48:2051-2068. [PMID: 38869749 DOI: 10.1007/s11259-024-10432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The single variable domains of camelid heavy-chain only antibodies, known as nanobodies, have taken a long journey since their discovery in 1989 until the first nanobody-based drug's entrance to the market in 2022. On account of their unique properties, nanobodies have been successfully used for diagnosis and therapy against various diseases or conditions. Although research on the application of recombinant antibodies has focused on human medicine, the development of nanobodies has paved the way for incorporating recombinant antibody production in favour of veterinary medicine. Currently, despite many efforts in developing these biomolecules with diversified applications, significant opportunities exist for exploiting these highly versatile and cost-effective antibodies in veterinary medicine. The present study attempts to identify existing gaps and shed light on paths for future research by presenting an updated review on camelid nanobodies with potential applications in veterinary medicine.
Collapse
Affiliation(s)
- Emadodin Tohidi
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mehran Ghaemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Sadegh Golvajouei
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Karthikeyan M, Rathinasabapathi P. A Label-Free Colorimetric AuNP-Aptasensor for the Rapid Detection of Vibrio cholerae O139. Cell Mol Bioeng 2024; 17:229-241. [PMID: 39050512 PMCID: PMC11263534 DOI: 10.1007/s12195-024-00804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Waterborne pathogens pose a significant threat to public health, emphasizing the continuous necessity for advancing robust detection techniques, particularly in preventing outbreaks associated with these pathogens. This study focuses on cholera, an infectious disease caused by Vibrio cholerae, serogroups O1 and O139, often transmitted through contaminated water and food, raising significant public health concerns in areas with poor sanitation and limited access to clean water. Methods We developed a colorimetric biosensor using aptamer-functionalized gold nanoparticles to identify Vibrio cholerae O139 and address this issue. The detection mechanism relies on the color change of gold nanoparticles (AuNPs) from red to blue-purple induced by NaCl after the pathogen incubation and aptamer-target binding. Initial steps involved synthesizing and characterizing AuNPs, then exploring the impact of aptamer and NaCl concentrations on AuNP agglomeration. Optimization procedures for aptamer concentration and salt addition identified the optimal conditions for detection as 120 pM aptamers and 1 M NaCl. Results The aptasensor demonstrated a robust linear relationship, detecting V. cholerae concentrations from 103 to 108 CFU/mL, with a limit of detection (LOD) of 587 CFU/mL. Specificity tests and accurate sample analyses confirmed the efficiency of the AuNPs aptasensor, showcasing its reliability and speed compared to traditional culture examination methods. Moreover, we extended the aptasensor to a paper-based sensing platform with similar detection principles. Conclusion The change in color upon target binding was captured with a smartphone and analyzed using image processing software. The paper-based device detected the target in less than 2 min, demonstrating its convenience for on-field applications.
Collapse
Affiliation(s)
- Masilamani Karthikeyan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203 India
| | - Pasupathi Rathinasabapathi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203 India
| |
Collapse
|
3
|
Ndung'u MH, Gachara G, Ontweka L, Menza N, Musyoki A, Muturi M. Review of Rapid Diagnostic Methods for Vibrio Cholerae Detection in the Last Decade (2011-2022). East Afr Health Res J 2023; 7:131-139. [PMID: 39219657 PMCID: PMC11364194 DOI: 10.24248/eahrj.v7i2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/15/2013] [Indexed: 09/04/2024] Open
Abstract
Introduction Cholera epidemic poses a global public health threat, heavily impacting the global economy and societies, with Africa and Asia particularly affected due to factors like; inadequate sanitation, contaminated water, and overcrowding. The associated high rates of morbidity and mortality strain productivity and healthcare costs while complicating control measures. Consequently, the World Health Organization's cholera control initiative and the Diarrhoeal Diseases Laboratory Network advocate for rapid responses to outbreaks and continuous environmental surveillance, since traditional cholera detection methods relying on phenotypic fingerprinting, although considered the gold standard, suffer from labour-intensiveness, time-consumption, and skill requirements. This results in inadequate surveillance and delayed treatment in remote areas lacking well-equipped laboratories. Methods A systematic review was conducted to evaluate the development and performance of cholera rapid diagnostic techniques for detecting cholera in clinical samples and for environmental surveillance purposes over the past decade. Results Twenty-four commercially produced diagnostics were identified in January 2011. Ten more were mentioned in the literature and yet did not provide enough relevant data due to suspected production withdrawal or fall-back. The vast bulk of tests were discovered to be based on antigen or antibody detection, with DNA accounting for a large proportion of the residual tests. This study revealed a plethora of diagnostic methods, some of which have not yet made it to the commercial market. Promising approaches, such as; Loop-mediated isothermal amplification (LAMP), ELISA, and simplified PCR protocols, are likely to play a significant role in future cholera screening. Findings are herein summarised in tables and figures. Conclusion Cholera epidemic continues to present a formidable global health challenge with economic and social repercussions. Traditional detection methods fall short in resource-limited areas, necessitating the exploration of advanced molecular techniques, like aptamers, to improve diagnosis, surveillance, and control measures, especially in regions vulnerable to cholera outbreaks.
Collapse
Affiliation(s)
| | - George Gachara
- Department of Medical Laboratory sciences, Kenyatta University, Nairobi, Kenya
| | - Lameck Ontweka
- Department of Medical Laboratory sciences, Kenyatta University, Nairobi, Kenya
| | - Nelson Menza
- Department of Medical Laboratory sciences, Kenyatta University, Nairobi, Kenya
| | - Abednego Musyoki
- Department of Medical Laboratory sciences, Kenyatta University, Nairobi, Kenya
| | - Margaret Muturi
- Department of Medical Laboratory sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
4
|
A Novel Nanobody-Horseradish Peroxidase Fusion Based-Competitive ELISA to Rapidly Detect Avian Corona-Virus-Infectious Bronchitis Virus Antibody in Chicken Serum. Int J Mol Sci 2022; 23:ijms23147589. [PMID: 35886935 PMCID: PMC9321063 DOI: 10.3390/ijms23147589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Avian coronavirus-infectious bronchitis virus (AvCoV-IBV) is the causative agent of infectious bronchitis (IB) that has brought great threat and economic losses to the global poultry industry. Rapid and accurate diagnostic methods are very necessary for effective disease monitoring. At the present study, we screened a novel nanobody against IBV-N protein for development of a rapid, simple, sensitive, and specific competitive ELISA for IBV antibody detection in order to enable the assessment of inoculation effect and early warning of disease infection. Using the phage display technology and bio-panning, we obtained 7 specific nanobodies fused with horseradish peroxidase (HRP) which were expressed in culture supernatant of HEK293T cells. Out of which, the nanobody of IBV-N-Nb66-vHRP has highly binding with IBV-N protein and was easily blocked by the IBV positive serums, which was finally employed as an immunoprobe for development of the competitive ELISA (cELISA). In the newly developed cELISA, we reduce the use of enzyme-conjugated secondary antibody, and the time of whole operation process is approximately 1 h. Moreover, the IBV positive serums diluted at 1:1000 can still be detected by the developed cELISA, and it has no cross reactivity with others chicken disease serums including Newcastle disease virus, Fowl adenovirus, Avian Influenza Virus, Infectious bursal disease virus and Hepatitis E virus. The cut-off value of the established cELISA was 36%, and the coefficient of variation of intra- and inter-assay were 0.55–1.65% and 2.58–6.03%, respectively. Compared with the commercial ELISA (IDEXX kit), the agreement rate of two methods was defined as 98% and the kappa value was 0.96, indicating the developed cELISA has high consistency with the commercial ELISA. Taken together, the novel cELISA for IBV antibody detection is a simple, rapid, sensitive, and specific immunoassay, which has the potential to rapidly test IBV antibody contributing to the surveillance and control of the disease.
Collapse
|
5
|
Gu K, Song Z, Zhou C, Ma P, Li C, Lu Q, Liao Z, Huang Z, Tang Y, Li H, Zhao Y, Yan W, Lei C, Wang H. Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella Enteritidis in milk and in vivo colonization in chicken. J Nanobiotechnology 2022; 20:167. [PMID: 35361208 PMCID: PMC8973953 DOI: 10.1186/s12951-022-01376-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Background Salmonella Enteritidis (S. Enteritidis) being one of the most prevalent foodborne pathogens worldwide poses a serious threat to public safety. Prevention of zoonotic infectious disease and controlling the risk of transmission of S. Enteriditidis critically requires the evolution of rapid and sensitive detection methods. The detection methods based on nucleic acid and conventional antibodies are fraught with limitations. Many of these limitations of the conventional antibodies can be circumvented using natural nanobodies which are endowed with characteristics, such as high affinity, thermal stability, easy production, especially higher diversity. This study aimed to select the special nanobodies against S. Enteriditidis for developing an improved nanobody-horseradish peroxidase-based sandwich ELISA to detect S. Enteritidis in the practical sample. The nanobody-horseradish peroxidase fusions can help in eliminating the use of secondary antibodies labeled with horseradish peroxidase, which can reduce the time of the experiment. Moreover, the novel sandwich ELISA developed in this study can be used to detect S. Enteriditidis specifically and rapidly with improved sensitivity. Results This study screened four nanobodies from an immunized nanobody library, after four rounds of screening, using the phage display technology. Subsequently, the screened nanobodies were successfully expressed with the prokaryotic and eukaryotic expression systems, respectively. A sandwich ELISA employing the SE-Nb9 and horseradish peroxidase-Nb1 pair to capture and to detect S. Enteritidis, respectively, was developed and found to possess a detection limit of 5 × 104 colony forming units (CFU)/mL. In the established immunoassay, the 8 h-enrichment enabled the detection of up to approximately 10 CFU/mL of S. Enteriditidis in milk samples. Furthermore, we investigated the colonization distribution of S. Enteriditidis in infected chicken using the established assay, showing that the S. Enteriditidis could subsist in almost all parts of the intestinal tract. These results were in agreement with the results obtained from the real-time PCR and plate culture. The liver was specifically identified to be colonized with quite a several S. Enteriditidis, indicating the risk of S. Enteriditidis infection outside of intestinal tract. Conclusions This newly developed a sandwich ELISA that used the SE-Nb9 as capture antibody and horseradish peroxidase-Nb1 to detect S. Enteriditidis in the spike milk sample and to analyze the colonization distribution of S. Enteriditidis in the infected chicken. These results demonstrated that the developed assay is to be applicable for detecting S. Enteriditidis in the spiked milk in the rapid, specific, and sensitive way. Meanwhile, the developed assay can analyze the colonization distribution of S. Enteriditidis in the challenged chicken to indicate it as a promising tool for monitoring S. Enteriditidis in poultry products. Importantly, the SE-Nb1-vHRP as detection antibody can directly bind S. Enteritidis captured by SE-Nb9, reducing the use of commercial secondary antibodies and shortening the detection time. In short, the developed sandwich ELISA ushers great prospects for monitoring S. Enteritidis in food safety control and further commercial production. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01376-y.
Collapse
Affiliation(s)
- Kui Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Zengxu Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Changyu Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Peng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Chao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Liao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Yizhi Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Yu Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Wenjun Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|