1
|
Kara A, Massaro C, Giammanco GM, Alduina R, Boussoualim N. Phylogenetic Diversity, Antibiotic Resistance, and Virulence of Escherichia coli Strains from Urinary Tract Infections in Algeria. Antibiotics (Basel) 2024; 13:773. [PMID: 39200073 PMCID: PMC11350822 DOI: 10.3390/antibiotics13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli represent a significant public health concern due to the high virulence and antimicrobial resistance exhibited by these pathogens. This study aimed to analyze the phylogenetic diversity and antibiotic resistance profiles of Uropathogenic E. coli (UPEC) strains isolated from UTI patients in Algeria, focusing on virulence factors such as extended β-lactamase (ESBL) production, biofilm formation, and hemolytic activity. Phylogenetic grouping of 86 clinical imipenem resistant E. coli isolates showed the prevalence of group B2 (48.9%), followed by groups E (22.1%), unknown (12.8%), A (8.1%), and B1 (4.7%), and Clade I, D, Clade I, or Clade II (1.2%). The highest resistance rates were observed towards amoxicillin (86.04%), ticarcillin (82.55%), piperacillin (73.25%), nitrofurantoin (84.88%), and trimethoprim-sulfamethoxazole (51.16%). Notably, 69.8% of UPEC strains were multidrug-resistant (MDR) and 23.2% were extensively drug-resistant (XDR). Additionally, 48.9%, 42%, and 71% of strains demonstrated ESBL production, hemolytic activity, and weak biofilm production, respectively. Continuous monitoring and characterization of UPEC strains are essential to track the spread of the most resistant and virulent phylogenetic groups over time, facilitating rapid therapeutic decisions to treat infections and prevent the emergence of new resistant organisms, helping choose the most effective antibiotics and reducing treatment failure.
Collapse
Affiliation(s)
- Anfal Kara
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University Ferhat Abbas of Setif 1, Setif 19000, Algeria; (A.K.); (N.B.)
| | - Chiara Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bldg. 16, 90128 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Giovanni M. Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bldg. 16, 90128 Palermo, Italy;
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Naouel Boussoualim
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University Ferhat Abbas of Setif 1, Setif 19000, Algeria; (A.K.); (N.B.)
| |
Collapse
|
2
|
Abdelrahim A, Harrell E, Fedorka-Cray PJ, Jacob M, Thakur S. Phenotypic and Genotypic Characterizations of Antimicrobial-Resistant Escherichia coli Isolates from Diverse Retail Meat Samples in North Carolina During 2018-2019. Foodborne Pathog Dis 2024; 21:211-219. [PMID: 38197854 DOI: 10.1089/fpd.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Surveillance of antimicrobial-resistant pathogens in U.S. retail meats is conducted to identify potential risks of foodborne illness. In this study, we conducted a phenotypic and genotypic analysis of Escherichia coli recovered from a diverse range of retail meat types during 2018-2019 in North Carolina. The investigation was conducted as part of the National Antimicrobial Resistance Monitoring System (NARMS). Retail meat sampling and E. coli isolation were performed in accordance with NARMS retail meat isolation protocols. We used the Sensititre™ broth microdilution system to determine phenotypic resistance to 14 antimicrobial agents and the Illumina next-generation sequencing platform for genotypic resistance profiling. The highest prevalence of E. coli isolates was found in ground turkey (n = 57, 42.9%) and chicken (n = 27, 20.3%), followed by ground beef (n = 25, 18.9%) and pork (n = 24, 18%). The isolates were divided into seven different phylogroups using the Clermont typing tool, with B1 (n = 59, 44.4%) and A (n = 39, 29.3%) being the most dominant, followed by B2 (n = 14, 10.5%), D (n = 7, 5.3%), F (n = 6, 4.5%), E (n = 3, 2.3%), and C (n = 2, 1.5%). Using multilocus sequence typing (MLST), 128 Sequence types (STs) were identified indicating high diversity. Phenotypic and genotypic resistance was observed toward aminoglycosides, sulfonamides, beta-lactams, macrolides, tetracyclines, phenicols, and fluoroquinolones. Ground turkey samples were more resistant to the panel of tested antimicrobials than chicken, beef, or pork (p < 0.05). All isolates were found to be susceptible to meropenem. A high percentage of turkey isolates (n = 16, 28%) were multidrug-resistant (MDR) compared with 18.5% of chicken (n = 5), 8.4% of pork (n = 2), and 8% of beef isolates (n = 2). This study highlights the benefit of surveillance to identify MDR E. coli for epidemiologic tracking and is a comprehensive report of the phenotypic and genotypic characterization of E. coli isolated from retail meats in North Carolina.
Collapse
Affiliation(s)
- Afaf Abdelrahim
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Saini P, Bandsode V, Singh A, Mendem SK, Semmler T, Alam M, Ahmed N. Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. mBio 2024; 15:e0354523. [PMID: 38376265 PMCID: PMC10936179 DOI: 10.1128/mbio.03545-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including blaNDM-5 in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns.
Collapse
Affiliation(s)
- Poorvi Saini
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Viraj Bandsode
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Anuradha Singh
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Suresh Kumar Mendem
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Munirul Alam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
4
|
Shahbazi R, Salmanzadeh-Ahrabi S, Aslani MM, Alebouyeh M, Falahi J, Nikbin VS. The genotypic and phenotypic characteristics contributing to high virulence and antibiotics resistance in Escherichia coli O25-B2-ST131 in comparison to non- O25-B2-ST131. BMC Pediatr 2023; 23:59. [PMID: 36737722 PMCID: PMC9895973 DOI: 10.1186/s12887-023-03866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Escherichia coli serogroup O25b-sequence type 131 (E. coli O25-B2-ST131) is considered as multidrug-resistant and hypervirulent organism. There is lack of data about involvement of this pathogen in the children's infection. In this study, the prevalence, and clonality, virulence capacity, and antibiotic resistance phenotype and genotype of E. coli O25-B2-ST131 compared with non-O25-B2-ST131 isolates were investigated in children with urinary tract infection in Tehran, Iran. METHODS The E. coli isolates from urine samples were identified using conventional microbiological methods. Characterization of E. coli O25-B2-ST131 clone, antibiotic susceptibility, biofilm formation, ESBLs phenotype and genotype, serum resistance, hemolysis, hydrophobicity, and formation of curli fimbriae were done using conventional microbiological and molecular methods. Clonality of the isolates was done by rep-PCR typing. RESULTS Among 120 E. coli isolates, the highest and lowest antibiotic resistance was detected against ampicillin (92, 76.6%) and imipenem 5, (4.1%), respectively. Sixty-eight (56.6%) isolates were ESBL-producing and 58 (48.3%) isolates were considered as multi-drug resistance (MDR). The prevalence of ESBL-producing and MDR isolates in O25-B2-ST131 strains was higher compared with the non-O25-B2-ST131 strains (p value < 0.05). O25-B2-ST131 strains showed significant correlation with serum resistance and biofilm formation. Amongst the resistance and virulence genes, the prevalence of iucD, kpsMTII, cnf1, vat, blaCTX-M-15, and blaSHV were significantly higher among O25-B2-ST131 isolates in comparison with non-O25-B2-ST131 isolates (p value < 0.05). Considering a ≥ 80% homology cut-off, fifteen different clusters of the isolates were shown with the same rep-PCR pattern. CONCLUSIONS Our results confirmed the involvement of MDR-ESBLs producing E. coli strain O25-B2-ST131 in the occurrence of UTIs among children. Source tracking and control measures seem to be necessary for containment of the spread of hypervirulent and resistance variants in children.
Collapse
Affiliation(s)
- Razieh Shahbazi
- grid.411354.60000 0001 0097 6984Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Deh Vank Ave., Tehran, 1993891176 Iran
| | - Siavosh Salmanzadeh-Ahrabi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Deh Vank Ave., Tehran, 1993891176, Iran.
| | - Mohammad Mehdi Aslani
- grid.420169.80000 0000 9562 2611Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Alebouyeh
- grid.411600.2Pediatric Infections Research Center, Research for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Falahi
- Health Clinical Science Research Center, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Vajihe Sadat Nikbin
- grid.420169.80000 0000 9562 2611Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Halaji M, Fayyazi A, Rajabnia M, Zare D, Pournajaf A, Ranjbar R. Phylogenetic Group Distribution of Uropathogenic Escherichia coli and Related Antimicrobial Resistance Pattern: A Meta-Analysis and Systematic Review. Front Cell Infect Microbiol 2022; 12:790184. [PMID: 35281449 PMCID: PMC8914322 DOI: 10.3389/fcimb.2022.790184] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
The phylogenetic classification of Escherichia coli isolates is of great importance not only for understanding the populations of E. coli but also for clarifying the relationship between strains and diseases. The present study aimed to evaluate the prevalence of phylogenetic groups, antibiotic susceptibility pattern, and virulence genes among uropathogenic E. coli (UPEC) isolated from different parts of Iran through a systematic review and meta-analysis. Several international electronic sources, including Web of Science, PubMed, Scopus, and Embase, were searched (2000–2020) in order to identify the studies compatible with our inclusion criteria. The meta-analysis was performed using the metaprop program in the STATA (version 11) software. Based on our comprehensive search, 28 studies meeting the eligibility criteria were included in the meta-analysis. The pooled prevalence of phylogroups B2, D, B1, and A was 39%, 26%, 18%, and 8%, respectively. In addition, there was a significant heterogeneity among different phylogroups. However, according to the results of Begg’s and Egger’s tests, there were no significant publication bias in phylogroups B2, D, B1, and A. This research provided the first comprehensive study on phylogroups of UPEC isolated in Iran. Our findings indicated that phylogroup B2 and group D were the most predominant phylogenetic groups among UPEC isolates in various regions of Iran. In addition, we observed that certain phylogenetic groups are more antibiotic resistant than the others. It was also observed that the dissemination of virulent phylogroup B2 and D should be controlled via comprehensive infection control measures. Additionally, certain strategies should be developed for monitoring the antibiotic therapy.
Collapse
Affiliation(s)
- Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Fayyazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Donya Zare
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- *Correspondence: Reza Ranjbar,
| |
Collapse
|
6
|
Relationship Between Antibiotic Resistance Patterns and O-Serogroups in Uropathogenic Escherichia coli Strains Isolated from Iraqi Patients. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.118833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The O-antigen is one of the uropathogenic Escherichia coli (UPEC) virulence factors used as a biomarker to classify E. coli strains. Objectives: In this study, the relationship between antibiotic resistance patterns and O-serogroups was investigated in UPEC strains isolated from patients with urinary tract infections (UTIs) in southern Iraq. Methods: A total of 100 UPEC isolates from the urine specimens of patients with UTIs within the age range of 4 months to 78 years in various southern Iraqi hospitals were collected (May 2017 to January 2018) and confirmed using biochemical tests (e.g., Analytical Profile Index 20E). Antibiotic susceptibility tests were performed using the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. The multiple polymerase chain reaction technique was applied to investigate the prevalence of O-serogroups. Results: The most frequent serogroups in the E. coli isolates were O8 (27.7%) and O25 (24.4%); however, serogroup O83 was not observed in the samples. Serogroups O75, O6, O16, and O18 had the lowest frequency (1.1%) among the examined isolates. Furthermore, 10% of the isolates did not belong to any of the examined serogroups. The phenotypic tests showed that the highest and the lowest resistance belonged to piperacillin (92%) and imipenem (5%), respectively. Serogroups O4 and O21 showed the highest drug resistance; nevertheless, serogroups O75, O18, and O1 showed the lowest drug resistance. Additionally, 94% of the isolates were resistant to three or more classes of antibiotics. Conclusions: According to the results, UPEC isolates showed high resistance to common antibiotics; however, they were sensitive to imipenem and amikacin. Serogroups O8 and O25 were the most common among UPEC isolates. Moreover, O4 and O21 showed the highest drug resistance. There was a direct relationship between antimicrobial resistance and O-serogroups in UPEC isolates.
Collapse
|