1
|
Marcon AE, Navoni JA, de Oliveira Galvão MF, Garcia ACFS, do Amaral VS, Petta RA, Campos TFDC, Panosso R, Quinelato AL, de Medeiros SRB. Mutagenic potential assessment associated with human exposure to natural radioactivity. CHEMOSPHERE 2017; 167:36-43. [PMID: 27705811 DOI: 10.1016/j.chemosphere.2016.09.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Lucrécia city, known to harbor a high cancer rate, is located in a semiarid region characterized by the presence of mineral reservoirs, facing a high exposure to metal and natural radioactivity. The present study aimed to assess the environmental scenario at a semiarid region located in Northeastern Brazil. Metal concentration, alpha and beta radiation, and cyanobacteria content in tap water along with indoor radon and gamma emitters (U, K and Th) concentrations were measured. In addition, mutagenic and nuclear instability effects were assessed using buccal micronucleus cytome assay. The study included five samplings corresponding to a period between 2007 and 2009. Drinking water from Lucrécia city presented levels of Mn, Ni and Cr along with cyanobacteria in concentrations one to four times higher than regulatory guidelines considered. Furthermore, high levels of all the tested radionuclides were found. A high percentage of the houses included in this study presented indoor radon concentrations over 100 Bq m-3. The mean annual effective dose from Lucrécia houses was six times higher than observed in a control region. The levels of exposure in most of the Lucrécia houses were classified as middle to high. A significant mutagenic effect, represented as an increase of micronuclei (MN) frequency and nuclear abnormalities as nuclear buds (NB), binucleated cells (BN), and pyknotic cells (PYC) were found. The results obtained highlight the role of high background radioactivity on the observed mutagenic effect and could help to explain the exacerbated cancer rate reported in this locality.
Collapse
Affiliation(s)
- Alexandre Endres Marcon
- Graduate Program in Health Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Julio Alejandro Navoni
- Graduate Program in Development and Environment, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Viviane Souza do Amaral
- Graduate Program in Development and Environment, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Reinaldo Antônio Petta
- Geology Department, Center for Exact and Earth Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Renata Panosso
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Sílvia Regina Batistuzzo de Medeiros
- Graduate Program in Health Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Graduate Program in Development and Environment, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|