1
|
Elshami FI, Shereef HA, El-Mehasseb IM, Shaban SY, van Eldik R. Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation. Int J Mol Sci 2023; 24:14103. [PMID: 37762406 PMCID: PMC10531786 DOI: 10.3390/ijms241814103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57 ± 1.72 μg/mL) compared to HCQ (102.21 ± 0.67 μg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.
Collapse
Affiliation(s)
- Fawzia I. Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Hadeer A. Shereef
- Clinical Pathology Department, University Hospital, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Ibrahim M. El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
2
|
Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics (Basel) 2023; 12:665. [PMID: 37107027 PMCID: PMC10135369 DOI: 10.3390/antibiotics12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Oladipo A, Ejeromedoghene O, Adebayo A, Ogunyemi O, Egejuru G. A mini review on the prospects of Fagara zanthoxyloides extract based composites: a remedy for COVID-19 and associated replica? PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Abstract
Studies are still being conducted to find a sustainable and long-lasting solution to the lethal consequences of the feared virus characterized as coronavirus disease (Covid-19) and its accompanying pathogenic replication, which pose a serious threat to human survival in the wake of its broad distribution. Since its emergence, researchers have investigated synthetic approaches in search of a dependable vaccine or treatment and curtail the spread of the virus and also enhance the health of a patient who has been affected. Unfortunately, the infection is yet to be entirely eradicated in many parts of the world. Despite the introduction of synthetic pharmaceuticals like remdesivir and derivatives of chloroquine, plant extracts may be an alternative reliable strategy that could successfully combat the operation of the virus. Herein, we investigated the prospects of fagara zanthoxyloides lam. (rutaceae) (syn. zanthoxylum zanthoxyloides), a well-known medicinal tree whose extracts have demonstrated success in treating many microbiological and viral-related infections. The distinctive plant extracts contain several bioactive phytochemicals with promising biological activity with minimal or no side effects and are being researched for a variety of applications, particularly in the pharmaceutical and medicinal industries. Consequently, in this review, we examined the crude extracts from the Fagara species and suggested that careful consideration should be given to its independent use or combination with other bioactive molecules, such as biopolymers and nano-metallic composites, to combat the terrifying Covid-19 virus and its associates.
Collapse
Affiliation(s)
- Abiodun Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China , College of Forestry , Nanjing Forestry University , 210037 Nanjing , Jiangsu , P. R. China
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering , Southeast University , Jiangning District , Nanjing , Jiangsu Province , 211189 , P. R. China
| | - Ademola Adebayo
- Department of Forest and Conservation Sciences , Faculty of Forestry , University of British Columbia , V6T1Z4 B.C , Vancouver , Canada
| | - Olakunle Ogunyemi
- Department of Forestry and Wildlife Management , Federal University of Agriculture , PMB 2240 Abeokuta , Ogun State , Nigeria
| | - George Egejuru
- School of Public Health , Southeast University , Jiangning District , Nanjing , Jiangsu Province , 211189 , P. R. China
| |
Collapse
|
4
|
Korica MD, Kramar A, Peršin Fratnik Z, Obradović B, Kuraica MM, Dojčinović B, Fras Zemljič L, Kostić M. Obtaining Medical Textiles Based on Viscose and Chitosan/Zinc Nanoparticles with Improved Antibacterial Properties by Using a Dielectric Barrier Discharge. Polymers (Basel) 2022; 14:polym14194152. [PMID: 36236100 PMCID: PMC9573166 DOI: 10.3390/polym14194152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
This study aimed to obtain functional viscose textiles based on chitosan coatings with improved antibacterial properties and washing durability. For that reason, before functionalization with chitosan/zinc nanoparticles (NCH+Zn), the viscose fabric was modified by nonthermal gas plasma of dielectric barrier discharge (DBD) to introduce into its structure functional groups suitable for attachment of NCH+Zn. NCH+Zn were characterized by measurements of hydrodynamic diameter and zeta potential and AFM. DBD-plasma-modified and NCH+Zn-functionalized fabrics were characterized by zeta potential measurements, ATR-FTIR spectroscopy, the calcium acetate method (determination of content of carboxyl and aldehyde groups), SEM, breaking-strength measurements, elemental analysis, and ICP-OES. Their antibacterial activity was determined under dynamic contact conditions. In addition to SEM, the NCH+Zn distributions on viscose fabrics were also indirectly characterized by measuring their absorbent capacities before and after functionalization with NCH+Zn. Washing durability was monitored through changes in the zeta potential, chitosan and zinc content, and antibacterial activity after 1, 3, and 5 washing cycles. The obtained results showed that DBD plasma modification contributed to the simultaneous improvement of NCH+Zn sorption and antibacterial properties of the viscose fabric functionalized with NCH+Zn, and its washing durability, making it suitable for the production of high-value-added medical textiles.
Collapse
Affiliation(s)
- Matea D. Korica
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ana Kramar
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Department of Material Science and Engineering and Chemical Engineering, University Carlos III of Madrid, Avda, Universidad 30, 28911 Madrid, Spain
| | - Zdenka Peršin Fratnik
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Bratislav Obradović
- Faculty of Physics, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Milorad M. Kuraica
- Faculty of Physics, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Lidija Fras Zemljič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Mirjana Kostić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303628
| |
Collapse
|
5
|
Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022; 34:1166-1190. [PMID: 35699356 DOI: 10.1002/chir.23477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.
Collapse
Affiliation(s)
- Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
6
|
Transport of Magnetic Polyelectrolyte Capsules in Various Environments. COATINGS 2022. [DOI: 10.3390/coatings12020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcapsules consisting of eleven layers of polyelectrolyte and one layer of iron oxide nanoparticles were fabricated. Two types of nanoparticles were inserted as one of the layers within the microcapsule’s walls: Fe2O3, ferric oxide, having a mean diameter (Ø) of 50 nm and superparamagnetic Fe3O4 having Ø 15 nm. The microcapsules were suspended in liquid environments at a concentration of 108 caps/mL. The suspensions were pumped through a tube over a permanent magnet, and the accumulation within a minute was more than 90% of the initial concentration. The design of the capsules, the amount of iron embedded in the microcapsule, and the viscosity of the transportation fluid had a rather small influence on the accumulation capacity. Magnetic microcapsules have broad applications from cancer treatment to molecular communication.
Collapse
|
7
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|