1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024; 20:2361-2372. [PMID: 38873924 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Rahman FA, Baechler BL, Quadrilatero J. Key considerations for investigating and interpreting autophagy in skeletal muscle. Autophagy 2024; 20:2121-2132. [PMID: 39007805 PMCID: PMC11423691 DOI: 10.1080/15548627.2024.2373676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Fasih A. Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Brittany L. Baechler
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Al-Kuraishy HM, Sulaiman GM, Jabir MS, Mohammed HA, Al-Gareeb AI, Albukhaty S, Klionsky DJ, Abomughaid MM. Defective autophagy and autophagy activators in myasthenia gravis: a rare entity and unusual scenario. Autophagy 2024; 20:1473-1482. [PMID: 38346408 PMCID: PMC11210922 DOI: 10.1080/15548627.2024.2315893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
| | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
5
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Chen S, Chen J, Wang C, He T, Yang Z, Huang W, Luo X, Zhu H. Betaine attenuates age-related suppression in autophagy via Mettl21c/p97/VCP axis to delay muscle loss. J Nutr Biochem 2024; 125:109555. [PMID: 38147913 DOI: 10.1016/j.jnutbio.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Age-related impairment of autophagy accelerates muscle loss and lead to sarcopenia. Betaine can delay muscle loss as a dietary methyl donor via increasing S-adenosyl-L-methionine (SAM, a crucial metabolite for autophagy regulation) in methionion cycle. However, whether betaine can regulate autophagy level to attenuate degeneration in aging muscle remains unclear. Herein, male C57BL/6J young mice (YOU, 2-month-old), old mice (OLD, 15-month-old), and 2%-betaine-treated old mice (BET, 15-month-old) were employed and raised for 12 weeks. All mice underwent body composition examination and grip strength test before being sacrificed. Betaine alleviated age-related decline in muscle mass and strength. Meanwhile, betaine preserved the expression autophagy markers (Atg5, Atg7, LC3-II, and Beclin1) both at transcriptional and translational level during the aging process. RNA-sequencing results generated from mice gastrocnemius muscle found Mettl21c, a SAM-dependent autophagy-regulating methyltransferase, was significantly higher expressed in BET and YOU group. Results were further validated by qPCR and western bloting. In vitro, C2C12 cells with or without Mettl21c RNA interference were treated different concentration of betaine (0 mM, 10 mM) under methionine-starved condition. Compared with control group, betaine upregulated autophagy markers expression and autophagy flux. By increasing the SAM level, betaine facilitated trimethylation of p97 (Mettl21c downstream effector) into valosin-containing protein (VCP). Increased VCP promoted autophagic turnover of cellular components, ATP production, and cell differentiation. Knock-down of Metthl21c dismissed improvements mentioned above. Collectively, betaine could enhance aged skeletal muscle autophagy level via Mettl21c/p97/VCP axis to delay muscle loss.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Jiedong Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Tongtong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Zhijun Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wenge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Experimental and Teaching Center for Public Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.
| |
Collapse
|
7
|
Noh SG, Ahn A, Davi SM, Lepley LK, Kwon OS. Quadriceps muscle atrophy after non-invasive anterior cruciate ligament injury: evidence linking to autophagy and mitophagy. Front Physiol 2024; 15:1341723. [PMID: 38496299 PMCID: PMC10940348 DOI: 10.3389/fphys.2024.1341723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: Anterior cruciate ligament (ACL) injury is frequently accompanied by quadriceps muscle atrophy, a process closely linked to mitochondrial health and mitochondria-specific autophagy. However, the temporal progression of key quadricep atrophy-mediating events following ACL injury remains poorly understood. To advance our understanding, we conducted a longitudinal study to elucidate key parameters in quadriceps autophagy and mitophagy. Methods: Long-Evans rats were euthanized at 7, 14, 28, and 56 days after non-invasive ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle was extracted, and subsequent immunoblotting analysis was conducted using primary antibodies targeting key proteins involved in autophagy and mitophagy cellular processes. Results: Our findings demonstrated dynamic changes in autophagy and mitophagy markers in the quadriceps muscle during the recovery period after ACL injury. The early response to the injury was characterized by the induction of autophagy at 14 days (Beclin1), indicating an initial cellular response to the injury. Subsequently, at 14 days we observed increase in the elongation of autophagosomes (Atg4B), suggesting a potential remodeling process. The autophagosome flux was also augmented between 14- and 28 days (LC3-II/LC3-I ratio and p62). Notably, at 56 days, markers associated with the elimination of damaged mitochondria were elevated (PINK1, Parkin, and VDAC1), indicating a possible ongoing cellular repair and restoration process. Conclusion: These data highlight the complexity of muscle recovery after ACL injury and underscore the overlooked but crucial role of autophagy and mitophagy in promoting the recovery process.
Collapse
Affiliation(s)
- Sung Gi Noh
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Ahram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Steven M. Davi
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Cooperative Studies Program Coordinating Center (CSPCC), VA Connecticut Healthcare System, West Haven, CT, United States
| | - Lindsey K. Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopaedic Surgery and Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
8
|
Wong JC, Oliveira AN, Khemraj P, Hood DA. The role of TFE3 in mediating skeletal muscle mitochondrial adaptations to exercise training. J Appl Physiol (1985) 2024; 136:262-273. [PMID: 38095014 DOI: 10.1152/japplphysiol.00484.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Transcription factor E3 (TFE3) is a transcription factor that activates the expression of lysosomal genes involved in the clearance of dysfunctional mitochondria, termed mitophagy. With exercise, TFE3 is presumed to optimize the mitochondrial pool through the removal of organelles via lysosomes. However, the molecular mechanisms of the involved pathways remain unknown. Wild-type (WT) and TFE3 knockout (KO) mice were subjected to 6 wk of voluntary wheel running as an endurance training regimen. This was followed by a 45-min bout of in situ stimulation of the sciatic nerve innervating hindlimb muscles to evaluate muscle fatigue and contractile properties. A subset of animals was treated with colchicine to measure autophagy and mitophagy flux. Fatigability during stimulation was reduced with training in WT animals, as seen by a 13% increase in the percentage of maximum force at 5 min of stimulation, and a 30% increase at 30 minutes. Permeabilized fiber oxygen consumption was also improved with training. Concurrent with improved muscle and mitochondrial function, cytochrome c oxidase (COX) activity and COX I protein expression were increased in trained WT animals compared to untrained animals, signifying an increase in mitochondrial content. These training adaptations were abolished with the loss of TFE3. Surprisingly, the absence of TFE3 did not affect lysosomal content nor did it blunt the induction of mitophagy flux with contractile activity compared to WT mice. Our results suggest that the loss of TFE3 compromises beneficial training adaptations that lead to improved muscle endurance and mitochondrial function.NEW & NOTEWORTHY Our understanding of the role of transcription factor E3 (TFE3) in skeletal muscle is very limited. This research shows that TFE3 plays a direct role in skeletal muscle mitochondrial enhancement with exercise training, thereby introducing a paradigm shift in our perception of the function of TFE3 in mitochondrial maintenance, beyond mitophagy. This research serves to introduce TFE3 as a protein that holds promise as a future therapeutic target for metabolic diseases and skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Jenna C Wong
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Priyanka Khemraj
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Ross JM, Olson L, Coppotelli G. Mitochondrial Dysfunction and Protein Homeostasis in Aging: Insights from a Premature-Aging Mouse Model. Biomolecules 2024; 14:162. [PMID: 38397399 PMCID: PMC10886786 DOI: 10.3390/biom14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction has been implicated in aging and age-related disorders. Disturbed-protein homeostasis and clearance of damaged proteins have also been linked to aging, as well as to neurodegenerative diseases, cancers, and metabolic disorders. However, since mitochondrial oxidative phosphorylation, ubiquitin-proteasome, and autophagy-lysosome systems are tightly interdependent, it is not understood whether the facets observed in aging are the causes or consequences of one or all of these failed processes. We therefore used prematurely aging mtDNA-mutator mice and normally aging wild-type littermates to elucidate whether mitochondrial dysfunction per se is sufficient to impair cellular protein homeostasis similarly to that which is observed in aging. We found that both mitochondrial dysfunction and normal aging affect the ubiquitin-proteasome system in a tissue-dependent manner, whereas only normal aging markedly impairs the autophagy-lysosome system. Thus, our data show that the proteostasis network control in the prematurely aging mtDNA-mutator mouse differs in certain aspects from that found in normal aging. Taken together, our findings suggest that severe mitochondrial dysfunction drives an aging phenotype associated with the impairment of certain components of the protein homeostasis machinery, while others, such as the autophagy-lysosome system, are not affected or only minimally affected. Taken together, this shows that aging is a multifactorial process resulting from alterations of several integrated biological processes; thus, manipulating one process at the time might not be sufficient to fully recapitulate all changes associated with normal aging.
Collapse
Affiliation(s)
- Jaime M. Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden;
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
11
|
Gao Y, Jiang Z, Xu B, Mo R, Li S, Jiang Y, Zhao D, Cao W, Chen B, Tian M, Tan Q. Evaluation of topical methylene blue nanoemulsion for wound healing in diabetic mice. PHARMACEUTICAL BIOLOGY 2023; 61:1462-1473. [PMID: 37691404 PMCID: PMC10496548 DOI: 10.1080/13880209.2023.2254341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT Diabetic wounds (DW) are a complication of diabetes and slow wound healing is the main manifestation. Methylene blue (MB) has been shown to exhibit therapeutic effects on diabetes-related diseases. OBJECTIVE To investigate the mechanisms of action of MB-nanoemulsion (NE) in the treatment of DW. MATERIALS AND METHODS The concentration of MB-NE used in the in vivo and in vitro experiments was 0.1 mg/mL. Streptozocin-induced diabetic mice were used as models. The mice were separated into nondiabetic, diabetic, MB-NE treated, and NE-treated groups. Intervention of high glucose-induced human umbilical vein endothelial cells using MB-NE. The mechanism by which MB-NE promotes DW healing is investigated by combining histological analysis, immunofluorescence analysis, TUNEL and ROS assays and western blotting. RESULTS In diabetic mice, the MB-NE accelerated DW healing (p < 0.05), promoted the expression of endothelial cell markers (α-SMA, CD31 and VEGF) (p < 0.05), and reduced TUNEL levels. In vitro, MB accelerated the migration rate of cells (p < 0.05); promoted the expression of CD31, VEGF, anti-apoptotic protein Bcl2 (p < 0.05) and decreased the expression of the pro-apoptotic proteins cleaved caspase-3 and Bax (p < 0.05). MB upregulated the expression of Nrf2, catalase, HO-1 and SOD2 (p < 0.05). In addition, MB reduced the immunofluorescence intensity of TUNEL and ROS in cells and reduced apoptosis. The therapeutic effect of MB was attenuated after treatment with an Nrf2 inhibitor (ML385). DISCUSSION AND CONCLUSION This study provides a foundation for the application of MB-NE in the treatment of DW.
Collapse
Affiliation(s)
- Yu Gao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhounan Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Xu
- Hubei Xiangyang Central Hospital, Xiangyang, China
| | - Ran Mo
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanan Jiang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Demei Zhao
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wangbin Cao
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Bin Chen
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Meng Tian
- Department of Plastic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Tan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Gragnaniello V, Gueraldi D, Puma A, Commone A, Cazzorla C, Loro C, Porcù E, Stornaiuolo M, Miglioranza P, Salviati L, Wanders RJA, Burlina A. Abnormal activation of MAPKs pathways and inhibition of autophagy in a group of patients with Zellweger spectrum disorders and X-linked adrenoleukodystrophy. Orphanet J Rare Dis 2023; 18:358. [PMID: 37974207 PMCID: PMC10652488 DOI: 10.1186/s13023-023-02940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Andrea Puma
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Anna Commone
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Christian Loro
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Maria Stornaiuolo
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Paolo Miglioranza
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padua, Italy
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy.
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy.
| |
Collapse
|
13
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
14
|
Leduc-Gaudet JP, Miguez K, Cefis M, Faitg J, Moamer A, Chaffer TJ, Reynaud O, Broering FE, Shams A, Mayaki D, Huck L, Sandri M, Gouspillou G, Hussain SN. Autophagy ablation in skeletal muscles worsens sepsis-induced muscle wasting, impairs whole-body metabolism, and decreases survival. iScience 2023; 26:107475. [PMID: 37588163 PMCID: PMC10425945 DOI: 10.1016/j.isci.2023.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Septic patients frequently develop skeletal muscle wasting and weakness, resulting in severe clinical consequences and adverse outcomes. Sepsis triggers sustained induction of autophagy, a key cellular degradative pathway, in skeletal muscles. However, the impact of enhanced autophagy on sepsis-induced muscle dysfunction remains unclear. Using an inducible and muscle-specific Atg7 knockout mouse model (Atg7iSkM-KO), we investigated the functional importance of skeletal muscle autophagy in sepsis using the cecal ligation and puncture model. Atg7iSkM-KO mice exhibited a more severe phenotype in response to sepsis, marked by severe muscle wasting, hypoglycemia, higher ketone levels, and a decreased in survival as compared to mice with intact Atg7. Sepsis and Atg7 deletion resulted in the accumulation of mitochondrial dysfunction, although sepsis did not further worsen mitochondrial dysfunction in Atg7iSkM-KO mice. Overall, our study demonstrates that autophagy inactivation in skeletal muscles triggers significant worsening of sepsis-induced muscle and metabolic dysfunctions and negatively impacts survival.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Kayla Miguez
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Marina Cefis
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Julie Faitg
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
- Amazentis SA, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Alaa Moamer
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Tomer Jordi Chaffer
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Olivier Reynaud
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Felipe E. Broering
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Anwar Shams
- Department of Pharmacology, Faculty of Medicine, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Dominique Mayaki
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Laurent Huck
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Marco Sandri
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Veneto Institute of Molecular Medicine (VIMM) and Department of Biomedical Science, Università di Padova, 35129 Padova, Italy
| | - Gilles Gouspillou
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Sabah N.A. Hussain
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
15
|
Neto IVDS, Pinto AP, Muñoz VR, de Cássia Marqueti R, Pauli JR, Ropelle ER, Silva ASRD. Pleiotropic and multi-systemic actions of physical exercise on PGC-1α signaling during the aging process. Ageing Res Rev 2023; 87:101935. [PMID: 37062444 DOI: 10.1016/j.arr.2023.101935] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Physical training is a potent therapeutic approach for improving mitochondrial health through peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) signaling pathways. However, comprehensive information regarding the physical training impact on PGC-1α in the different physiological systems with advancing age is not fully understood. This review sheds light on the frontier-of-knowledge data regarding the chronic effects of exercise on the PGC-1α signaling pathways in rodents and humans. We address the molecular mechanisms involved in the different tissues, clarifying the precise biological action of PGC-1α, restricted to the aged cell type. Distinct exercise protocols (short and long-term) and modalities (aerobic and resistance exercise) increase the transcriptional and translational PGC-1α levels in adipose tissue, brain, heart, liver, and skeletal muscle in animal models, suggesting that this versatile molecule induces pleiotropic responses. However, PGC-1α function in some human tissues (adipose tissue, heart, and brain) remains challenging for further investigations. PGC-1α is not a simple transcriptional coactivator but supports a biochemical environment of mitochondrial dynamics, controlling physiological processes (primary metabolism, tissue remodeling, autophagy, inflammation, and redox balance). Acting as an adaptive mechanism, the long-term effects of PGC-1α following exercise may reflect the energy demand to coordinate multiple organs and contribute to cellular longevity.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Distrito Federal, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Autophagic Molecular Alterations in the Mouse Cerebellum Experimental Autoimmune Encephalomyelitis Model Following Treatment with Cannabidiol and Fluoxetine. Mol Neurobiol 2023; 60:1797-1809. [PMID: 36576709 DOI: 10.1007/s12035-022-03170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The crosstalk between autophagy and apoptosis is one of the most important processes involved in the cell program death, and several mechanisms including oligodendrocyte apoptosis and autophagy play significant roles in activating macrophages, microglial cells, and finally demyelination in neurodegenerative disease. The antidepressants and anti-apoptotic mechanisms of fluoxetine (FLX) and cannabidiol (CBD) commence an autophagic event that can effectively repair myelin. This study aimed to investigate the effect of those reagents on the rate of demyelination in the cerebellum, an important site for white matter in a mouse model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in twenty four adult female C57Bl/6 mice were inducted the EAE model; FLX treatment which was performed (10 mg/kg/IP) and CBD; were treated (5 mg/kg/IP); and their cerebellum was used for Western blotting, real-time PCR to autophagic markers of LC3II, Beclin-1, and apoptotic markers Bax and Bcl2 evaluation and Luxol Fast Blue staining to the assessment of demyelination. The level of autophagic markers was expressively elevated (P < 0.01) but the pro-apoptotic markers and Bax/Bcl2 ratio were reduced (P < 0.05). Luxol Fast Blue staining confirmed the noteworthy diminution of demyelination in treatment groups (P < 0.001). This finding clarified that FLX and CBD ameliorate the severity of the EAE model. Combinatory treatments of these two agents are suggested for future investigations.
Collapse
|
17
|
Sepúlveda C, Rodríguez JM, Monsalves-Álvarez M, Donoso-Barraza C, Pino-de la Fuente F, Matías I, Leste-Lasserre T, Zizzari P, Morselli E, Cota D, Llanos M, Troncoso R. The CB1 cannabinoid receptor regulates autophagy in the tibialis anterior skeletal muscle in mice. Biol Res 2023; 56:14. [PMID: 36964619 PMCID: PMC10039507 DOI: 10.1186/s40659-023-00426-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
The endocannabinoid system (ECS) regulates energy metabolism, has been implicated in the pathogenesis of metabolic diseases and exerts its actions mainly through the type 1 cannabinoid receptor (CB1). Likewise, autophagy is involved in several cellular processes. It is required for the normal development of muscle mass and metabolism, and its deregulation is associated with diseases. It is known that the CB1 regulates signaling pathways that control autophagy, however, it is currently unknown whether the ECS could regulate autophagy in the skeletal muscle of obese mice. This study aimed to investigate the role of the CB1 in regulating autophagy in skeletal muscle. We found concomitant deregulation in the ECS and autophagy markers in high-fat diet-induced obesity. In obese CB1-KO mice, the autophagy-associated protein LC3 II does not accumulate when mTOR and AMPK phosphorylation levels do not change. Acute inhibition of the CB1 with JD-5037 decreased LC3 II protein accumulation and autophagic flux. Our results suggest that the CB1 regulates autophagy in the tibialis anterior skeletal muscle in both lean and obese mice.
Collapse
Affiliation(s)
- Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
- Laboratorio de Ciencias del Ejercicio, Clínica MEDS, Santiago, Chile.
| | - Juan Manuel Rodríguez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | | | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Universidad de O'Higgins, Rancagua, Chile
| | - Isabelle Matías
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | | | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago de Chile, Chile
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Miguel Llanos
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Hormonas y Regulación Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, 8380492, Santiago, Chile.
| |
Collapse
|
18
|
Jin J, Yang Z, Liu H, Guo M, Chen B, Zhu H, Wang Y, Lin J, Wang S, Chen S. Effects of acupuncture on the miR-146a-mediated IRAK1/TRAF6/NF-κB signaling pathway in rats with sarcopenia induced by D-galactose. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:47. [PMID: 36819511 PMCID: PMC9929824 DOI: 10.21037/atm-22-6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Background Sarcopenia during aging is closely linked to sterile, low-grade, chronic inflammation. However, considering the increasingly aging global population, the effectiveness of existing treatments for sarcopenia is not exact, and acupuncture, as an effective anti-inflammatory therapy, has the potential to treat it. Methods Fifty Sprague-Dawley rats were randomly allocated into five groups, including Control group, D-galactose (D-gal) group, D-gal + acupuncture (DA) group, D-gal + non-acupoint (DN) group and D-gal amino acid mixture (DAA) group. An aging rat was model constructed using D-gal for 12 weeks. Rats in the control group received 0.9% physiological saline daily. Treatment groups were acupunctured or given amino acid mixture interventions daily, and lasted for last 4 consecutive weeks. The effects of acupuncture were evaluated by the hematoxylin and eosin staining (H&E), transmission electron microscopic (TEM) examination and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The anti-inflammatory mechanism of acupuncture was studied by using the expressions of microRNA-146a (miR-146a) mediated nuclear factor-kappa B (NF-κB) signaling pathway-related proteins were detected by immunofluorescence, western blotting, quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results Rats injected by D-galactose (D-gal) revealed apparent skeletal muscle atrophy with significantly reduced cross-sectional area and fiber diameter. In contrast, acupuncture treatment alleviated these hallmarks of skeletal muscle atrophy and mitigated the mitochondrial aberrations and skeletal muscle apoptosis in D-gal rats. In addition, acupuncture also downgraded the overexpression of inflammatory factors in skeletal muscle, influenced miR-146a and the target genes level, and inhibited NF-κB nuclear translation in D-gal rats. Conclusions Acupuncture may ameliorate skeletal muscle atrophy, and its effects may be associated with the control of mitochondrial function regulation and the suppression of inflammation.
Collapse
Affiliation(s)
- Jing Jin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhengyu Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haichao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingling Guo
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Borui Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haoming Zhu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianping Lin
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Shizhong Wang
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Shaoqing Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
19
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
20
|
Tabibzadeh S. Role of autophagy in aging: The good, the bad, and the ugly. Aging Cell 2022; 22:e13753. [PMID: 36539927 PMCID: PMC9835585 DOI: 10.1111/acel.13753] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Autophagy (self-eating) is a conserved catabolic homeostatic process required for cellular metabolic demands by removal of the damaged molecules and organelles and for alleviation of stress initiated by pathology and infection. By such actions, autophagy is essential for the prevention of aging, disease, and cancer. Genetic defects of autophagy genes lead to a host of developmental, metabolic, and pathological aberrations. Similarly, the age-induced decline in autophagy leads to the loss of cellular homeostatic control. Paradoxically, such a valuable mechanism is hijacked by diseases, during tumor progression and by senescence, presumably due to high levels of metabolic demand. Here, we review both the role of autophagy in preventing cellular decline in aging by fulfillment of cellular bioenergetic demands and its contribution to the maintenance of the senescent state and SASP by acting on energy and nutritional sensors and diverse signaling pathways.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and CancerIrvineCaliforniaUSA
| |
Collapse
|
21
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
|
22
|
Inhibition of mTOR signaling protects human glioma cells from hypoxia-induced cell death in an autophagy-independent manner. Cell Death Dis 2022; 8:409. [PMID: 36202792 PMCID: PMC9537540 DOI: 10.1038/s41420-022-01195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Although malignant gliomas frequently show aberrant activation of the mammalian target of rapamycin (mTOR), mTOR inhibitors have performed poorly in clinical trials. Besides regulating cell growth and translation, mTOR controls the initiation of autophagy. By recycling cellular components, autophagy can mobilize energy resources, and has thus been attributed cancer-promoting effects. Here, we asked whether the activation of autophagy represents an escape mechanism to pharmacological mTOR inhibition in glioma cells, and explored co-treatment with mTOR and autophagy inhibitors as a therapeutic strategy. Mimicking conditions of the glioma microenvironment, glioma cells were exposed to nutrient starvation and hypoxia. We analyzed autophagic activity, cell growth, viability and oxygen consumption following (co-)treatment with the mTOR inhibitors torin2 or rapamycin, and autophagy inhibitors bafilomycin A1 or MRT68921. Changes in global proteome were quantified by mass spectrometry. In the context of hypoxia and starvation, autophagy was strongly induced in glioma cells and further increased by mTOR inhibition. While torin2 enhanced glioma cell survival, co-treatment with torin2 and bafilomycin A1 failed to promote cell death. Importantly, treatment with bafilomycin A1 alone also protected glioma cells from cell death. Mechanistically, both compounds significantly reduced cell growth and oxygen consumption. Quantitative proteomics analysis showed that bafilomycin A1 induced broad changes in the cellular proteome. More specifically, proteins downregulated by bafilomycin A1 were associated with the mitochondrial respiratory chain and ATP synthesis. Taken together, our results show that activation of autophagy does not account for the cytoprotective effects of mTOR inhibition in our in vitro model of the glioma microenvironment. Our proteomic findings suggest that the pharmacological inhibition of autophagy induces extensive changes in the cellular proteome that can support glioma cell survival under nutrient-deplete and hypoxic conditions. These findings provide a novel perspective on the complex role of autophagy in gliomas.
Collapse
|
23
|
Zhang L, Zheng YL, Wang R, Wang XQ, Zhang H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front Immunol 2022; 13:1005665. [PMID: 36164342 PMCID: PMC9509020 DOI: 10.3389/fimmu.2022.1005665] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a disease that weakens bones and has a high morbidity rate worldwide, which is prevalent among the elderly, particularly, women of postmenopausal age. The dynamic balance between bone formation and resorption is necessary for normal bone metabolism. Many factors, including aging, estrogen deficiency, and prolonged immobilization, disrupt normal apoptosis, autophagy, and inflammation, leading to abnormal activation of osteoclasts, which gradually overwhelm bone formation by bone resorption. Moderate exercise as an effective non-drug treatment helps increase bone formation and helps relieve OP. The possible mechanisms are that exercise affects apoptosis and autophagy through the release of exercise-stimulated myohormone and the secretion of anti-inflammatory cytokines via mechanical force. In addition, exercise may also have an impact on the epigenetic processes involved in bone metabolism. Mechanical stimulation promotes bone marrow mesenchymal stem cells (BMSCs) to osteogenic differentiation by altering the expression of non-coding RNAs. Besides, by reducing DNA methylation, the mechanical stimulus can also alter the epigenetic status of osteogenic genes and show associated increased expression. In this review, we reviewed the possible pathological mechanisms of OP and summarized the effects of exercise on bone metabolism, and the mechanisms by which exercise alleviates the progression of OP, to provide a reference for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| |
Collapse
|
24
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
25
|
Wang X, Wang X, Cong P, Wu L, Ma Y, Wang Z, Jiang T, Xu J. Sea cucumber ether-phospholipids improve hepatic steatosis and enhance hypothalamic autophagy in high-fat diet-fed mice. J Nutr Biochem 2022; 106:109032. [DOI: 10.1016/j.jnutbio.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
26
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
27
|
Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson's disease. Trends Neurosci 2022; 45:224-236. [PMID: 34991886 PMCID: PMC8854345 DOI: 10.1016/j.tins.2021.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
The etiology of idiopathic Parkinson's disease (iPD) is multifactorial, and both genetics and environmental exposures are risk factors. While mutations in leucine-rich repeat kinase-2 (LRRK2) that are associated with increased kinase activity are the most common cause of autosomal dominant PD, the role of LRRK2 in iPD, independent of mutations, remains uncertain. In this review, we discuss how the architecture of LRRK2 influences kinase activation and how enhanced LRRK2 substrate phosphorylation might contribute to pathogenesis. We describe how oxidative stress and endolysosomal dysfunction, both of which occur in iPD, can activate non-mutated LRRK2 to a similar degree as pathogenic mutations. Similarly, environmental toxicants that are linked epidemiologically to iPD risk can also activate LRRK2. In aggregate, current evidence suggests an important role for LRRK2 in iPD.
Collapse
Affiliation(s)
- Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
29
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
30
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|
31
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
32
|
Irace FG, Cammisotto V, Valenti V, Forte M, Schirone L, Bartimoccia S, Iaccarino A, Peruzzi M, Schiavon S, Morelli A, Marullo AGM, Miraldi F, Nocella C, De Paulis R, Benedetto U, Greco E, Biondi-Zoccai G, Sciarretta S, Carnevale R, Frati G. Role of Oxidative Stress and Autophagy in Thoracic Aortic Aneurysms. JACC Basic Transl Sci 2021; 6:719-730. [PMID: 34754985 PMCID: PMC8559314 DOI: 10.1016/j.jacbts.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Because autophagy and Nox2 activation were identified as possible mechanisms for preservation of vessel integrity, they could be useful biomarkers to predict risk of aneurysm rupture by detecting the presence of a subclinical aneurysm or monitoring their growth. Biomarkers such as molecules involved in autophagic machinery or Nox2 activation may help to explain pathological processes involved in TAA development and expansion, thereby opening up novel potential therapeutic strategies, such as the use of natural activators of autophagy or molecules that inhibit Nox2 activation, in the setting of aneurysmatic pathology. Formation of aortic aneurysmal disease is multifactorial. Among the mechanisms involved, there is endothelial damage, oxidative stress, as well as an autophagy process, that seem to play a key role in TAA. Therefore, to identify the molecular mechanisms of these processes in TAA patients could lay the groundwork for defining strategies for preventing and slowing the progression of TAA.
Thoracic aortic aneurysms (TAA) pathogenesis and progression include many mechanisms. The authors investigated the role of autophagy, oxidative stress, and endothelial dysfunction in 36 TAA patients and 23 control patients. Univariable and multivariable analyses were performed. TAA patients displayed higher oxidative stress and endothelial dysfunction then control patients. Autophagy in the TAA group was reduced. The association of oxidative stress and autophagy with aortic disease supports the role of these processes in TAA. The authors demonstrate a putative role of Nox2 and autophagy dysregulation in human TAA. These findings could pinpoint novel treatment targets to prevent or limit TAA progression.
Collapse
Key Words
- ATG5, autophagy protein 5
- HBA, hydrogen peroxide break-down activity
- HRP, horseradish peroxidase
- NADPH, nicotinamide adenine dinucleotide phosphate
- NO, nitric oxide
- PAGE, polyacrylamide gel electrophoresis
- ROS, reactive oxygen species
- SDS, sodium dodecyl sulfate
- TAA, thoracic aortic aneurysms
- VSMC, vascular smooth muscle cell
- autophagy
- endothelial dysfunction
- oxidative stress
- sNox2-dp, soluble Nox2-derived peptide
- thoracic aortic aneurysm
Collapse
Affiliation(s)
- Francesco G Irace
- Department of Cardiac Surgery, European Hospital, Rome, Italy.,Department of General and Specialized Surgery "Paride Stefanini," Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General and Specialized Surgery "Paride Stefanini," Sapienza University of Rome, Rome, Italy.,Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Valenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandra Iaccarino
- Department of Cardiothoracic Surgery, Humanitas Clinical and Research Centre, IRCCS, Milan, Italy
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andrea Morelli
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonino G M Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Fabio Miraldi
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Umberto Benedetto
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Ernesto Greco
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
33
|
Morales PE, Monsalves-Álvarez M, Tadinada SM, Harris MP, Ramírez-Sagredo A, Ortiz-Quintero J, Troncoso MF, De Gregorio N, Calle X, Pereira RO, Lira VA, Espinosa A, Abel ED, Lavandero S. Skeletal muscle type-specific mitochondrial adaptation to high-fat diet relies on differential autophagy modulation. FASEB J 2021; 35:e21933. [PMID: 34555201 DOI: 10.1096/fj.202001593rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
In obesity, skeletal muscle mitochondrial activity changes to cope with increased nutrient availability. Autophagy has been proposed as an essential mechanism involved in the regulation of mitochondrial metabolism. Still, the contribution of autophagy to mitochondrial adaptations in skeletal muscle during obesity is unknown. Here, we show that in response to high-fat diet (HFD) feeding, distinct skeletal muscles in mice exhibit differentially regulated autophagy that may modulate mitochondrial activity. We observed that after 4 and 40 weeks of high-fat diet feeding, OXPHOS subunits and mitochondrial DNA content increased in the oxidative soleus muscle. However, in gastrocnemius muscle, which has a mixed fiber-type composition, the mitochondrial mass increased only after 40 weeks of HFD feeding. Interestingly, fatty acid-supported mitochondrial respiration was enhanced in gastrocnemius, but not in soleus muscle after a 4-week HFD feeding. This increased metabolic profile in gastrocnemius was paralleled by preserving autophagy flux, while autophagy flux in soleus was reduced. To determine the role of autophagy in this differential response, we used an autophagy-deficient mouse model with partial deletion of Atg7 specifically in skeletal muscle (SkM-Atg7+/- mice). We observed that Atg7 reduction resulted in diminished autophagic flux in skeletal muscle, alongside blunting the HFD-induced increase in fatty acid-supported mitochondrial respiration observed in gastrocnemius. Remarkably, SkM-Atg7+/- mice did not present increased mitochondria accumulation. Altogether, our results show that HFD triggers specific mitochondrial adaptations in skeletal muscles with different fiber type compositions, and that Atg7-mediated autophagy modulates mitochondrial respiratory capacity but not its content in response to an obesogenic diet.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Álvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Satya Murthy Tadinada
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew P Harris
- Department of Health & Human Physiology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Andrea Ramírez-Sagredo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioanálisis e Inmunología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Mayarling Francisca Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Nicole De Gregorio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Renata O Pereira
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Vitor A Lira
- Department of Health & Human Physiology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Corporacion Centro de Estudios Cientificos de las Enfermedades Cronicas (CECEC), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci 2021; 22:ijms22158179. [PMID: 34360946 PMCID: PMC8348122 DOI: 10.3390/ijms22158179] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy—the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Correspondence: ; Tel.: +1-514-476-6688
| | - Sabah N. A. Hussain
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting & Cachexia in Chronic Respiratory Diseases & Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
| |
Collapse
|
35
|
Ultraviolet radiation protection potentials of Methylene Blue for human skin and coral reef health. Sci Rep 2021; 11:10871. [PMID: 34050204 PMCID: PMC8163870 DOI: 10.1038/s41598-021-89970-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
Methylene blue (MB) is a century-old medicine, a laboratory dye, and recently shown as a premier antioxidant that combats ROS-induced cellular aging in human skins. Given MB's molecular structure and light absorption properties, we hypothesize that MB has the potential to be considered as a sunscreen active for UV radiation protection. In this study, we tested the effects of MB on UVB ray-induced DNA double-strand breaks in primary human keratinocytes. We found that MB treatment reduced DNA damages caused by UVB irradiation and subsequent cell death. Next, we compared MB with Oxybenzone, which is the most commonly used chemical active ingredient in sunscreens but recently proven to be hazardous to aquatic ecosystems, in particular to coral reefs. At the same concentrations, MB showed more effective UVB absorption ability than Oxybenzone and significantly outperformed Oxybenzone in the prevention of UVB-induced DNA damage and the clearance of UVA-induced cellular ROS. Furthermore, unlike Oxybenzone, MB-containing seawater did not affect the growth of the coral species Xenia umbellata. Altogether, our study suggests that MB has the potential to be a coral reef-friendly sunscreen active ingredient that can provide broad-spectrum protection against UVA and UVB.
Collapse
|
36
|
Franzin R, Stasi A, Ranieri E, Netti GS, Cantaluppi V, Gesualdo L, Stallone G, Castellano G. Targeting Premature Renal Aging: from Molecular Mechanisms of Cellular Senescence to Senolytic Trials. Front Pharmacol 2021; 12:630419. [PMID: 33995028 PMCID: PMC8117359 DOI: 10.3389/fphar.2021.630419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
The biological process of renal aging is characterized by progressive structural and functional deterioration of the kidney leading to end-stage renal disease, requiring renal replacement therapy. Since the discovery of pivotal mechanisms of senescence such as cell cycle arrest, apoptosis inhibition, and the development of a senescence-associated secretory phenotype (SASP), efforts in the understanding of how senescent cells participate in renal physiological and pathological aging have grown exponentially. This has been encouraged by both preclinical studies in animal models with senescent cell clearance or genetic depletion as well as due to evidence coming from the clinical oncologic experience. This review considers the molecular mechanism and pathways that trigger premature renal aging from mitochondrial dysfunction, epigenetic modifications to autophagy, DNA damage repair (DDR), and the involvement of extracellular vesicles. We also discuss the different pharmaceutical approaches to selectively target senescent cells (namely, senolytics) or the development of systemic SASP (called senomorphics) in basic models of CKD and clinical trials. Finally, an overview will be provided on the potential opportunities for their use in renal transplantation during ex vivo machine perfusion to improve the quality of the graft.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
37
|
Carnevale R, Nocella C, Schiavon S, Cammisotto V, Cotugno M, Forte M, Valenti V, Marchitti S, Vecchio D, Biondi Zoccai G, Rubattu S, Martinelli O, Pignatelli P, Violi F, Volpe M, Versaci F, Frati L, Frati G, Sciarretta S. Beneficial effects of a combination of natural product activators of autophagy on endothelial cells and platelets. Br J Pharmacol 2021; 178:2146-2159. [PMID: 33512008 DOI: 10.1111/bph.15399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Roberto Carnevale
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Mediterranea Cardiocentro‐Napoli Naples Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anestesiological and Cardiovascular Sciences Sapienza University of Rome Rome Italy
| | - Sonia Schiavon
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini Sapienza University of Rome Rome Italy
| | - Maria Cotugno
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Maurizio Forte
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | | | - Simona Marchitti
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Daniele Vecchio
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Mediterranea Cardiocentro‐Napoli Naples Italy
| | - Speranza Rubattu
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
- Clinical and Molecular Medicine, School of Medicine and Psychology Sapienza University of Rome Rome Italy
| | - Ombretta Martinelli
- Unit of Vascular Surgery, Department “Paride Stefanini” Sapienza University of Rome Rome Italy
| | - Pasquale Pignatelli
- Mediterranea Cardiocentro‐Napoli Naples Italy
- Department of Clinical Internal, Anestesiological and Cardiovascular Sciences Sapienza University of Rome Rome Italy
| | - Francesco Violi
- Mediterranea Cardiocentro‐Napoli Naples Italy
- Department of Clinical Internal, Anestesiological and Cardiovascular Sciences Sapienza University of Rome Rome Italy
| | - Massimo Volpe
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
- Clinical and Molecular Medicine, School of Medicine and Psychology Sapienza University of Rome Rome Italy
| | | | - Luigi Frati
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Giacomo Frati
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Sebastiano Sciarretta
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina, 04100 Italy
| |
Collapse
|
38
|
Davegårdh C, Säll J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brøns C, Hansson O, Pedersen M, Würthner JU, Pfeffer K, Nilsson E, Vaag A, Stener-Victorin E, Pircs K, Scheele C, Ling C. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 2021; 12:2431. [PMID: 33893273 PMCID: PMC8065135 DOI: 10.1038/s41467-021-22068-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/- mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Christa Broholm
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tora Ida Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yanling Wu
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Line Hjort
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Brøns
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
39
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
40
|
Role of macrophage autophagy in atherosclerosis: modulation by bioactive compounds. Biochem J 2021; 478:1359-1375. [PMID: 33861844 DOI: 10.1042/bcj20200894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease associated with lipid metabolism disorder. Autophagy is a catabolic process and contributes to maintaining cellular homeostasis. Substantial evidence suggests that defective autophagy is implicated in several diseases, including atherosclerosis, while increased autophagy mitigates atherosclerosis development. Thus, understanding the mechanisms of autophagy regulation and its association with atherosclerosis is vital to develop new therapies against atherosclerosis. Dietary bioactive compounds are non-nutrient natural compounds that include phenolics, flavonoids, and carotenoids. Importantly, these bioactive compounds possess anti-inflammatory, antioxidant, and antibacterial properties that may alleviate various chronic diseases. Recently, examining the effects of bioactive compounds on autophagy activity in atherogenesis has drawn considerable attention. The current review discusses the role of macrophage autophagy in the development and progression of atherosclerosis. We also summarize our current knowledge of the therapeutic potential of bioactive compounds on atherosclerosis and autophagy.
Collapse
|
41
|
Jin H, Xie W, Hu P, Tang K, Wang X, Wu Y, He M, Yu D, Li Y. The role of melatonin in sarcopenia: Advances and application prospects. Exp Gerontol 2021; 149:111319. [PMID: 33753178 DOI: 10.1016/j.exger.2021.111319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Sarcopenia is an age-related disease that has gradually become a serious health problem for elderly individuals. It not only greatly increases the risk of falls, weakness, and disability but also reduces the ability of patients to take care of themselves. Sarcopenia can directly affect the quality of life and disease prognosis of elderly individuals. However, drug interventions for this disease are lacking. Melatonin is a biological hormone produced by the body that has good free radical scavenging effects, antioxidant effects and other effects. It was originally used as a sleep aid and is now being used for an increasing number of new indications. Its effect on sarcopenia has also begun to attract attention. It is currently known that it can protect the mitochondria of skeletal muscle cells, maintain the number of muscle fibres, partially reverse the pathological changes of ageing muscle tissue, and increase muscle strength in patients with sarcopenia. A large number of microRNAs are expressed during cell ageing, that in turn provides a biological background to age-related diseases, like sarcopenia. Increasing studies have found an interaction between melatonin and miRNAs, suggesting that melatonin can be used in the treatment of sarcopenia. The increased expression of inflammation-associated miRNA-483 in elderly patients may be the basis for the age-dependent decrease in melatonin secretion,that may play a role in the morbidity of sarcopenia. Melatonin is closely related to sarcopenia. It has a wide range of effects on sarcopenia and has good application prospects for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Peiwu Hu
- Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiuhua Wang
- Xiang Ya Nursing School, The Central South University, Changsha, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan 430056, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
42
|
Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Uribe KB, Martin C. Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:357-402. [PMID: 33832653 DOI: 10.1016/bs.ircmb.2021.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D), a heterogeneous disorder derived from metabolic dysfunctions, leads to a glucose overflow in the circulation due to both defective insulin secretion and peripheral insulin resistance. One of the critical risk factor for T2D is obesity, which represents a global epidemic that has nearly tripled since 1975. Obesity is characterized by chronically elevated free fatty acid (FFA) levels, which cause deleterious effects on glucose homeostasis referred to as lipotoxicity. Here, we review the physiological FFA roles onto glucose-stimulated insulin secretion (GSIS) and the pathological ones affecting many steps of the mechanisms and modulation of GSIS. We also describe in vitro and in vivo experimental evidences addressing lipotoxicity in β-cells and the role of saturation and chain length of FFA on the potency of GSIS stimulation. The molecular mechanisms underpinning lipotoxic-β-cell dysfunction are also reviewed. Among them, endoplasmic reticulum stress, oxidative stress and mitochondrial dysfunction, inflammation, impaired autophagy and β-cell dedifferentiation. Finally therapeutic strategies for the β-cells dysfunctions such as the use of metformin, glucagon-like peptide 1, thiazolidinediones, anti-inflammatory drugs, chemical chaperones and weight are discussed.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Cesar Martin
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
43
|
Ehrlicher SE, Stierwalt HD, Newsom SA, Robinson MM. Short-Term High-Fat Feeding Does Not Alter Mitochondrial Lipid Respiratory Capacity but Triggers Mitophagy Response in Skeletal Muscle of Mice. Front Endocrinol (Lausanne) 2021; 12:651211. [PMID: 33868178 PMCID: PMC8044530 DOI: 10.3389/fendo.2021.651211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Lipid overload of the mitochondria is linked to the development of insulin resistance in skeletal muscle which may be a contributing factor to the progression of type 2 diabetes during obesity. The targeted degradation of mitochondria through autophagy, termed mitophagy, contributes to the mitochondrial adaptive response to changes in dietary fat. Our previous work demonstrates long-term (2-4 months) consumption of a high-fat diet increases mitochondrial lipid oxidation capacity but does not alter markers of mitophagy in mice. The purpose of this study was to investigate initial stages of mitochondrial respiratory adaptations to high-fat diet and the activation of mitophagy. C57BL/6J mice consumed either a low-fat diet (LFD, 10% fat) or high-fat diet (HFD, 60% fat) for 3 or 7 days. We measured skeletal muscle mitochondrial respiration and protein markers of mitophagy in a mitochondrial-enriched fraction of skeletal muscle. After 3 days of HFD, mice had lower lipid-supported oxidative phosphorylation alongside greater electron leak compared with the LFD group. After 7 days, there were no differences in mitochondrial respiration between diet groups. HFD mice had greater autophagosome formation potential (Beclin-1) and greater activation of mitochondrial autophagy receptors (Bnip3, p62) in isolated mitochondria, but no difference in downstream autophagosome (LC3II) or lysosome (Lamp1) abundance after both 3 and 7 days compared with the LFD groups. In cultured myotubes, palmitate treatment decreased mitochondrial membrane potential and hydrogen peroxide treatment increased accumulation of upstream mitophagy markers. We conclude that several days of high-fat feeding stimulated upstream activation of skeletal muscle mitophagy, potentially through lipid-induced oxidative stress, without downstream changes in respiration.
Collapse
|
44
|
Lew SY, Lim SH, Lim LW, Wong KH. Neuroprotective effects of Hericium erinaceus (Bull.: Fr.) Pers. against high-dose corticosterone-induced oxidative stress in PC-12 cells. BMC Complement Med Ther 2020; 20:340. [PMID: 33176761 PMCID: PMC7656699 DOI: 10.1186/s12906-020-03132-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hericium erinaceus is a culinary and medicinal mushroom in Traditional Chinese Medicines. It has numerous pharmacological effects including immunomodulatory, anti-tumour, anti-microbial, anti-aging and stimulation of nerve growth factor (NGF) synthesis, but little is known about its potential role in negating the detrimental effects of oxidative stress in depression. The present study investigated the neuroprotective effects of H. erinaceus standardised aqueous extract (HESAE) against high-dose corticosterone-induced oxidative stress in rat pheochromocytoma (PC-12) cells, a cellular model mimicking depression. METHODS PC-12 cells was pre-treated with HESAE for 48 h followed by 400 μM corticosterone for 24 h to induce oxidative stress. Cells in complete medium without any treatment or pre-treated with 3.125 μg/mL desipramine served as the negative and positive controls, respectively. The cell viability, lactate dehydrogenase (LDH) release, endogenous antioxidant enzyme activities, aconitase activity, mitochondrial membrane potentials (MMPs), intracellular reactive oxygen species (ROS) levels and number of apoptotic nuclei were quantified. In addition, HESAE ethanol extract was separated into fractions by chromatographic methods prior to spectroscopic analysis. RESULTS We observed that PC-12 cells treated with high-dose corticosterone at 400 μM had decreased cell viability, reduced endogenous antioxidant enzyme activities, disrupted mitochondrial function, and increased oxidative stress and apoptosis. However, pre-treatment with HESAE ranging from 0.25 to 1 mg/mL had increased cell viability, decreased LDH release, enhanced endogenous antioxidant enzyme activities, restored MMP, attenuated intracellular ROS and protected from ROS-mediated apoptosis. The neuroprotective effects could be attributed to significant amounts of adenosine and herierin III isolated from HESAE. CONCLUSIONS HESAE demonstrated neuroprotective effects against high-dose corticosterone-induced oxidative stress in an in vitro model mimicking depression. HESAE could be a potential dietary supplement to treat depression.
Collapse
Affiliation(s)
- Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Gioran A, Chondrogianni N. Mitochondria (cross)talk with proteostatic mechanisms: Focusing on ageing and neurodegenerative diseases. Mech Ageing Dev 2020; 190:111324. [DOI: 10.1016/j.mad.2020.111324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
|
46
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
47
|
Cell Senescence: A Nonnegligible Cell State under Survival Stress in Pathology of Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9503562. [PMID: 32934764 PMCID: PMC7479476 DOI: 10.1155/2020/9503562] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
The intervertebral disc degeneration (IDD) with increasing aging mainly manifests as low back pain (LBP) accompanied with a loss of physical ability. These pathological processes can be preliminarily interpreted as a series of changes at cellular level. In addition to cell death, disc cells enter into the stagnation with dysfunction and deteriorate tissue microenvironment in degenerative discs, which is recognized as cell senescence. During aging, many intrinsic and extrinsic factors have been proved to have strong connections with these cellular senescence phenomena. Growing evidences of these connections require us to gather up critical cues from potential risk factors to pathogenesis and relative interventions for retarding cell senescence and attenuating degenerative changes. In this paper, we try to clarify another important cell state apart from cell death in IDD and discuss senescence-associated changes in cells and extracellular microenvironment. Then, we emphasize the role of oxidative stress and epigenomic perturbations in linking risk factors to cell senescence in the onset of IDD. Further, we summarize the current interventions targeting senescent cells that may exert the benefits of antidegeneration in IDD.
Collapse
|
48
|
Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 2020; 180:114191. [PMID: 32777278 DOI: 10.1016/j.bcp.2020.114191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 μM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.
Collapse
|
49
|
Molecular mechanisms of interplay between autophagy and metabolism in cancer. Life Sci 2020; 259:118184. [PMID: 32763290 DOI: 10.1016/j.lfs.2020.118184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is an essential mechanism of cellular degradation, a way to protect the cells under stress conditions, such as deprivation of nutrients, growth factors and cellular damage. However, in normal physiology autophagy plays a significant role in cancer cells. Current research is in progress to understand how autophagy and cancer cells go hand in hand to support cancer cell progression. The important aspect in cancer and autophagy is the interdependence of autophagy in the survival and progression of cancer cells. Autophagy is known to be a major cause of chemotherapeutic resistance in various cancer cell types. Therefore, inhibition of autophagy as an effective therapeutic approach is being actively studied and tested in clinical studies. Multiple metabolic pathways are linked with autophagy that could potentially be a significant target for chemotherapeutic strategy. The comprehension of the interconnection of autophagy with cancer metabolism can pave a novel findings for effective combinatorial therapeutic strategies.
Collapse
|
50
|
Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy 2020; 16:1506-1523. [PMID: 31690173 PMCID: PMC7469609 DOI: 10.1080/15548627.2019.1688488] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Epidemiological and clinical studies have long shown that exposure to high levels of heavy metals are associated with increased risks of neurodegenerative diseases. It is widely accepted that autophagic dysfunction is involved in pathogenesis of various neurodegenerative disorders; however, the role of heavy metals in regulation of macroautophagy/autophagy is unclear. Here, we show that manganese (Mn) induces a decline in nuclear localization of TFEB (transcription factor EB), a master regulator of the autophagy-lysosome pathway, leading to autophagic dysfunction in astrocytes of mouse striatum. We further show that Mn exposure suppresses autophagic-lysosomal degradation of mitochondria and induces accumulation of unhealthy mitochondria. Activation of autophagy by rapamycin or TFEB overexpression ameliorates Mn-induced mitochondrial respiratory dysfunction and reactive oxygen species (ROS) generation in astrocytes, suggesting a causal relation between autophagic failure and mitochondrial dysfunction in Mn toxicity. Taken together, our data demonstrate that Mn inhibits TFEB activity, leading to impaired autophagy that is causally related to mitochondrial dysfunction in astrocytes. These findings reveal a previously unappreciated role for Mn in dysregulation of autophagy and identify TFEB as a potential therapeutic target to mitigate Mn toxicity. ABBREVIATIONS BECN1: beclin 1; CTSD: cathepsin D; DMEM: Dulbecco's Modified Eagle Medium; GFAP: glial fibrillary acid protein; GFP: green fluorescent protein; HBSS: hanks balanced salt solution; LAMP: lysosomal-associated membrane protein; LDH: lactate dehydrogenase; Lys Inh: lysosomal inhibitors; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; Mn: manganese; MTOR: mechanistic target of rapamycin kinase; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PI: propidium iodide; ROS: reactive oxygen species; s.c.: subcutaneous; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Miles R. Bryan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajat Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine
- Diabetes Research Center
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|