1
|
Pandelides Z, Thornton C, Faruque AS, Whitehead AP, Willett KL, Ashpole NM. Developmental exposure to cannabidiol (CBD) alters longevity and health span of zebrafish (Danio rerio). GeroScience 2020; 42:785-800. [PMID: 32221778 DOI: 10.1007/s11357-020-00182-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Consumption of cannabinoid-containing products is on the rise, even during pregnancy. Unfortunately, the long-term, age-related consequences of developmental cannabidiol (CBD) exposure remain largely unknown. This is a critical gap given the established Developmental Origins of Health and Disease (DOHaD) paradigm which emphasizes that stressors, like drug exposure, early in life can instigate molecular and cellular changes that ultimately lead to adverse outcomes later in life. Thus, we exposed zebrafish (Danio rerio) to varying concentrations of CBD (0.02, 0.1, 0.5 μM) during larval development and assessed aging in both the F0 (exposed generation) and their F1 offspring 30 months later. F0 exposure to CBD significantly increased survival (~ 20%) and reduced size (wet weight and length) of female fish. While survival was increased, the age-related loss of locomotor function was unaffected and the effects on fecundity varied by sex and dose. Treatment with 0.5 μM CBD significantly reduced sperm concentration in males, but 0.1 μM increased egg production in females. Similar to other model systems, control aged zebrafish exhibited increased kyphosis as well as increased expression markers of senescence, and inflammation (p16ink4ab, tnfα, il1b, il6, and pparγ) in the liver. Exposure to CBD significantly reduced the expression of several of these genes in a dose-dependent manner relative to the age-matched controls. The effects of CBD on size, gene expression, and reproduction were not reproduced in the F1 generation, suggesting the influence on aging was not cross-generational. Together, our results demonstrate that developmental exposure to CBD causes significant effects on the health and longevity of zebrafish.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Anika S Faruque
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Alyssa P Whitehead
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, Oxford, MS, 38677, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, Oxford, MS, 38677, USA.
| |
Collapse
|
2
|
Chen C, Choudhury S, Wangsa D, Lescott CJ, Wilkins DJ, Sripadhan P, Liu X, Wangsa D, Ried T, Moskaluk C, Wick MJ, Glasgow E, Schlegel R, Agarwal S. A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Sci Rep 2017; 7:11410. [PMID: 28900283 PMCID: PMC5595986 DOI: 10.1038/s41598-017-11764-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Adenoid cystic carcinomas (ACC) are rare salivary gland cancers with a high incidence of metastases. In order to study this tumor type, a reliable model system exhibiting the molecular features of this tumor is critical, but none exists, thereby inhibiting in-vitro studies and the analysis of metastatic behavior. To address this deficiency, we have coupled an efficient method to establish tumor cell cultures, conditional reprogramming (CR), with a rapid, reproducible and robust in-vivo zebrafish model. We have established cell cultures from two individual ACC PDX tumors that maintain the characteristic MYB translocation. Additional mutations found in one ACC culture also seen in the PDX tumor. Finally, the CR/zebrafish model mirrors the PDX mouse model and identifies regorafenib as a potential therapeutic drug to treat this cancer type that mimic the drug sensitivity profile in PDX model, further confirming the unique advantages of multiplex system.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Sujata Choudhury
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Darawalee Wangsa
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chamille J Lescott
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Praathibha Sripadhan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Danny Wangsa
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thomas Ried
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher Moskaluk
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Eric Glasgow
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|