1
|
Zeng Y, Liu L, Huang D, Song D. Immortalized cell lines derived from dental/odontogenic tissue. Cell Tissue Res 2023:10.1007/s00441-023-03767-5. [PMID: 37039940 DOI: 10.1007/s00441-023-03767-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Stem cells derived from dental/odontogenic tissue have the property of multiple differentiation and are prospective in tooth regenerative medicine and cellular and molecular studies. However, in the face of cellular senescence soon in vitro, the proliferation ability of the cells is limited, so studies are hindered to some extent. Fortunately, immortalization strategies are expected to solve the above issues. Cellular immortalization is that cells are immortalized by introducing oncogenes, human telomerase reverse transcriptase genes (hTERT), or miscellaneous immortalization genes to get unlimited proliferation. At present, a variety of immortalized stem cells from dental/odontogenic tissue has been successfully generated, such as dental pulp stem cells (DPSCs), periodontal ligament cells (PDLs), stem cells from human exfoliated deciduous teeth (SHEDs), dental papilla cells (DPCs), and tooth germ mesenchymal cells (TGMCs). This review summarized establishment and applications of immortalized stem cells from dental/odontogenic tissues and then discussed the advantages and challenges of immortalization.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Tian Y, Fang J, Zeng F, Chen Y, Pei Y, Gu F, Ding C, Niu G, Gu B. The role of hypoxic mesenchymal stem cells in tumor immunity. Int Immunopharmacol 2022; 112:109172. [PMID: 36087506 DOI: 10.1016/j.intimp.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
The emerging evidence has shown that mesenchymal stem cells (MSCs) not only exert a significant role in the occurrence and development of tumors, but also have immunosuppressive potential in tumor immunity. Hypoxia is a sign of solid tumors, but how functions of hypoxic MSCs alter in the tumor microenvironment (TME) remains less well and comprehensively described. Herein, we mostly describe and investigate recent advances in our comprehension of the emerging effects of different tissue derived MSCs in hypoxia condition on tumor progression and development, as well as bidirectional influence between hypoxic MSCs and immune cells of the TME. Furthermore, we also discuss the potential drug-resistant and therapeutic role of hypoxic MSCs. It can be envisaged that novel and profound insights into the functionality of hypoxic MSCs and the underlying mechanisms in tumor and tumor immunity will promote the meaningful and promising treatment strategies against tumor.
Collapse
Affiliation(s)
- Yiqing Tian
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jian Fang
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, PR China
| | - Fanpeng Zeng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yongqiang Chen
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yunfeng Pei
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Feng Gu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Guoping Niu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
3
|
Hernández-Cuervo H, Soundararajan R, Sidramagowda Patil S, Breitzig M, Alleyn M, Galam L, Lockey R, Uversky VN, Kolliputi N. BMI1 Silencing Induces Mitochondrial Dysfunction in Lung Epithelial Cells Exposed to Hyperoxia. Front Physiol 2022; 13:814510. [PMID: 35431986 PMCID: PMC9005903 DOI: 10.3389/fphys.2022.814510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute Lung Injury (ALI), characterized by bilateral pulmonary infiltrates that restrict gas exchange, leads to respiratory failure. It is caused by an innate immune response with white blood cell infiltration of the lungs, release of cytokines, an increase in reactive oxygen species (ROS), oxidative stress, and changes in mitochondrial function. Mitochondrial alterations, changes in respiration, ATP production and the unbalancing fusion and fission processes are key events in ALI pathogenesis and increase mitophagy. Research indicates that BMI1 (B cell-specific Moloney murine leukemia virus integration site 1), a protein of the Polycomb repressive complex 1, is a cell cycle and survival regulator that plays a role in mitochondrial function. BMI1-silenced cultured lung epithelial cells were exposed to hyperoxia to determine the role of BMI1 in mitochondrial metabolism. Its expression significantly decreases in human lung epithelial cells (H441) following hyperoxic insult, as determined by western blot, Qrt-PCR, and functional analysis. This decrease correlates with an increase in mitophagy proteins, PINK1, Parkin, and DJ1; an increase in the expression of tumor suppressor PTEN; changes in the expression of mitochondrial biomarkers; and decreases in the oxygen consumption rate (OCR) and tricarboxylic acid enzyme activity. Our bioinformatics analysis suggested that the BMI1 multifunctionality is determined by its high level of intrinsic disorder that defines the ability of this protein to bind to numerous cellular partners. These results demonstrate a close relationship between BMI1 expression and mitochondrial health in hyperoxia-induced acute lung injury (HALI) and indicate that BMI1 is a potential therapeutic target to treat ALI and Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Epidemiology, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Narasaiah Kolliputi,
| |
Collapse
|
4
|
Shen L, Zhou K, Liu H, Yang J, Huang S, Yu F, Huang D. Prediction of Mechanosensitive Genes in Vascular Endothelial Cells Under High Wall Shear Stress. Front Genet 2022; 12:796812. [PMID: 35087573 PMCID: PMC8787366 DOI: 10.3389/fgene.2021.796812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: The vulnerability of atherosclerotic plaques is among the leading cause of ischemic stroke. High wall shear stress (WSS) promotes the instability of atherosclerotic plaques by directly imparting mechanical stimuli, but the specific mechanisms remain unclear. We speculate that modulation of mechanosensitive genes may play a vital role in accelerating the development of plaques. The purpose of this study was to find mechanosensitive genes in vascular endothelial cells (ECs) through combining microarray data with bioinformatics technology and further explore the underlying dynamics–related mechanisms that cause the progression and destabilization of atherosclerotic plaques. Methods: Microarray data sets for human vascular ECs under high and normal WSS were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified through the R language. The performance of enrichment analysis and protein–protein interaction (PPI) network presented the biological function and signaling pathways of the DEGs. Hub genes were identified based on the PPI network and validated by GEO data sets. Predicted transcription factor (TF) genes and miRNAs interaction with potential mechanosensitive genes were identified by NetworkAnalyst. Results: A total of 260 DEGs, 121 upregulated and 139 downregulated genes, were screened between high and normal WSS from GSE23289. A total of 10 hub genes and four cluster modules were filtered out based on the PPI network. The enrichment analysis showed that the biological functions of the hub genes were mainly involved in responses to unfolded protein and topologically incorrect protein, and t to endoplasmic reticulum stress. The significant pathways associated with the hub genes were those of protein processing in the endoplasmic reticulum, antigen processing, and presentation. Three out of the 10 hub genes, namely, activated transcription factor 3 (ATF3), heat shock protein family A (Hsp70) member 6 (HSPA6), and dual specificity phosphatase 1 (DUSP1, also known as CL100, HVH1, MKP-1, PTPN10), were verified in GSE13712. The expression of DUSP1 was higher in the senescent cell under high WSS than that of the young cell. The TF–miRNA–mechanosensitive gene coregulatory network was constructed. Conclusion: In this work, we identified three hub genes, ATF3, HSPA6, and DUSP1, as the potential mechanosensitive genes in the human blood vessels. DUSP1 was confirmed to be associated with the senescence of vascular ECs. Therefore, these three mechanosensitive genes may have emerged as potential novel targets for the prediction and prevention of ischemic stroke. Furthermore, the TF–miRNA–mechanosensitive genes coregulatory network reveals an underlying regulatory mechanism and the pathways to control disease progression.
Collapse
Affiliation(s)
- Lei Shen
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaige Zhou
- School of Medicine, Tongji University, Shanghai, China
| | - Hong Liu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuqi Huang
- Department of Neurology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
6
|
As Sobeai HM, Alohaydib M, Alhoshani AR, Alhazzani K, Almutairi MM, Saleh T, Gewirtz DA, Alotiabi MR. Sorafenib, rapamycin, and venetoclax attenuate doxorubicin-induced senescence and promote apoptosis in HCT116 cells. Saudi Pharm J 2021; 30:91-101. [PMID: 35145348 PMCID: PMC8802130 DOI: 10.1016/j.jsps.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 µM), rapamycin (100 nM), or venetoclax (10 µM), in the absence or presence of doxorubicin (1 µM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-β-galactosidase staining (SA-β-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah Alohaydib
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali R. Alhoshani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashal M. Almutairi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Moureq R. Alotiabi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author.
| |
Collapse
|
7
|
Chen MK, Zhou JH, Wang P, Ye YL, Liu Y, Zhou JW, Chen ZJ, Yang JK, Liao DY, Liang ZJ, Xie X, Zhou QZ, Xue KY, Guo WB, Xia M, Bao JM, Yang C, Duan HF, Wang HY, Huang ZP, Qin ZK, Liu CD. BMI1 activates P-glycoprotein via transcription repression of miR-3682-3p and enhances chemoresistance of bladder cancer cell. Aging (Albany NY) 2021; 13:18310-18330. [PMID: 34270461 PMCID: PMC8351696 DOI: 10.18632/aging.203277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Chemoresistance is the most significant reason for the failure of cancer treatment following radical cystectomy. The response rate to the first-line chemotherapy of cisplatin and gemcitabine does not exceed 50%. In our previous research, elevated BMI1 (B-cell specific Moloney murine leukemia virus integration region 1) expression in bladder cancer conferred poor survival and was associated with chemoresistance. Herein, via analysis of The Cancer Genome Atlas database and validation of clinical samples, BMI1 was elevated in patients with bladder cancer resistant to cisplatin and gemcitabine, which conferred tumor relapse and progression. Consistently, BMI1 was markedly increased in the established cisplatin- and gemcitabine-resistant T24 cells (T24/DDP&GEM). Functionally, BMI1 overexpression dramatically promoted drug efflux, enhanced viability and decreased apoptosis of bladder cancer cells upon treatment with cisplatin or gemcitabine, whereas BMI1 downregulation reversed this effect. Mechanically, upon interaction with p53, BMI1 was recruited on the promoter of miR-3682-3p gene concomitant with an increase in the mono-ubiquitination of histone H2A lysine 119, leading to transcription repression of miR-3682-3p gene followed by derepression of ABCB1 (ATP binding cassette subfamily B member 1) gene. Moreover, suppression of P-glycoprotein by miR-3682-3p mimics or its inhibitor XR-9576, could significantly reverse chemoresistance of T24/DDP&GEM cells. These results provided a novel insight into a portion of the mechanism underlying BMI1-mediated chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Ming-Kun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Peng Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yun-Lin Ye
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yang Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jia-Wei Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zi-Jian Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - De-Ying Liao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhi-Jian Liang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiao Xie
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kang-Yi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ji-Ming Bao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hai-Feng Duan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hong-Yi Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhi-Peng Huang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zi-Ke Qin
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
8
|
Yang D, Liu HQ, Yang Z, Fan D, Tang QZ. BMI1 in the heart: Novel functions beyond tumorigenesis. EBioMedicine 2021; 63:103193. [PMID: 33421944 PMCID: PMC7804972 DOI: 10.1016/j.ebiom.2020.103193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The BMI1 protein, a member of the PRC1 family, is a well recognised transcriptional suppressor and has the capability of maintaining the self-renewal and proliferation of tissue-specific stem cells. Numerous studies have established that BMI1 is highly expressed in a variety of malignant cancers and serves as a key regulator in the tumorigenesis process. However, our understanding of BMI1 in terminally differentiated organs, such as the heart, is relatively nascent. Importantly, emerging data support that, beyond the tumor, BMI1 is also expressed in the heart tissue and indeed exerts profound effects in various cardiac pathological conditions. This review gives a summary of the novel functions of BMI1 in the heart, including BMI1-positive cardiac stem cells and BMI1-mediated signaling pathways, which are involved in the response to various cardiac pathological stimuli. Besides, we summarize the recent progress of BMI1 in some novel and rapidly developing cardiovascular therapies. Furtherly, we highlight the properties of BMI1, a therapeutic target proved effective in cancer treatment, as a promising target to alleviate cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
9
|
Kang JY, Oh MK, Joo H, Park HS, Chae DH, Kim J, Lee HR, Oh IH, Yu KR. Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity. J Clin Med 2020; 9:jcm9092913. [PMID: 32927587 PMCID: PMC7565923 DOI: 10.3390/jcm9092913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic applications of mesenchymal stem cells (MSCs) have been actively explored due to their broad anti-inflammatory and immunomodulatory properties. However, the use of xenogeneic components, including fetal bovine serum (FBS), in the expansion media might pose a risk of xenoimmunization and zoonotic transmission to post-transplanted patients. Here, we extensively compared the physiological functions of human Wharton’s jelly-derived MSCs (WJ-MSCs) in a xeno-free medium (XF-MSCs) and a medium containing 10% FBS (10%-MSCs). Both groups showed similar proliferation potential; however, the 10%-MSCs showed prolonged expression of CD146, with higher colony-forming unit-fibroblast (CFU-F) ability than the XF-MSCs. The XF-MSCs showed enhanced adipogenic differentiation potential and sufficient hematopoietic stem cell (HSC) niche activity, with elevated niche-related markers including CXCL12. Furthermore, we demonstrated that the XF-MSCs had a significantly higher suppressive effect on human peripheral blood-derived T cell proliferation, Th1 and Th17 differentiation, as well as naïve macrophage polarization toward an M1 phenotype. Among the anti-inflammatory molecules, the production of indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase 2 (NOS2) was profoundly increased, whereas cyclooxygenase-2 (COX-2) was decreased in the XF-MSCs. Finally, the XF-MSCs had an enhanced therapeutic effect against mouse experimental colitis. These findings indicate that xeno-free culture conditions improved the immunomodulatory properties of WJ-MSCs and ex vivo-expanded XF-MSCs might be an effective strategy for preventing the progression of colitis.
Collapse
Affiliation(s)
- Ji Yeon Kang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Mi-Kyung Oh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Hansol Joo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Hyun Sung Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Dong-Hoon Chae
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Jieun Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 08826, Korea;
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 08826, Korea;
- Correspondence: (I.-H.O.); (K.-R.Y.)
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (I.-H.O.); (K.-R.Y.)
| |
Collapse
|
10
|
Anerillas C, Abdelmohsen K, Gorospe M. Regulation of senescence traits by MAPKs. GeroScience 2020; 42:397-408. [PMID: 32300964 PMCID: PMC7205942 DOI: 10.1007/s11357-020-00183-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
A phenotype of indefinite growth arrest acquired in response to sublethal damage, cellular senescence affects normal aging and age-related disease. Mitogen-activated protein kinases (MAPKs) are capable of sensing changes in cellular conditions, and in turn elicit adaptive responses including cell senescence. MAPKs modulate the levels and function of many proteins, including proinflammatory factors and factors in the p21/p53 and p16/RB pathways, the main senescence-regulatory axes. Through these actions, MAPKs implement key traits of senescence-growth arrest, cell survival, and the senescence-associated secretory phenotype (SASP). In this review, we summarize and discuss our current knowledge of the impact of MAPKs in senescence. In addition, given that eliminating or suppressing senescent cells can improve health span, we discuss the function and possible exploitation of MAPKs in the elimination (senolysis) or suppression (senostasis) of senescent cells.
Collapse
Affiliation(s)
- Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| |
Collapse
|
11
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
12
|
Tensin-3 Regulates Integrin-Mediated Proliferation and Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Cells 2019; 9:cells9010089. [PMID: 31905841 PMCID: PMC7017379 DOI: 10.3390/cells9010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023] Open
Abstract
Human palatine tonsils are potential tissue source of multipotent mesenchymal stem cells (MSCs). The proliferation rate of palatine tonsil-derived MSCs (TMSCs) is far higher than that of bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs (ADSCs). In our previous study, we had found through DNA microarray analysis that tensin-3 (TNS3), a type of focal adhesion protein, was more highly expressed in TMSCs than in both BMSCs and ADSCs. Here, the role of TNS3 in TMSCs and its relationship with integrin were investigated. TNS3 expression was significantly elevated in TMSCs than in other cell types. Cell growth curves revealed a significant decrease in the proliferation and migration of TMSCs treated with siRNA for TNS3 (siTNS3). siTNS3 treatment upregulated p16 and p21 levels and downregulated SOX2 expression and focal adhesion kinase, protein kinase B, and c-Jun N-terminal kinase phosphorylation. siTNS3 transfection significantly reduced adipogenic differentiation of TMSCs and slightly decreased osteogenic and chondrogenic differentiation. Furthermore, TNS3 inhibition reduced active integrin beta-1 (ITGβ1) expression, while total ITGβ1 expression was not affected. Inhibition of ITGβ1 expression in TMSCs by siRNA showed similar results observed in TNS3 inhibition. Thus, TNS3 may play an important role in TMSC proliferation and differentiation by regulating active ITGβ1 expression.
Collapse
|
13
|
Dos Santos A, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SX. Differentiation Capacity of Human Mesenchymal Stem Cells into Keratocyte Lineage. Invest Ophthalmol Vis Sci 2019; 60:3013-3023. [PMID: 31310658 PMCID: PMC6636549 DOI: 10.1167/iovs.19-27008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) have been extensively studied for their capacity to enhance wound healing and represent a promising research field for generating cell therapies for corneal scars. In the present study, we investigated MSCs from different tissues and their potential to differentiate toward corneal keratocytes. Methods Adipose-derived stem cells, bone marrow MSCs, umbilical cord stem cells, and corneal stromal stem cells (CSSCs) were characterized by their expression of surface markers CD105, CD90, and CD73, and their multilineage differentiation capacity into adipocytes, osteoblasts, and chondrocytes. MSCs were also evaluated for their potential to differentiate toward keratocytes, and for upregulation of the anti-inflammatory protein TNFα-stimulated gene-6 (TNFAIP6) after simulation by IFN-γ and TNF-α. Results Keratocyte lineage induction was achieved in all MSCs as indicated by the upregulated expression of keratocyte markers, including keratocan, lumican, and carbohydrate sulfotransferase. TNFAIP6 response to inflammatory stimulation was observed only in CSSCs; increasing by 3-fold compared with the control (P < 0.05). Conclusions Based on our findings, CSSCs appeared to have the greatest differentiation potential toward the keratocyte lineage and the greatest anti-inflammatory properties in vitro.
Collapse
Affiliation(s)
- Aurelie Dos Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Alis Balayan
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Martha L Funderburgh
- Eye and Ear Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - John Ngo
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - James L Funderburgh
- Eye and Ear Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
14
|
Chen H, Lin W, Lin P, Zheng M, Lai Y, Chen M, Zhang Y, Chen J, Lin X, Lin L, Lan Q, Yuan Q, Chen R, Jiang X, Xiao Y, Liu N. IL-10 produces a dual effect on OGD-induced neuronal apoptosis of cultured cortical neurons via the NF-κB pathway. Aging (Albany NY) 2019; 11:10796-10813. [PMID: 31801113 PMCID: PMC6932931 DOI: 10.18632/aging.102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
As a classic immunoregulatory cytokine, interleukin-10 (IL-10) can provide in vivo and in vitro neuroprotection respectively during cerebral ischemia and after the oxygen-glucose deprivation (OGD)-induced injury. However, its role in cortical neuronal survival at different post-ischemic phases remains unclear. The current study found that IL-10 had distinct effects on the neuronal apoptosis at different OGD stages: at an early stage after OGD, IL-10 promoted the OGD-induced neuronal apoptosis in the cultured primary cortical neurons by activating p65 subunit, which up-regulated Bax expression and down-regulated Bcl-xL expression; at a late OGD stage, however, it attenuated the OGD-induced neuronal apoptosis by activating c-Rel, which up-regulated Bcl-xL expression and down-regulated Bax expression. The early-stage pro-apoptosis and late-stage anti-apoptosis were both partly abolished by PDTC, an NF-κB inhibitor, and promoted by PMA, an NF-κB activator. The optimal anti-apoptotic effect appeared when the cultured neurons were treated with IL-10 at 9-24 h after OGD. Taken together, our findings suggest that IL-10 exerts a dual effect on the survival of the cultured neurons by activating the NF-κB pathway at different stages after OGD injury and that PMA treatment at a late stage can facilitate the IL-10-conferred neuroprotection against OGD-induced neuronal injury.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Longzai Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingchun Xiao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Chen G, Zhang Y, Yu S, Sun W, Miao D. Bmi1 Overexpression in Mesenchymal Stem Cells Exerts Antiaging and Antiosteoporosis Effects by Inactivating p16/p19 Signaling and Inhibiting Oxidative Stress. Stem Cells 2019; 37:1200-1211. [PMID: 30895687 PMCID: PMC6851636 DOI: 10.1002/stem.3007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that Bmi1 deficiency leads to osteoporosis phenotype by inhibiting the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs), but it is unclear whether overexpression of Bmi1 in MSCs stimulates skeletal development and rescues Bmi1 deficiency-induced osteoporosis. To answer this question, we constructed transgenic mice (Bmi1Tg ) that overexpressed Bmi1 driven by the Prx1 gene and analyzed their skeletal phenotype differences with that of wild-type littermates. We then hybridized Bmi1Tg to Bmi1-/- mice to generate Bmi1-/- mice overexpressing Bmi1 in MSCs and compared their skeletal phenotypes with those of Bmi1-/- and wild-type mice using imaging, histopathological, immunohistochemical, histomorphometric, cellular, and molecular methods. Bmi1Tg mice exhibited enhanced bone growth and osteoblast formation, including the augmentation of bone size, cortical and trabecular volume, number of osteoblasts, alkaline phosphatase (ALP)-positive and type I collagen-positive areas, number of total colony forming unit fibroblasts (CFU-f) and ALP+ CFU-f, and osteogenic gene expression levels. Consistently, MSC overexpressing Bmi1 in the Bmi1-/- background not only largely reversed Bmi1 systemic deficiency-induced skeletal growth retardation and osteoporosis, but also partially reversed Bmi1 deficiency-induced systemic growth retardation and premature aging. To further explore the mechanism of action of MSCs overexpressing Bmi1 in antiosteoporosis and antiaging, we examined changes in oxidative stress and expression levels of p16 and p19. Our results showed that overexpression of Bmi1 in MSCs inhibited oxidative stress and downregulated p16 and p19. Taken together, the results of this study indicate that overexpression of Bmi1 in MSCs exerts antiaging and antiosteoporosis effects by inactivating p16/p19 signaling and inhibiting oxidative stress. Stem Cells 2019;37:1200-1211.
Collapse
Affiliation(s)
- Guangpei Chen
- Department of Human Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Anatomy, Histology, and Embryology, Suzhou Health and Technology College, Suzhou, People's Republic of China
| | - Shuxiang Yu
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Sun
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Duan Q, Li H, Gao C, Zhao H, Wu S, Wu H, Wang C, Shen Q, Yin T. High glucose promotes pancreatic cancer cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:192. [PMID: 31088566 PMCID: PMC6518784 DOI: 10.1186/s13046-019-1209-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
Abstract
Background Modulation of cell surface expression of MHC class I chain-related protein A/B (MICA/B) has been proven to be one of the mechanisms by which tumor cells escape from NK cell-mediated killing. Abnormal metabolic condition, such as high glucose, may create a cellular stress milieu to induce immune dysfunction. Hyperglycemia is frequently presented in the majority of pancreatic cancer patients and is associated with poor prognosis. In this study, we aimed to detect the effects of high glucose on NK cell-mediated killing on pancreatic cancer cells through reduction of MICA/B expression. Methods The lysis of NK cells on pancreatic cancer cells were compared at different glucose concentrations through lactate dehydrogenase release assay. Then, qPCR, Western Blot, Flow cytometry and Immunofluorescence were used to identify the effect of high glucose on expression of MICA/B, Bmi1, GATA2, phosphorylated AMPK to explore the underlying mechanisms in the process. Moreover, an animal model with diabetes mellitus was established to explore the role of high glucose on NK cell-mediated cytotoxicity on pancreatic cancer in vivo. Results In our study, high glucose protects pancreatic cancer from NK cell-mediated killing through suppressing MICA/B expression. Bmi1, a polycomb group (PcG) protein, was found to be up-regulated by high glucose, and mediated the inhibition of MICA/B expression through promoting GATA2 in pancreatic cancer. Moreover, high glucose inhibited AMP-activated protein kinase signaling, leading to high expression of Bmi1. Conclusion Our findings identify that high glucose may promote the immune escape of pancreatic cancer cells under hyperglycemic tumor microenvironment. In this process, constitutive activation of AMPK-Bmi1-GATA2 axis could mediate MICA/B inhibition, which may serve as a therapeutic target for further intervention of pancreatic cancer immune evasion. Electronic supplementary material The online version of this article (10.1186/s13046-019-1209-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenggang Gao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Potential Research Tool of Stem Cells from Human Exfoliated Deciduous Teeth: Lentiviral Bmi-1 Immortalization with EGFP Marker. Stem Cells Int 2019; 2019:3526409. [PMID: 30984268 PMCID: PMC6431526 DOI: 10.1155/2019/3526409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are a favourable source for tissue engineering, for its great proliferative capacity and the ease of collection. However, the transplantation of stem cells and the study of stem cell-based tissue engineering require massive stem cells. After long-term expansion, stem cells face many challenges, including limited lifespan, senescence, and loss of stemness. Therefore, a cell line capable of overcoming those problems should be built. In this study, we generated a Bmi-1-immortalized SHED cell line with an enhanced green fluorescent protein (EGFP) marker (SHED-Bmi1-EGFP) using lentiviral transduction. We compared this cell line with the original SHED for cell morphology under a microscope. The expression of Bmi-1 was detected with Western blot. Replicative lifespan determination and colony-forming efficiency assessment were using to assay proliferation capability. Senescence-associated β-galactosidase assay was performed to assay the senescence level of cells. Moreover, multipotency, karyotype, and tumour formation in nude mice of SHED and SHED-Bmi1-EGFP were also tested. Our results confirmed that Bmi-1 immortalization did not affect the main features of SHED. SHED-Bmi1-EGFP could be passaged for a long time and stably expressed EGFP. SHED-Bmi1-EGFP at a late passage showed low activity of β-galactosidase and similar multilineage differentiation as SHED at an early passage. The immortalized cells had no potential tumourigenicity ability in vivo. Moreover, we provided some suggestions for potential applications of the immortalized SHED cell line with the EGFP marker. Thus, the immortalized cell line we built can be used as a functional tool in the lab for long-term studies of SHED and stem cell-based regeneration.
Collapse
|
18
|
Lee JY, Yu KR, Lee BC, Kang I, Kim JJ, Jung EJ, Kim HS, Seo Y, Choi SW, Kang KS. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging. Exp Mol Med 2018; 50:1-12. [PMID: 29760459 PMCID: PMC5951912 DOI: 10.1038/s12276-018-0092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Defects in the nuclear lamina occur during physiological aging and as a result of premature aging disorders. Aging is also accompanied by an increase in transcription of genes encoding cytokines and chemokines, a phenomenon known as the senescence-associated secretory phenotype (SASP). Progerin and prelamin A trigger premature senescence and loss of function of human mesenchymal stem cells (hMSCs), but little is known about how defects in nuclear lamin A regulate SASP. Here, we show that both progerin overexpression and ZMPSTE24 depletion induce paracrine senescence, especially through the expression of monocyte chemoattractant protein-1 (MCP-1), in hMSCs. Importantly, we identified that GATA4 is a mediator regulating MCP-1 expression in response to prelamin A or progerin in hMSCs. Co-immunoprecipitation revealed that GATA4 expression is maintained due to impaired p62-mediated degradation in progerin-expressing hMSCs. Furthermore, depletion of GATA4 abrogated SASP-dependent senescence through suppression of NF-ĸB and MCP-1 in hMSCs with progerin or prelamin A. Thus, our findings indicate that abnormal lamin A proteins trigger paracrine senescence through a GATA4-dependent pathway in hMSCs. This molecular link between defective lamin A and GATA4 can provide insights into physiological aging and pathological aging disorders. Abnormal versions of proteins that support the structure and function of the membrane of the cell nucleus are implicated in premature aging disorders, and also in normal aging. Researchers in South Korea led by Kyung-Sun Kang at Seoul National University investigated the protein network known as the nuclear lamina. They studied a specific type of human stem cell that gives rise to bone, cartilage, muscle and fat. They found that altering the levels of proteins produced by specific key genes promotes cell aging, and the alterations led to abnormalities in the proteins of the nuclear lamina. The researchers suggest that their work provides new insights into the molecular and cellular causes of premature and normal aging. Understanding the molecular triggers of aging could lead to treatments to delay both its normal and disease-linked forms.
Collapse
Affiliation(s)
- Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.,Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eui-Jung Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Sik Kim
- Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Yoojin Seo
- Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Brückmann NH, Pedersen CB, Ditzel HJ, Gjerstorff MF. Epigenetic Reprogramming of Pericentromeric Satellite DNA in Premalignant and Malignant Lesions. Mol Cancer Res 2018; 16:417-427. [PMID: 29330295 DOI: 10.1158/1541-7786.mcr-17-0477] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
Abstract
Repression of repetitive DNA is important for maintaining genomic stability, but is often perturbed in cancer. For instance, the megabase satellite domain at chromosome 1q12 is a common site of genetic rearrangements, such as translocations and deletions. Polycomb-group proteins can be observed as large subnuclear domains called polycomb bodies, the composition and cellular function of which has remained elusive. This study demonstrates that polycomb bodies are canonical subunits of the multiprotein polycomb repressive complex 1 deposited on 1q12 pericentromeric satellite DNA, which are normally maintained as constitutive heterochromatin by other mechanisms. Furthermore, the data reveal that polycomb bodies are exclusive to premalignant and malignant cells, being absent in normal cells. For instance, polycomb bodies are present in melanocytic cells of nevi and conserved in primary and metastatic melanomas. Deposition of polycomb on the 1q12 satellite DNA in melanoma development correlated with reduced DNA methylation levels. In agreement with this, inhibition of DNA methyltransferases, with the hypomethylating agent guadecitabine (SGI-110), was sufficient for polycomb body formation on pericentromeric satellites in primary melanocytes. This suggests that polycomb bodies form in cancer cells with global DNA demethylation to control the stability of pericentromeric satellite DNA. These results reveal a novel epigenetic perturbation specific to premalignant and malignant cells that may be used as an early diagnostic marker for detection of precancerous changes and a new therapeutic entry point.Implications: Pericentromeric satellite DNA is epigenetically reprogrammed into polycomb bodies as a premalignant event with implications for transcriptional activity and genomic stability. Mol Cancer Res; 16(3); 417-27. ©2018 AACR.
Collapse
Affiliation(s)
- Nadine Heidi Brückmann
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Choi SW, Lee JY, Kang KS. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev 2017; 168:20-29. [DOI: 10.1016/j.mad.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
21
|
Desbourdes L, Javary J, Charbonnier T, Ishac N, Bourgeais J, Iltis A, Chomel JC, Turhan A, Guilloton F, Tarte K, Demattei MV, Ducrocq E, Rouleux-Bonnin F, Gyan E, Hérault O, Domenech J. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. Stem Cells Dev 2017; 26:709-722. [PMID: 28394200 DOI: 10.1089/scd.2016.0295] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone marrow (BM)-derived mesenchymal stromal cells (MSCs) frequently display alterations in several hematologic disorders, such as acute lymphoid leukemia, acute myeloid leukemia (AML), and myelodysplastic syndromes. In acute leukemias, it is not clear whether MSC alterations contribute to the development of the malignant clone or whether they are simply the effect of tumor expansion on the microenvironment. We extensively investigated the characteristics of MSCs isolated from the BM of patients with de novo AML at diagnosis (L-MSCs) in terms of phenotype (gene and protein expression, apoptosis and senescence levels, DNA double-strand break formation) and functions (proliferation and clonogenic potentials, normal and leukemic hematopoiesis-supporting activity). We found that L-MSCs show reduced proliferation capacity and increased apoptosis levels compared with MSCs from healthy controls. Longer population doubling time in L-MSCs was not related to the AML characteristics at diagnosis (French-American-British type, cytogenetics, or tumor burden), but was related to patient age and independently associated with poorer patient outcome, as was cytogenetic prognostic feature. Analyzing, among others, the expression of 93 genes, we found that proliferative deficiency of L-MSCs was associated with a perivascular feature at the expense of the osteo-chondroblastic lineage with lower expression of several niche factors, such as KITLG, THPO, and ANGPT1 genes, the cell adhesion molecule VCAM1, and the developmental/embryonic genes, BMI1 and DICER1. L-MSC proliferative capacity was correlated positively with CXCL12, THPO, and ANGPT1 expression and negatively with JAG1 expression. Anyway, these changes did not affect their in vitro capacity to support normal hematopoiesis and to modify leukemic cell behavior (protection from apoptosis and quiescence induction). Our findings indicate that BM-derived MSCs from patients with newly diagnosed AML display phenotypic and functional alterations such as proliferative deficiency that could be attributed to tumor progression, but does not seem to play a special role in the leukemic process.
Collapse
Affiliation(s)
- Laura Desbourdes
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Joaquim Javary
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Thomas Charbonnier
- 2 Department of Biological Hematology, University Hospital of Tours , Tours, France
| | - Nicole Ishac
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Jerome Bourgeais
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Aurore Iltis
- 2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,3 Department of Hematology and Cell Therapy, University Hospital of Tours , Tours, France
| | - Jean-Claude Chomel
- 4 INSERM U935, University of Poitiers , Poitiers, France .,5 Department of Biological Oncology, University Hospital of Poitiers , Poitiers, France
| | - Ali Turhan
- 6 INSERM U935, University of Paris-Sud 11 , Paris, France .,7 Department of Hematology, University Hospitals of Paris-Sud , Le Kremlin Bicêtre, France
| | | | - Karin Tarte
- 8 INSERM U917, University of Rennes 1 , Rennes, France .,9 Department of Immunology, Cellular Therapy and Hematopoiesis, University Hospital of Rennes , Rennes, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| | - Marie-Veronique Demattei
- 11 CNRS UMR 7292, Telomeres and Genome Stability Team, François Rabelais University , Tours, France
| | - Elfi Ducrocq
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | | | - Emmanuel Gyan
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,3 Department of Hematology and Cell Therapy, University Hospital of Tours , Tours, France
| | - Olivier Hérault
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| | - Jorge Domenech
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| |
Collapse
|