1
|
Zumerle S, Sarill M, Saponaro M, Colucci M, Contu L, Lazzarini E, Sartori R, Pezzini C, Rinaldi A, Scanu A, Sgrignani J, Locatelli P, Sabbadin M, Valdata A, Brina D, Giacomini I, Rizzo B, Pierantoni A, Sharifi S, Bressan S, Altomare C, Goshovska Y, Giraudo C, Luisetto R, Iaccarino L, Torcasio C, Mosole S, Pasquini E, Rinaldi A, Pellegrini L, Peron G, Fassan M, Masiero S, Giori AM, Dall'Acqua S, Auwerx J, Cippà P, Cavalli A, Bolis M, Sandri M, Barile L, Montopoli M, Alimonti A. Targeting senescence induced by age or chemotherapy with a polyphenol-rich natural extract improves longevity and healthspan in mice. NATURE AGING 2024; 4:1231-1248. [PMID: 38951692 PMCID: PMC11408255 DOI: 10.1038/s43587-024-00663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.
Collapse
Affiliation(s)
- Sara Zumerle
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Miles Sarill
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Liliana Contu
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Roberta Sartori
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anna Scanu
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Isabella Giacomini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Beatrice Rizzo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Alessandra Pierantoni
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute for Research on Cancer and Aging, Nice, France
| | - Saman Sharifi
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Bressan
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yulia Goshovska
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Giraudo
- Department of Medicine, University of Padova, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Luca Iaccarino
- Department of Medicine, University of Padova, Padova, Italy
| | - Cristina Torcasio
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pietro Cippà
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Andrea Alimonti
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Medicine, University of Padova, Padova, Italy.
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.
- Università della Svizzera italiana, Lugano, Switzerland.
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| |
Collapse
|
2
|
Alves-Silva JM, Cocco E, Piras A, Gonçalves MJ, Silva A, Falconieri D, Porcedda S, Cruz MT, Maxia A, Salgueiro L. Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020359. [PMID: 36679072 PMCID: PMC9867359 DOI: 10.3390/plants12020359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Salvia is widely recognized for its therapeutic potential. However, the biological relevance of some species remains unknown, namely Salvia cacaliifolia Benth. Therefore, the aim of this study is to unveil the chemical composition and relevant properties to its essential oil (EO). The EO was characterized by GC and GC-MS and its antifungal effect was evaluated according to the CLSI guidelines on dermatophytes and yeasts. The anti-inflammatory potential was assessed on lipopolysaccharide-stimulated macrophages, by assessing the production of nitric oxide (NO) and the effect on the protein levels of two key pro-inflammatory enzymes, iNOS and COX-2 by western blot analysis. Wound healing capacity was determined using the scratch wound healing assay, and the anti-aging potential was assessed by evaluating the senescence marker β-galactosidase. The EO was mainly characterized by γ-curcumene, β-bisabolene, bicyclogermacrene and curzerenone. It is effective in inhibiting the growth of dermatophytes and C. neoformans. The EO significantly decreased iNOS and COX-2 protein levels and concomitantly reduced NO release. Additionally, it demonstrated anti-senescence potential and promoted wound healing. Overall, this study highlights relevant pharmacological properties of the EO of Salvia cacaliifolia, which should be further explored envisaging the development of sustainable, innovative, and environmentally friendly skin products.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Emma Cocco
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Danilo Falconieri
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Andrea Maxia
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
3
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
4
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Cocetta V, Cadau J, Saponaro M, Giacomini I, Dall'Acqua S, Sut S, Catanzaro D, Orso G, Miolo G, Menilli L, Pagetta A, Ragazzi E, Montopoli M. Further assessment of Salvia haenkei as an innovative strategy to counteract skin photo-aging and restore the barrier integrity. Aging (Albany NY) 2021; 13:89-103. [PMID: 33424011 PMCID: PMC7835004 DOI: 10.18632/aging.202464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/09/2020] [Indexed: 01/04/2023]
Abstract
Skin is the essential barrier of the human body which performs multiple functions. Endogenous factors, in concert with external assaults, continuously affect skin integrity, leading to distinct structural changes that influence not only the skin appearance but also its various physiological functions. Alterations of the barrier functions lead to an increased risk of developing disease and side reactions, thus the importance of maintaining the integrity of the epidermal barrier and slowing down the skin aging process is evident. Salvia haenkei (SH) has been recently identified as a potential anti-senescence agent; its extract is able to decrease the level of senescent cells by affecting the IL1α release and reducing reactive oxygen species (ROS) generation. In this study, SH extract was tested on human keratinocyte cell line (HaCaT) exposed to stress factors related to premature aging of cells such as free radicals and ultraviolet B radiation. We confirmed that SH acts as scavenger of ROS and found its ability to restore the skin barrier integrity by reinforcing the cytoskeleton structure, sealing the tight junctions and increasing the migration rate of cells. Given these results, this work becomes relevant, identifying Salvia haenkei as a compound useful for anti-aging skin treatment in clinical performance.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Jessica Cadau
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine (VIMM), Padova 35121, Italy.,Department of Medicine, University of Padova, Padova 35128, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Daniela Catanzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Luca Menilli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35121, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova 35121, Italy
| |
Collapse
|
6
|
Scrima M, Melito C, Merola F, Iorio A, Vito N, Giori AM, Ferravante A. Evaluation of Wound Healing Activity of Salvia haenkei Hydroalcoholic Aerial Part Extract on in vitro and in vivo Experimental Models. Clin Cosmet Investig Dermatol 2020; 13:627-637. [PMID: 32922060 PMCID: PMC7457862 DOI: 10.2147/ccid.s224418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
Purpose The aim of the present study was to evaluate the potential wound healing activity of the hydroalcoholic extract of Salvia haenkei on in vitro and in vivo experimental models. Materials and Methods Preliminary analytical characterization of the hydroalcoholic extract of Salvia haenkei was made by reversed-phase high performance liquid chromatography (RP-HPLC) that permitted identification of a qualitative fingerprint of the extract of aerial parts. The wound healing activity of the hydroalcoholic extract of Salvia haenkei was evaluated in vitro by the scratch assay on human dermal fibroblasts and human epidermal keratinocytes and in vivo by standardized mouse excisional splinting model. Real-time PCR (RT-PCR) experiments were performed to analyze gene expression levels of inflammatory markers. Results The scratch assay tests showed that the treatment with the hydroalcoholic extract of Salvia haenkei did not induce an increase in the fibroblasts migration rate with respect to the positive control. Instead, the hydroalcoholic extract of Salvia haenkei was effective in improving the wound closure rate on keratinocyte cell cultures with an almost total invasion of the scratch after 48 h of treatment; whereas the positive control, at the same time point, showed only a 67% reduction of the wound size. In vivo experiments showed that the groups treated with the extract of Salvia haenkei completely re-epithelized the wound in 2.7 days, a timing that was comparable with the action of the positive control that took only 2.1 days. Gene expression analysis showed that Salvia haenkei positively regulated the signaling pathway of the nuclear factor-κB (NF-κB) transcription factor. Conclusion The results suggested that the hydroalcoholic extract of Salvia haenkei induced a clear wound healing effect.
Collapse
Affiliation(s)
- Mario Scrima
- R&D Department, IBSA Farmaceutici Italia, Ariano Irpino, Italy
| | - Carmela Melito
- R&D Department, IBSA Farmaceutici Italia, Ariano Irpino, Italy
| | - Filomena Merola
- R&D Department, IBSA Farmaceutici Italia, Ariano Irpino, Italy
| | - Antonio Iorio
- R&D Department, IBSA Farmaceutici Italia, Ariano Irpino, Italy
| | - Nicoletta Vito
- R&D Department, IBSA Farmaceutici Italia, Ariano Irpino, Italy
| | | | | |
Collapse
|
7
|
Barardo DG, Newby D, Thornton D, Ghafourian T, de Magalhães JP, Freitas AA. Machine learning for predicting lifespan-extending chemical compounds. Aging (Albany NY) 2017; 9:1721-1737. [PMID: 28783712 PMCID: PMC5559171 DOI: 10.18632/aging.101264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Increasing age is a risk factor for many diseases; therefore developing pharmacological interventions that slow down ageing and consequently postpone the onset of many age-related diseases is highly desirable. In this work we analyse data from the DrugAge database, which contains chemical compounds and their effect on the lifespan of model organisms. Predictive models were built using the machine learning method random forests to predict whether or not a chemical compound will increase Caenorhabditis elegans' lifespan, using as features Gene Ontology (GO) terms annotated for proteins targeted by the compounds and chemical descriptors calculated from each compound's chemical structure. The model with the best predictive accuracy used both biological and chemical features, achieving a prediction accuracy of 80%. The top 20 most important GO terms include those related to mitochondrial processes, to enzymatic and immunological processes, and terms related to metabolic and transport processes. We applied our best model to predict compounds which are more likely to increase C. elegans' lifespan in the DGIdb database, where the effect of the compounds on an organism's lifespan is unknown. The top hit compounds can be broadly divided into four groups: compounds affecting mitochondria, compounds for cancer treatment, anti-inflammatories, and compounds for gonadotropin-releasing hormone therapies.
Collapse
Affiliation(s)
- Diogo G. Barardo
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | |
Collapse
|