1
|
Cui LL, Zhou CX, Han B, Wang SS, Li SY, Xie SC, Zhou DH. Urine proteomics for profiling of mouse toxoplasmosis using liquid chromatography tandem mass spectrometry analysis. Parasit Vectors 2021; 14:211. [PMID: 33879238 PMCID: PMC8056516 DOI: 10.1186/s13071-021-04713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. Urine is an easily obtained clinical sample that has been widely applied for diagnostic purposes. However, changes in the urinary proteome during T. gondii infection have never been investigated. METHODS Twenty four-hour urine samples were obtained from BALB/c mice with acute infection [11 days post infection (DPI)], mice with chronic infection (35 DPI) and healthy controls, and were analyzed using a label-free liquid chromatography tandem mass spectrometry analysis. RESULTS We identified a total of 13,414 peptides on 1802 proteins, of which 169 and 47 proteins were significantly differentially expressed at acute and chronic infection phases, respectively. Clustering analysis revealed obvious differences in proteome profiles among all groups. Gene ontology analysis showed that a large number of differentially expressed proteins (DEPs) detected in acute infection were associated with biological binding activity and single-organism processes. KEGG pathway enrichment analysis showed that the majority of these DEPs were involved in disease-related and metabolic pathways. CONCLUSIONS Our findings revealed global reprogramming of the urine proteome following T. gondii infection, and data obtained in this study will enhance our understanding of the host responses to T. gondii infection and lead to the identification of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Lin-Lin Cui
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Sha-Sha Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Si-Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shi-Chen Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Abskharon R, Dang J, Elfarash A, Wang Z, Shen P, Zou LS, Hassan S, Wang F, Fujioka H, Steyaert J, Mulaj M, Surewicz WK, Castilla J, Wohlkonig A, Zou WQ. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors. Microb Cell Fact 2017; 16:170. [PMID: 28978309 PMCID: PMC5628483 DOI: 10.1186/s12934-017-0782-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background The infectious prion protein (PrPSc or prion) is derived from its cellular form (PrPC) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrPC to PrPSc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrPC (BVPrP) is highly susceptible to PrPSc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. Results To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Conclusions Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.
Collapse
Affiliation(s)
- Romany Abskharon
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.,National Institute of Oceanography and Fisheries (NIFO), Cairo, 11516, Egypt.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Johnny Dang
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ameer Elfarash
- Genetic Department, Faculty of Agriculture, Assiut University, Assuit, 71516, Egypt
| | - Zerui Wang
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Pingping Shen
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Lewis S Zou
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sedky Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, El-Kharja, 72511, Egypt
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jan Steyaert
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Mentor Mulaj
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain
| | - Alexandre Wohlkonig
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium. .,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.
| | - Wen-Quan Zou
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China. .,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|