1
|
Chen G, Yan J, Fu Z. Comprehensive Analysis to Identify LINC00511-hsa-miR-625-5p-SEMA6A Pathway Fuels Progression of Skin Cutaneous Melanoma. Int J Genomics 2023; 2023:6422941. [PMID: 37434634 PMCID: PMC10332930 DOI: 10.1155/2023/6422941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Objective Skin cutaneous melanoma (SKCM) is a highly lethal malignancy that poses a significant threat to human health. Recent research has shown that competing endogenous RNA (ceRNA) regulatory networks play a critical role in the development and progression of various types of cancer, including SKCM. The objective of this study is to investigate the ceRNA regulatory network associated with the transmembrane protein semaphorin 6A (SEMA6A) and identify the underlying molecular mechanisms involved in SKCM. Methods Expression profiles of four RNAs, including pseudogenes, long non-coding RNAs, microRNAs, and mRNAs were obtained from The Cancer Genome Atlas database. The analysis was completed by bioinformatics methods, and the expression levels of the selected genes were verified by cell experiments. Results Bioinformatics analysis revealed that the LINC00511-hsa-miR-625-5p-SEMA6A ceRNA network was associated with SKCM prognosis. Furthermore, immune infiltration analysis indicated that the LINC00511-hsa-miR-625-5p-SEMA6A axis may have an impact on changes in the tumor immune microenvironment of SKCM. Conclusion The LINC00511-hsa-miR-625-5p-SEMA6A axis could be a promising therapeutic target and a prognostic biomarker for SKCM.
Collapse
Affiliation(s)
- Guanghua Chen
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Jia Yan
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zhou Fu
- Department of Respiratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| |
Collapse
|
2
|
Zhou L, Li Y, Li J, Yao H, Huang J, Li C, Wang L. Decoding ceRNA regulatory network and autophagy-related genes in benign prostatic hyperplasia. Int J Biol Macromol 2023; 225:997-1009. [PMID: 36403772 DOI: 10.1016/j.ijbiomac.2022.11.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease among aging males. We obtained BPH transcriptional signatures by high-throughput RNA sequencing analysis. Accordingly, we determined the differentially expressed RNAs (DERNAs) between BPH tissues and normal prostate tissues. WebGestalt and R package (clusterprofiler) was used to enrichment analysis. Clinical correlations were analyzed using Spearman's coefficient. TargetScan, ENCORI, miRNet, and miRDB databases were used to predict targets' relationships in ceRNA networks. Immunofluorescence staining and qRT-PCR analyses were performed to validate the findings. Microarray analysis of the datasets showed 369 DElncRNAs, 122 DEpseudogenes, 6 DEmiRNAs and 1358 DEmRNAs. DEmRNAs were particularly enriched in the autophagy-related pathways. Following the screening of DEmRNAs and autophagy-related genes (ARGs), 50 DEARGs were selected. MCODE analysis on Cytoscape was performed for the 50 DEARGs, and 3 hub genes (ATF4, XBP1, and PPP1R15A) were obtained. Spearman's correlation analysis showed that the mRNA expression of XBP1 correlated positively with age, total score, and storage score, but negatively with the maximum flow rate. Subsequently, the pseudogene/lncRNA- hsa-miR-222-3p-XBP1 pathway was identified. Our findings elucidate that the pseudogene/lncRNA-hsa-miR-222-3p-XBP1 pathway may play a regulatory role in the occurrence of BPH through autophagy.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hanyu Yao
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jin Huang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
3
|
Guo F, Chen D, Zong Z, Wu W, Mo C, Zheng Z, Li J, Zhang X, Xiong D. Comprehensive analysis of aberrantly expressed circRNAs, mRNAs and lncRNAs in patients with nasopharyngeal carcinoma. J Clin Lab Anal 2023; 37:e24836. [PMID: 36597889 PMCID: PMC9937882 DOI: 10.1002/jcla.24836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The location of nasopharyngeal cancer is hidden, so it is difficult to diagnose at an early stage. In this study, we aimed to investigate the expression profiles of circRNAs, mRNAs and IncRNAs and to provide some basis for further studies. METHODS Expression profiles of circRNAs, mRNAs, and lncRNAs were analyzed using microarray techniques. The differentially expressed ncRNA was calculated by bioinformatics. RESULTS A total of 3048 circRNAs, 2179 lncRNAs, and 2015 mRNAs were detected to be significantly differentially expressed in NPC. The most upregulated circRNAs, lncRNAs, and mRNAs were hsa-circ-0067562, NONHSAT232922.1, and HOXB13, respectively. And, the most downregulated circRNAs, lncRNAs, and mRNAs were hsa_circ_0078837, lnc-TTC8-4:3, and LTF, respectively. The number of upregulated DE lncRNAs was more than twice than those downregulated. Our data showed that 80.44% of pairs of lncRNAs and cis-mRNAs demonstrated positive correlations. For lncRNAs and trans-mRNAs pairs, 53.7% of pairs showed positive correlation. LncRNA-mediated cis regulation is a prevalent regulatory mode in the development of nasopharyngeal carcinoma. CR1, LRMP and SORBS2 are predicted to be mediated not only by cis-acting lncRNA modes of action, but also by trans-acting lncRNA mechanisms. Additionally, we constructed a diagnostic prediction model with a high sensitivity and specificity. CONCLUSION Our study characterized the landscape of circRNAs, mRNAs and lncRNAs in NPC tissue and provided novel insights into the molecular mechanisms of NPC.
Collapse
Affiliation(s)
- Feifan Guo
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zengyan Zong
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Wei Wu
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Chan Mo
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhou Zheng
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jian Li
- Department of Otolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina,Guangzhou Key Laboratory of OtorhinolaryngologyGuangzhouChina
| | - Xiuming Zhang
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dan Xiong
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
4
|
Sugino Y, Uchiyama R, Shibasaki C, Kugawa F. Regulation of Iron-Ion Transporter SLC11A2 by Three Identical miRNAs. Biol Pharm Bull 2022; 45:1291-1299. [DOI: 10.1248/bpb.b22-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Sugino
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Reina Uchiyama
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Chihiro Shibasaki
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Fumihiko Kugawa
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| |
Collapse
|
5
|
Liu J, Yu H, Wei F, Cui H, Yan T, Li T, Liu Y, Chu J. lncRNA LINC000466 predicts the prognosis and promotes the progression of triple-negative breast cancer via modulating miR-539-5p. Clin Breast Cancer 2022; 22:374-380. [DOI: 10.1016/j.clbc.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
6
|
Liu Y, Yuan Q, Wang Z, Ding L, Kong N, Liu J, Hu Y, Zhang Y, Li C, Yan G, Jiang Y, Sun H. A high level of KLF12 causes folic acid-resistant neural tube defects by activating the Shh signalling pathway in mice. Biol Reprod 2021; 105:837-845. [PMID: 34104947 DOI: 10.1093/biolre/ioab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although adequate periconceptional folic acid (FA) supplementation has reduced the occurrence of pregnancies affected by neural tube defects (NTDs), the mechanisms underlying FA-resistant NTDs are poorly understood, and thus NTDs still remain a global public health concern. A high level of Krüppel-like factor 12 (KLF12) exerts deleterious effects on heath in most cases, but evidence for its roles in development has not been published. We observed KLF12-overexpressing mice showed disturbed neural tube development. KLF12-overexpressing foetuses died in utero at approximately 10.5 days post coitus, with 100% presenting cranial NTDs. Neither FA nor formate promoted normal neural tube closure in mutant foetuses. The RNA-seq results showed that a high level of KLF12 caused NTDs in mice via overactivating the sonic hedgehog (Shh) signalling pathway, leading to the upregulation of patched 1, GLI-Krüppel family member GLI1, hedgehog-interacting protein, etc., while FA metabolism-related enzymes did not express differently. PF-5274857, an antagonist of the Shh signalling pathway, significantly promoted dorsolateral hinge point formation and partially rescued the NTDs. The regulatory hierarchy between a high level of KLF12 and FA-resistant NTDs might provide new insights into the diagnosis and treatment of unexplained NTDs in the future.
Collapse
Affiliation(s)
- Yang Liu
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, Jiangsu, People's Republic of China
| | - Qiong Yuan
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Zhilong Wang
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, Jiangsu, People's Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Na Kong
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Yali Hu
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Yang Zhang
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Chaojun Li
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Guijun Yan
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, Jiangsu, People's Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, Jiangsu, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
LncRNA PCGEM1 contributes to malignant behaviors of glioma by regulating miR-539-5p/CDK6 axis. Aging (Albany NY) 2021; 13:5475-5484. [PMID: 33589577 PMCID: PMC7950308 DOI: 10.18632/aging.202476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
Abstract
Background: Glioma, one of the most prevalent and aggressive cancers, is regulated by long noncoding RNAs (lncRNAs). This study aims to research the functional mechanism of lncRNA PCGEM1 involved in glioma progression. Methods: Expression levels of PCGEM1, miR-539-5p and CDK6 were analyzed by qRT-PCR in NHA, U251, U87, and LN229 cells or glioma tissues. shRNAs were used to knock down PCGEM1 in U251 and LN229 cells. Kaplan-Meier curve and log rank test were utilized to examine survival rate. CCK8 (Cell Counting Kit-8) assay, colony formation assay and EdU staining were conducted to detect cell proliferation. Transwell assay was performed to evaluate cell migration and invasion. Luciferase reporter assay was conducted to assess RNA interaction between PCGEM1 and miR-539-5p. Nude mice were used for tumor xenograft assay. Results: LncRNA PCGEM1 was upregulated in glioma tissues and tumor cell lines. PCGEM1 upregulation predicted unsatisfactory prognosis. PCGEM1 knockdown inhibited proliferation, colony formation, migration and invasion. PCGEM1 knockdown delayed tumor growth in vivo. PCGEM1 played as a competing endogenous RNA (ceRNA) for miR-539-5p to promote CDK6 expression. MiR-539-5p mimics repressed glioma progression while CDK6 overexpression reversed the roles of PCGEM1 knockdown. Conclusion: PCGEM1 knockdown suppressed glioma progression through sponging miR-539-5p and regulating CDK6 expression, implying PCGEM1 as a potential therapeutic target.
Collapse
|
8
|
Kang S, Ye Y, Xia G, Liu HB. Coronary artery disease: differential expression of ceRNAs and interaction analyses. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:229. [PMID: 33708856 PMCID: PMC7940956 DOI: 10.21037/atm-20-3487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background Previous studies have demonstrated associations between cardiovascular disease and the expression of various messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). This study aimed to investigate the differential expression of mRNAs, lncRNAs, and miRNAs between tissues from patients with coronary artery disease (CAD) and healthy controls, and to determine the interactions between these molecules in CAD. Methods We investigated the differential expression of competitive endogenous RNAs (ceRNAs) between patients with CAD and healthy controls by collecting data from Gene Expression Omnibus (GEO) microarrays. We also investigated the biological function of these differentially expressed ceRNAs by performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. We then created a protein-protein interaction (PPI) network to identify the hub genes. Biosystems and literature searches were also carried out to identify relevant signaling pathways and the potential function of the differentially expressed ceRNAs. Results We identified 456 expression profiles for miRNAs, 16,325 mRNA expression profiles, and 2,869 lncRNA expression profiles. With regards to connectivity, GO and KEGG analyses (count ≥9) identified the top 11 PPI network nodes in rank order. We also identified the top 15 significant nodes for the ceRNAs identified according to degree centrality (DC) (P<0.05). Collectively, our analyses confirmed that the differential expression of certain ceRNAs, and their respective signaling pathways were associated with CAD. Conclusions Data arising from 11 GO and KEGG pathways, the top 15 PPI network nodes with the best connectivity rank, and the top 15 ceRNA network nodes, as determined by DC rank in CAD population, indicated that the differential expression of these ceRNAs plays a key role in the CAD. Our findings highlight new molecular mechanisms for CAD and provide new options for the development of therapeutic targets.
Collapse
Affiliation(s)
- Sheng Kang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yong Ye
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guang Xia
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hai-Bo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Adebamowo SN, Adeyemo AA, Rotimi CN, Olaniyan O, Offiong R, Adebamowo CA. Genome-wide association study of prevalent and persistent cervical high-risk human papillomavirus (HPV) infection. BMC MEDICAL GENETICS 2020; 21:231. [PMID: 33225922 PMCID: PMC7682060 DOI: 10.1186/s12881-020-01156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2020] [Indexed: 01/20/2023]
Abstract
Background Genetic factors may influence the susceptibility to high-risk (hr) human papillomavirus (HPV) infection and persistence. We conducted the first genome-wide association study (GWAS) to identify variants associated with cervical hrHPV infection and persistence. Methods Participants were 517 Nigerian women evaluated at baseline and 6 months follow-up visits for HPV. HPV was characterized using SPF10/LiPA25. hrHPV infection was positive if at least one carcinogenic HPV genotype was detected in a sample provided at the baseline visit and persistent if at least one carcinogenic HPV genotype was detected in each of the samples provided at the baseline and follow-up visits. Genotyping was done using the Illumina Multi-Ethnic Genotyping Array (MEGA) and imputation was done using the African Genome Resources Haplotype Reference Panel. Association analysis was done for hrHPV infection (125 cases/392 controls) and for persistent hrHPV infection (51 cases/355 controls) under additive genetic models adjusted for age, HIV status and the first principal component (PC) of the genotypes. Results The mean (±SD) age of the study participants was 38 (±8) years, 48% were HIV negative, 24% were hrHPV positive and 10% had persistent hrHPV infections. No single variant reached genome-wide significance (p < 5 X 10− 8). The top three variants associated with hrHPV infections were intronic variants clustered in KLF12 (all OR: 7.06, p = 1.43 × 10− 6). The top variants associated with cervical hrHPV persistence were in DAP (OR: 6.86, p = 7.15 × 10− 8), NR5A2 (OR: 3.65, p = 2.03 × 10− 7) and MIR365–2 (OR: 7.71, p = 2.63 × 10− 7) gene regions. Conclusions This exploratory GWAS yielded suggestive candidate risk loci for cervical hrHPV infection and persistence. The identified loci have biological annotation and functional data supporting their role in hrHPV infection and persistence. Given our limited sample size, larger discovery and replication studies are warranted to further characterize the reported associations. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01156-1.
Collapse
Affiliation(s)
- Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood Street, Howard Hall, Room 119, Baltimore, MD, 21201, USA. .,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olayinka Olaniyan
- Department of Obstetrics and Gynecology, National Hospital Abuja, Abuja, Nigeria
| | - Richard Offiong
- Department of Obstetrics and Gynecology, University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood Street, Howard Hall, Room 119, Baltimore, MD, 21201, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Human Virology Nigeria, Abuja, Nigeria
| | | |
Collapse
|
10
|
Huang D, Zhu X, Wang Y, Yu H, Pu Y. Long non-coding RNA FAM133B-2 represses the radio-resistance of nasopharyngeal cancer cells by targeting miR-34a-5p/CDK6 axis. Aging (Albany NY) 2020; 12:16936-16950. [PMID: 32889799 PMCID: PMC7521541 DOI: 10.18632/aging.103600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play roles in various cancers, including nasopharyngeal carcinoma. In this study, we focused on the biological function of the lncRNA FAM133B-2 in the radio-resistance of nasopharyngeal carcinoma. The RNA-seq and qRT-PCR analysis showed that FAM133B-2 is highly expressed in the radio-resistant nasopharyngeal carcinoma cells. The following biochemical assays showed that FAM133B-2 represses the nasopharyngeal carcinoma radio-resistance and also affects the apoptosis and proliferation of nasopharyngeal carcinoma cells. Further investigations suggested that miR-34a-5p targets FAM133B-2 and also regulates the cyclin-dependent kinase 6 (CDK6). All these results suggested that the lncRNA FAM133B-2 might function as a competitive endogenous RNA (ceRNA) for miR-34a-5p in nasopharyngeal carcinoma radio-resistance, thus it may be regarded as a novel prognostic biomarker and therapeutic target in nasopharyngeal carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Dabing Huang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Xianhai Zhu
- Department of Interventional Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Yong Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Haobin Yu
- Department of Cancer Nutrition and Metabolic Therapy, No.3 Ward of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| |
Collapse
|
11
|
Liu L, Wang H, Yu Y, Zeng B, Rao X, Chen J, Zhou C, Zheng P, Pu J, Yang L, Zhang H, Wei H, Xie P. Microbial regulation of a lincRNA-miRNA-mRNA network in the mouse hippocampus. Epigenomics 2020; 12:1377-1387. [PMID: 32878473 DOI: 10.2217/epi-2019-0307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To comprehensively understand microbiota-regulated lincRNA-miRNA-mRNA networks in psychiatric disorders. Materials & methods: Integrated analyses of lincRNAs, mRNAs and miRNAs, obtained by microarray analysis of hippocampus from specific pathogen-free, germ-free and colonized germ-free mice, were performed. Results: Expression of 139 mRNAs, seven miRNAs and one lincRNA was restored following colonization. The restored transcripts were mainly involved in CREB and Ras/MAPK signaling pathways. RNA transcription and post-transcriptional regulation were the primary perturbed functions. Finally, 12 lincRNAs, six miRNAs and 47 mRNAs were included in a lincRNA-miRNA-mRNA network, and lincRNA0926-miR-190a-5p-Celf4 interactions may play a pivotal role in this regulatory network. Conclusion: This study provides clues for understanding the molecular basis of gut microbiota-brain interactions in depressive- and anxiety-like behaviors.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.,NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.,NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xuechen Rao
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chanjuan Zhou
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Zheng
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lining Yang
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.,NHC Key Laboratory of Diagnosis & Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Gong T, Li Y, Feng L, Fang M, Dai G, Huang X, Yang Y, Liu S. CASC21, a FOXP1 induced long non-coding RNA, promotes colorectal cancer growth by regulating CDK6. Aging (Albany NY) 2020; 12:12086-12106. [PMID: 32584787 PMCID: PMC7343488 DOI: 10.18632/aging.103376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Emerging studies indicate that long non-coding RNAs (lncRNAs) play crucial roles in colorectal cancer (CRC). Here, we reported lncRNA CASC21, which is induced by FOXP1, functions as an oncogene in CRC. We systematically elucidated its clinical significance and possible molecular mechanism in CRC. LncRNA expression in CRC was analyzed by RNA-sequencing data in TCGA. The expression level of CASC21 in tissues was determined by qRT-PCR. The functions of CASC21 was investigated by in vitro and in vivo assays (CCK8 assay, colony formation assay, EdU assay, xenograft model, flow cytometry assay, immunohistochemistry (IHC) and Western blot). Chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP) and luciferase reporter assays were utilized to demonstrate the potential mechanisms of CASC21. CASC21 is overexpressed in CRC and high CASC21 expression is associated with poor survival. Functional experiments revealed that CASC21 promotes CRC cell growth. Mechanistically, we found that CASC21 expressed predominantly in the cytoplasm. CASC21 could interact with miR-539-5p and regulate its target CDK6. Together, our study elucidated that CASC21 acted as an oncogene in CRC, which might serve as a novel target for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao Gong
- Oncology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Yu Li
- Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Liang Feng
- Oncology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210000, Jiangsu, China
| | - MingZhi Fang
- Oncology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Xin Huang
- Oncology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Shenlin Liu
- Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| |
Collapse
|
13
|
Zhan Y, Fan S. Multiple Mechanisms Involving in Radioresistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:4193-4204. [PMID: 32368302 PMCID: PMC7196263 DOI: 10.7150/jca.39354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor with ethnic and geographical distribution preference. Although intensity-modulated radiotherapy (IMRT)-based radiotherapy combined with chemotherapy and targeted therapy has dramatically improved the overall survival of NPC patients, there are still some patients suffering from recurrent tumors and the prognosis is poor. Multiple mechanisms may be responsible for radioresistance of NPC, such as cancer stem cells (CSCs) existence, gene mutation or aberrant expression of genes, epigenetic modification of genes, abnormal activation of certain signaling pathways, alteration of tumor microenvironment, stress granules (SGs) formation, etc. We conduct a comprehensive review of the published literatures focusing on the causes of radioresistance, retrospect the regulation mechanisms following radiation, and discuss future directions of overcoming the resistance to radiation.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Li Z, Wu G, Li J, Wang Y, Ju X, Jiang W. lncRNA CRNDE promotes the proliferation and metastasis by acting as sponge miR-539-5p to regulate POU2F1 expression in HCC. BMC Cancer 2020; 20:282. [PMID: 32252678 PMCID: PMC7137470 DOI: 10.1186/s12885-020-06771-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background This article focuses on the roles and mechanism of lncRNA CRNDE on the progression of HCC. Methods We used qRT-PCR to detect the expression of lncRNA CRNDE in HCC cells, normal cells and clinical tissues. MTT assay, FCM analysis, Transwell migration and invasion assay were used to detect the effects of lncRNA CRNDE on cell viability, apoptosis, migration and invasion of HCC cells. The expression of apoptosis-related proteins Bcl-2, Bax, Cleaved Caspase 3, Cleaved Caspase 9, EMT epithelial marker E-cadherin and mesothelial marker Vimentin were analyzed by Western blot. Online prediction software was used to predict the binding sites between lncRNA CRNDE and miR-539-5p, or miR-539-5p and POU2F1 3’UTR. Dual luciferase reporter assay, qRT-PCR and RNA pulldown were used to detect target-relationship between lncRNA CRNDE and miR-539-5p. Dual luciferase reporter assay, qRT-PCR, Western blot and Immunofluorescence were used to detect target-relationship between miR-539-5p and POU2F1. qRT-PCR was used to detect the expression of miR-539-5p and POU2F1 in clinical tissues. Rescue experiments was used to evaluate the association among lncRNA CRNDE, miR-539-5p and POU2F1. Finally, we used Western blot to detect the effects of lncRNA CRNDE, miR-539-5p and POU2F1 on NF-κB and AKT pathway. Results lncRNA CRNDE was highly expressed in HCC cells and HCC tissues compared with normal cells and the corresponding adjacent normal tissues. lncRNA CRNDE promoted the cell viability, migration and invasion of HCC cells, while inhibited the apoptosis and promoted the EMT process of HCC cells. lncRNA CRNDE adsorbed miR-539-5p acts as a competitive endogenous RNA to regulate POU2F1 expression indirectly. In HCC clinical tissues, miR-539-5p expression decreased and POU2F1 increased compared with the corresponding adjacent normal tissues. lncRNA CRNDE/miR-539-5p/POU2-F1 participated the NF-κB and AKT pathway in HCC. Conclusion lncRNA CRNDE promotes the expression of POU2F1 by adsorbing miR-539-5p, thus promoting the progression of HCC.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Gang Wu
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Youyu Wang
- Department of Thracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Xueming Ju
- Department of Ultrsound, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Wenjun Jiang
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
15
|
Li H, Huang J, Yu S, Lou Z. Long Non-Coding RNA DLEU1 Up-Regulates BIRC6 Expression by Competitively Sponging miR-381-3p to Promote Cisplatin Resistance in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:2037-2045. [PMID: 32214823 PMCID: PMC7082798 DOI: 10.2147/ott.s237456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cisplatin (DDP) resistance has become an obstacle to chemotherapy for nasopharyngeal carcinoma (NPC) patients. Recent evidences indicate that long noncoding RNAs (lncRNAs) are involved in tumorigenesis and chemoresistance. However, the potential role of lncRNAs in NPC progression remains largely unknown. Methods First, lncRNA expression profiling in NPC was performed via microarray analysis. To explore the involvement of DLEU1 in DDP resistance, loss-of-function experiments were employed in vitro and in vivo. Bioinformatics analysis, luciferase reporter assay, qRT-PCR, and Western blot assays were used to investigate the underlying mechanisms. Results Here, we identified 153 differentially expressed lncRNAs. Among them, DLEU1 was remarkably up-regulated in NPC tissues and associated with worse outcome. Knock-down of DLEU1 could sensitize NPC cells to DDP in vitro and in vivo. Further investigations revealed that DLEU1 positively regulated BIRC6 expression via its competing endogenous RNA (ceRNA) activity on miR-381-3p. We also observed that BIRC6 overexpression or miR-381-3p silence could significantly reverse DLEU1-dependent DDP resistance. Conclusion Our data suggest that DLEU1 acts as an oncogene to promote DDP resistance and BIRC6 expression in NPC through interacting with miR-381-3p, which may help to develop new strategy against NPC chemoresistance.
Collapse
Affiliation(s)
- Hangbo Li
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| | - Jia Huang
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| | - Sa Yu
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| | - Zhiping Lou
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| |
Collapse
|
16
|
Tian Q, Gu Y, Wang F, Zhou L, Dai Z, Liu H, Wu X, Wang X, Liu Y, Chen S, Han Q. Upregulation of miRNA-154-5p prevents the tumorigenesis of osteosarcoma. Biomed Pharmacother 2020; 124:109884. [PMID: 32000044 DOI: 10.1016/j.biopha.2020.109884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a primary malignant bone sarcoma in human worldwide. It has been shown that the level of microRNA-154-5p (miR-154-5p) was downregulated in human OS tissues. However, the mechanisms by which miR-154-5p regulates the proliferation, apoptosis and invasion in OS remain unclear. Thus, the present study aimed to investigate the role of miR-154-5p during the tumorigenesis of OS. METHODS The level of miR-154-5p in human OS tissues was detected by RT-qPCR. In addition, the effects of miR-154-5p on apoptosis and invasion of OS cells were assessed by flow cytometry and transwell assays, respectively. Meanwhile, the dual luciferase reporter system assay was performed to explore the interaction of miR-154-5p and E2F5. RESULTS The level of miR-154-5p was downregulated in OS tissues. Overexpression of miR-154-5p significantly inhibited the proliferation, migration and invasion of MG63 cells. In addition, upregulation of miR-154-5p obviously induced apoptosis in MG63 cells via upregulation of Bax and cleaved caspase 3, and downregulation of Bcl-2. Moreover, luciferase reporter assay identified that E2F5 was the binding target of miR-154-5p. Meanwhile, overexpression of miR-154-5p induced cell cycle arrest in MG63 cells via inhibiting the expressions of E2F5, Cyclin E1 and CDK2. Furthermore, in vivo assays indicated that overexpression of miR-154-5p notably inhibited the tumor growth in an OS xenograft model. CONCLUSION These results indicated that miR-154-5p may function as a potential tumor suppressor in OS. Therefore, miR-154-5p might be a novel therapeutic option for the treatment of OS.
Collapse
Affiliation(s)
- Qing Tian
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yufan Gu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Feifei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lijun Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhipeng Dai
- Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450030, China
| | - Hongjian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuejian Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yong Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Qicai Han
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
17
|
Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway fuels stage progression of ovarian cancer. Aging (Albany NY) 2019; 11:11416-11439. [PMID: 31794425 PMCID: PMC6932902 DOI: 10.18632/aging.102538] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Objective: Ovarian cancer is one of the most common and lethal cancer types in women. The molecular mechanism of ovarian cancer progression is still unclear. Results: Here, we first reported that expression levels of three genes, GJB2, S100A2 and SPOCK2, were significantly higher in advanced stage than that in early stage of ovarian cancer, and upregulation of them indicated poor prognosis of patients with ovarian cancer. Subsequently, 8, 6 and 20 miRNAs were predicted to target GJB2, S100A2 and SPOCK2, respectively. Among these miRNA-mRNA pairs, hsa-miR-363-3p-SPOCK2 axis was the most potential in suppressing progression of ovarian cancer. Mechanistically, we found that hsa-miR-363-3p-SPOCK2 axis was involved in regulation of actin cytoskeleton. Moreover, 6 pseudogenes and 8 lncRNAs were identified to potentially inhibit hsa-miR-363-3p-SPOCK2 axis in ovarian cancer. Conclusions: Collectively, we elucidate a regulatory role of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway in progression of ovarian cancer, which may provide effective therapeutic approaches and promising prognostic biomarkers for ovarian cancer. Materials and methods: Differentially expressed genes (DEGs) in ovarian cancer were first screened using GSE12470, after which DEGs expression were validated using GEPIA. Kaplan-Meier analysis was employed to assess the prognostic values. Potential miRNAs were predicted by seven target prediction databases, and upstream lncRNAs and pseudogenes of hsa-miR-363-3p were forecasted through miRNet or starBase. UALCAN and starBase were used to obtain the co-expressed genes of SPOCK. Enrichment analysis for these co-expressed genes was performed by Enrichr.
Collapse
|
18
|
Yang B, Jia L, Ren H, Jin C, Ren Q, Zhang H, Hu D, Zhang H, Hu L, Xie T. LncRNA DLX6-AS1 increases the expression of HIF-1α and promotes the malignant phenotypes of nasopharyngeal carcinoma cells via targeting MiR-199a-5p. Mol Genet Genomic Med 2019; 8:e1017. [PMID: 31782911 PMCID: PMC6978402 DOI: 10.1002/mgg3.1017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the expression of long-chain noncoding growth stasis specific protein 6 antisense RNA1 (lncRNA DLX6-AS1) in nasopharyngeal carcinoma (NPC) tissues and cells, and its regulatory effect on malignant phenotypes of NPC cells. METHODS The expressions of DLX6-AS1, miR-199a-5p, and HIF-1α mRNA in NPC issues and cells were detected by qRT-PCR. The proliferation, metastasis, and invasion of cells were monitored via MTT and transwell assay. The interactions between DLX6-AS1 and miR-199a-5p, miR-199a-5p and HIF-1α were verified by luciferase activity assay. Western blot was performed to determine the regulatory effect of DLX6-AS1 and miR-199a-5p on HIF-1α protein. RESULTS The expression of lncRNA DLX6-AS1 was up-regulated in NPC tissues and cells. The proliferation, migration, and invasion of NPC were enhanced by overexpressed DLX6-AS1 but inhibited by DLX6-AS1 knockdown. In addition, DLX6-AS1 can be used as a kind of ceRNA to regulate miR-199a-5p and, thereby modulating the expression of HIF-1α. CONCLUSION We found that DLX6-AS1 was a cancer-promoting lncRNA to facilitate the progression of NPC, and its underlying mechanism was suppressing miR-199a-5p expression. This study can provide novel clues for the treatment of NPC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Jia
- Department of Nephrology, the Central Hospital of Wuhan, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Ren
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Caibao Jin
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qingrong Ren
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Haiyuan Zhang
- School of Medicine, Yangtze University, Jinzhou, P.R. China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Liu Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
19
|
Liu L, Zhang Y, Wang J, Su H, Zhao Y. Long non-coding RNA CASC9 knockdown inhibits the progression of nasopharyngeal carcinoma by regulating miR-145. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4024-4033. [PMID: 31933798 PMCID: PMC6949778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been widely confirmed to modulate many tumorigeneses, including NPC. However, the exact roles of cancer susceptibility candidate 9 (CASC9) in nasopharyngeal carcinoma (NPC) and its underlying mechanisms have not been fully established. METHODS qRT-PCR was used to determine CASC9 and miR-145 expressions. Cell apoptosis, migration, and invasion were determined by flow cytometry and transwell assays, respectively. The protein expressions of BAX, Bcl-2, MMP 9, and MMP 2 were measured by western blot. The possible binding sites between miR-145 and CASC9 were predicted by the starBase v2.0 online database and verified by a luciferase report and an RNA immunoprecipitation (RIP) assay. A xenograft tumor model was established to confirm the effects of CASC9 in NPC progression in vivo. RESULTS The expression level of CASC9 was upregulated in NPC tissues and cells. The knockdown of CASC9 evidently suppressed migration and invasion but promoted apoptosis in NPC cells. In addition, the inhibition of CASC9 evidently increased the BAX protein level and inhibited the expression of the Bcl-2, MMP 9, and MPP2 proteins in NPC cells. Moreover, miR-145 was directly bound to CASC9, and its inhibition reversed the inhibitory effect of CASC9 knockdown on the progression of NPC. Furthermore, the expression of miR-145 was decreased and negatively associated with CASC9 in NPC tissues and cells. Also, the knockdown of CASC9 inhibited tumor growth in vivo. CONCLUSION CASC9 knockdown inhibited cell migration and invasion but increased cell apoptosis in NPC cells by regulating miR-145, providing a novel insight for the treatment of NPC.
Collapse
Affiliation(s)
- Lei Liu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Yuan Zhang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Jia Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Hongxia Su
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Yulin Zhao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| |
Collapse
|
20
|
Zheng Z, Xu D, Shi K, Chen M, Lu F. Prognostic value of genome-wide DNA methylation patterns in noncoding miRNAs and lncRNAs in uveal melanomas. Aging (Albany NY) 2019; 11:6153-6174. [PMID: 31433788 PMCID: PMC6738428 DOI: 10.18632/aging.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023]
Abstract
Background: Uveal melanomas are the most common primary intraocular malignant tumors in adults, associated with a high metastasis rate and a low 5-year survival rate. It is a clinic urgency and importance to identify prognostic factors for UVMs. Results: 55 aberrantly methylated sites of miRNAs and 47 aberrantly methylated sites of lncRNAs were observed between Alive < 2 years group and Alive > 2 years group of UVMs. Two prognostic classifiers were generated. For 13- miRNAs-CpG-classifier, the AUC were 0.958, 0.848 and 0.824 at 1 year, 2 years and 3 years, respectively. For 9- lncRNAs-CpG-classifier, the AUC were 0.943, 0.869 and 0.866 at 1 year, 2 years and 3 years, respectively. Conclusion: The correlation between genome-wide DNA methylation patterns of miRNAs and lncRNAs and the overall survival in UVMs were identified in this study. This novel finding shed new light on developing biomarkers of prognosis for UVMs. Methods: DNA methylation profiles of noncoding miRNAs and lncRNAs for UVMs were accessed from The Cancer Genome Atlas. Then the prognostic value was analyzed by least absolute shrinkage and selection operator method Cox regression and tested by Time-dependent Receiver Operating Characteristic curve.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Dan Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Keqing Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Minfeng Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
21
|
Zhang W, Guo Q, Liu G, Zheng F, Chen J, Huang D, Ding L, Yang X, Song E, Xiang Y, Yao H. NKILA represses nasopharyngeal carcinoma carcinogenesis and metastasis by NF-κB pathway inhibition. PLoS Genet 2019; 15:e1008325. [PMID: 31430288 PMCID: PMC6716677 DOI: 10.1371/journal.pgen.1008325] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/30/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
The role of long non-coding RNA (lncRNA) in the progression of Nasopharyngeal carcinoma (NPC) has not been fully elucidated. The study was designed to explore the functional role of NKILA, a newly identified lncRNA, in the progression of NPC. We performed a lncRNA expression profile microarray using four NPC and paired para-cancerous tissues. NKILA was identified as a potential functional lncRNA by this lncRNA expression profile. We used 107 paraffin-embedded NPC tissues with different TNM stages to detect the expression of NKILA and analyzed the survival data by Log-rank test and Cox regression. The role of NKILA and its underlying mechanisms in the progression of NPC were evaluated by a series of experiments in vitro and vivo by silencing or expressing NKILA. Compared with control tissues, NKILA expression was identified to be decreased in NPC tissues. Low NKILA expression was correlated with unfavorable clinicopathological features and predicted poor survival outcome in NPC patients. After adjusting for potential confounders, low expression of NKILA was confirmed to be an independent prognostic factor correlated with poor survival outcomes. Furthermore, we found that NKILA overexpression in high-metastatic-potential NPC cells repressed motile behavior and impaired the metastatic capacity in vitro and in vivo. In contrast, RNAi-mediated NKILA depletion increased the invasive motility of cells with lower metastatic potential. Further experiments demonstrated that NKILA regulated the metastasis of NPC through the NF-κB pathway. Taken together, NKILA plays vital roles in the pathogenesis of NPC. The unique histological characteristics of NPC indicate that local inflammation plays a vital role in carcinogenesis of nasopharyngeal carcinoma. NF-κB is a pivotal link between NPC and inflammation. Importantly, NF-κB was found to be overexpressed in nearly all NPC tissues, and inflammatory cytokines have also been observed in NPC tissues. Inflammatory cytokines promote the susceptibility of NPC cells to metastasize via constant NF-κB activation. Here, we found that NKILA, a newly identified lncRNA, is upregulated by inflammatory cytokines and is significantly downregulated in NPC. By a series of in vitro and in vivo experiments, we show that NKILA exerts its effect as a tumor suppressor via inhibiting tumorigenesis and metastasis of NPC. Further studies indicate that NKILA regulates the metastasis of NPC through NF-κB pathway. Our research demonstrates that NKILA plays a critical role in the progression of NPC. These findings are particularly important as they provide new insights into the effects of inflammation on the biology of NPC. NKILA might be a candidate molecular marker and a novel therapy target for NPC patients.
Collapse
Affiliation(s)
- Wei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Qiannan Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guoying Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fang Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linxiaoxiao Ding
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- * E-mail: (ES); (YX); (HY)
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- * E-mail: (ES); (YX); (HY)
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- * E-mail: (ES); (YX); (HY)
| |
Collapse
|
22
|
Wang S, Claret FX, Wu W. MicroRNAs as Therapeutic Targets in Nasopharyngeal Carcinoma. Front Oncol 2019; 9:756. [PMID: 31456943 PMCID: PMC6700302 DOI: 10.3389/fonc.2019.00756] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin that is prone to local invasion and early distant metastasis. Although concurrent chemotherapy and radiotherapy improves the 5-year survival outcomes, persistent or recurrent disease still occurs. Therefore, novel therapeutic targets are needed for NPC patients. MicroRNAs (miRNAs) play important roles in normal cell homeostasis, and dysregulations of miRNA expression have been implicated in human cancers. In NPC, studies have revealed that miRNAs are dysregulated and involved in tumorigenesis, metastasis, invasion, resistance to chemo- and radiotherapy, and other disease- and treatment-related processes. The advantage of miRNA-based treatment approaches is that miRNAs can concurrently target multiple effectors of pathways involved in tumor cell differentiation and proliferation. Thus, miRNA-based cancer treatments, alone or combined with standard chemotherapy and/or radiotherapy, hold promise to improve treatment response and cure rates. In this review, we will summarize the dysregulation of miRNAs in NPC initiation, progression, and treatment as well as NPC-related signaling pathways, and we will discuss the potential applications of miRNAs as biomarkers and therapeutic targets in NPC patients. We conclude that miRNAs might be potential promising therapeutic targets in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Sumei Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - François-Xavier Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States
| | - Wanyin Wu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Long non-coding RNA 520 is a negative prognostic biomarker and exhibits pro-oncogenic function in nasopharyngeal carcinoma carcinogenesis through regulation of miR-26b-3p/USP39 axis. Gene 2019; 707:44-52. [DOI: 10.1016/j.gene.2019.02.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
24
|
Jia X, Niu P, Xie C, Liu H. Long noncoding RNA PXN-AS1-L promotes the malignancy of nasopharyngeal carcinoma cells via upregulation of SAPCD2. Cancer Med 2019; 8:4278-4291. [PMID: 31173488 PMCID: PMC6675719 DOI: 10.1002/cam4.2227] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidences highlight the critical roles of long noncoding RNAs (lncRNAs) in a variety of cancers. LncRNA PXN‐AS1‐L was previously shown to exert oncogenic roles in hepatocellular carcinoma. However, the expression, role, and molecular mechanism of PXN‐AS1‐L in nasopharyngeal carcinoma (NPC) malignancy remain unknown. Here, we determined that PXN‐AS1‐L is upregulated in NPC tissues and cell lines. Increased expression of PXN‐AS1‐L predicts worse prognosis of NPC patients. PXN‐AS1‐L overexpression promotes NPC cell proliferation, migration, and invasion in vitro, and NPC tumor growth in vivo. PXN‐AS1‐L silencing suppresses NPC cell proliferation, migration, and invasion in vitro. Mechanistically, PXN‐AS1‐L directly interacts with SAPCD2 mRNA 3′‐untranslated region, prevents the binding of microRNAs‐AGO silencing complex to SAPCD2 mRNA, and upregulates the mRNA and protein level of SAPCD2. SAPCD2 is also increased in NPC tissues. The expression of SAPCD2 is significantly positively associated with that of PXN‐AS1‐L in NPC tissues. Gain‐of‐function and loss‐of‐function experiments demonstrated that SAPCD2 also promotes NPC cell proliferation, migration, and invasion. Furthermore, depletion of SAPCD2 significantly reverses the roles of PXN‐AS1‐L in promoting NPC cell proliferation, migration, and invasion in vitro, and NPC tumor growth in vivo. In conclusion, lncRNA PXN‐AS1‐L is upregulated in NPC and promoted NPC malignancy by upregulating SAPCD2 via direct RNA‐RNA interaction.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department of Otolaryngology, Henan Province People's Hospital of Henan University, Zhengzhou, China
| | - Po Niu
- Department of Radiotherapy, Henan Province People's Hospital of Henan University, Zhengzhou, China
| | - Cuncun Xie
- Department of Otolaryngology, Henan Province People's Hospital of Henan University, Zhengzhou, China
| | - Hongjian Liu
- Department of Otolaryngology, Henan Province People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
25
|
Zhou H, Ma Y, Zhong D, Yang L. Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration and invasion and enhances cisplatin sensitivity of glioma cells by sponging miR-204. Biomed Pharmacother 2019; 112:108633. [PMID: 30784927 DOI: 10.1016/j.biopha.2019.108633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/26/2023] Open
Abstract
Increasing evidence suggests the involvement of long noncoding RNAs (lncRNAs) in various biological process including cancer progression and drug resistance. LncRNA HOXD cluster antisense RNA 1 (HOXD-AS1) had been demonstrated to act as an oncogenic gene, contributing to the development and progression of several cancers. However, its functional role and molecular mechanism underlying glioma progression and cisplatin (DDP) resistance has not been well elucidated. In this study, we found that HOXD-AS1 was up-regulated in glioma tissues and cells and negatively correlated with survival time. HOXD-AS1 knockdown suppressed proliferation, migration and invasion as well as enhanced DDP sensitivity of glioma cells. Moreover, HOXD-AS1 could function as a miR-204 sponge in glioma cells. Overexpression of miR-204 could mimic the functional role of down-regulated HOXD-AS1 in glioma cells. Furthermore, miR-204 inhibition reversed the effect of HOXD-AS1 knockdown on cancer progression and DDP sensitivity of glioma cells. In conclusion, knockdown of HOXD-AS1 suppressed proliferation, migration and invasion and enhanced DDP sensitivity of glioma cells through sequestering miR-204, providing a promising therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yabin Ma
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Dequan Zhong
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Li Yang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
26
|
Long non-coding RNA 319 facilitates nasopharyngeal carcinoma carcinogenesis through regulation of miR-1207-5p/KLF12 axis. Gene 2019; 680:51-58. [DOI: 10.1016/j.gene.2018.09.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
|
27
|
Yang T, Zhang W, Wang L, Xiao C, Guo B, Gong Y, Liang X, Huang D, Li Q, Nan Y, Xiang Y, Shao J. Long intergenic noncoding RNA-p21 inhibits apoptosis by decreasing PUMA expression in non-small cell lung cancer. J Int Med Res 2018; 47:481-493. [PMID: 30556447 PMCID: PMC6384454 DOI: 10.1177/0300060518816592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are important mediators in tumor progression. Long intergenic noncoding RNA-p21 (lincRNA-p21) participates in multiple biological processes. This study explored the role of lincRNA-p21 in human non-small cell lung cancer (NSCLC) progression and potential regulatory mechanisms. METHODS LincRNA-p21 expression in NSCLC tissues and cell lines (A549, H1299, H1650, and NCI-H2087) was determined by quantitative real-time PCR. LincRNA-p21 overexpressing and sh-lincRNA-p21 lentiviral were respectively transfected into H1299 and A549 cells. Flow cytometry was used to measure apoptosis. Microarray analysis and RNA pull-down assay were used to predict the target genes of lincRNA-p21. Finally, PUMA siRNA and overexpressing PUMA were transfected into NSCLC cells, and the extent of cell apoptosis was measured. The protein expression levels of the relative genes were confirmed by western blot analysis. RESULTS LincRNA-p21 was significantly upregulated in NSCLC tissues and cells. The upregulation of lincRNA-p21 considerably inhibited cell apoptosis while the downregulation of lincRNA-p21 showed the opposite effect. PUMA was a direct target gene of lincRNA-p21 and was negatively correlated with lincRNA-p21 in NSCLC specimens. The anti-apoptotic effect of lincRNA-p21 can be effectively attenuated by the upregulation of PUMA. CONCLUSION LincRNA-p21 is aberrantly upregulated in NSCLC and inhibits cell apoptosis by decreasing PUMA expression.
Collapse
Affiliation(s)
- Tao Yang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Wenjun Zhang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Li Wang
- 2 Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Chunyan Xiao
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Bingling Guo
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yi Gong
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Xiping Liang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Dehong Huang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Qiying Li
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yingyu Nan
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Ying Xiang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Jianghe Shao
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
28
|
LncRNA PMS2L2 protects ATDC5 chondrocytes against lipopolysaccharide-induced inflammatory injury by sponging miR-203. Life Sci 2018; 217:283-292. [PMID: 30550887 DOI: 10.1016/j.lfs.2018.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
AIMS PMS1 Homolog 2, Mismatch Repair System Component Pseudogene 2 (PMS2L2) has been reported as an up-regulated long non-coding RNA (lncRNA) in osteoarthritis (OA) tissues. The purpose of the present work is to explore whether the differently expressed PMS2L2 is associated with the pathogenesis of OA. MAIN METHODS Chondrogenic ATDC5 cells were exposed to various doses of lipopolysaccharide (LPS). The expression of PMS2L2, miR-203, and MCL-1 in cell was altered by transfection. Thereafter, cell viability, apoptosis, the expression changes of apoptosis-related factors and the release of pro-inflammatory factors were respectively assessed. Moreover, the regulatory relationship between PMS2L2 and miR-203, as well as between miR-203 and MCL-1 were studied. KEY FINDINGS PMS2L2 expression was down-regulated following LPS stimulation. PMS2L2 protected ATDC5 cells against LPS-induced injury by increasing cell viability, decreasing apoptosis, and repressing the release of pro-inflammatory factors. Meanwhile, PMS2L2 increased the expression levels of COL2A1 and ACAN, while down-regulated the expression levels of MMP13 and ADAMTS-5. PMS2L2 worked as a molecular sponge for miR-203. Besides, miR-203 overexpression partially abolished the chondroprotective effects of PMS2L2. MCL-1 was a direct target of miR-203, and it exerted the similarly chondroprotective effects as PMS2L2. Furthermore, PMS2L2 and MCL-1 blocked Wnt/β-Catenin and JAK/STAT signaling pathways also via a miR-203-dependent manner. SIGNIFICANCE Our study reveals a protective role of PMS2L2 in LPS-induced inflammatory injury in chondrocytes. PMS2L2/miR-203/MCL-1 axis may serve as a new gene therapy strategy for the treatment of OA.
Collapse
|
29
|
LINC00210 as a miR-328-5p sponge promotes nasopharyngeal carcinoma tumorigenesis by activating NOTCH3 pathway. Biosci Rep 2018; 38:BSR20181168. [PMID: 30341249 PMCID: PMC6240715 DOI: 10.1042/bsr20181168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/26/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022] Open
Abstract
As a kind of essential regulators, long noncoding RNAs (lncRNAs) have attracted a lot of attention in recent years. Nevertheless, the function of lncRNA in nasopharyngeal carcinoma (NPC) remains poorly understood. In the present study, we explained the role and mechanism of LINC00210 in NPC progression. We found that LINC00210 expression was up-regulated in NPC samples. Besides, its overexpression was positively correlated with NPC metastasis while predicting poor prognosis. Based on functional experiments, we revealed that LINC00210 contributed to NPC cell proliferation and invasion in vitro, and promotes tumor growth in vivo. Mechanistically, we identified that LINC00210 was located in the cytoplasm of NPC cells and served as the miR-328-5p sponge. Furthermore, we showed that miR-328-5p targets the 3′ untranslated region (3′-UTR) of NOTCH3. Through inhibiting miR-328-5p activity, LINC00210 promoted NOTCH3 expression in NPC, leading to activation of NOTCH3 signaling pathway. In conclusion, our study indicates LINC00210 promotes NPC progression through modulating proliferation and invasion.
Collapse
|
30
|
Wang J, Pu J, Zhang Y, Yao T, Luo Z, Li W, Xu G, Liu J, Wei W, Deng Y. DANCR contributed to hepatocellular carcinoma malignancy via sponging miR-216a-5p and modulating KLF12. J Cell Physiol 2018; 234:9408-9416. [PMID: 30430564 DOI: 10.1002/jcp.27625] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) has been identified as an oncogene in several cancers. However, the biological function and role of DANCR in hepatocellular carcinoma (HCC) remain unclear. Our current study aimed to investigate the detailed mechanism of DANCR in HCC. We found that DANCR was significantly upregulated in HCC cell lines in comparison to LO2 cells. Then, we observed that knockdown of DANCR could greatly inhibit Huh7 and HepG2 cell proliferation. In addition, HCC cell apoptosis was increased by silence of DANCR and meanwhile, cell cycle progression was blocked in G1 phase. Apart from these, downregulation of DANCR repressed HCC cell migration and invasion ability obviously. As predicted by the bioinformatics analysis, microRNA-216a-5p (miR-216a-5p) could serve as a direct target of DANCR. MiR-216a-5p has been reported to be involved in many cancers. Here, the correlation between miR-216a-5p and DANCR was confirmed using dual-luciferase reporter assay and radioimmunoprecipitation assay. Subsequently, Kruppel-like factor 12 (KLF12) exerts an important role in different tumor types. KLF12 can function as a downstream target of miR-216a-5p. Finally, the in vivo experiments were used and the data proved that DANCR also strongly suppressed HCC tumor growth in vivo via targeting miR-216a-5p and KLF12. In conclusion, our study indicated that DANCR might provide a new perspective for HCC treatment.
Collapse
Affiliation(s)
- Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Ying Zhang
- Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Library of Youjiang Medical College for Nationalities, Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Tianwei Yao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Zongjiang Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Guidan Xu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Juan Liu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Wujun Wei
- Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Yibin Deng
- Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China.,Centre for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| |
Collapse
|
31
|
Wang Y, Zheng C, Li T, Zhang R, Wang Y, Zhang J, He Q, Sun Z, Wang X. Long noncoding RNA Z38 promotes cell proliferation and metastasis and inhibits cell apoptosis in human gastric cancer. Oncol Lett 2018; 16:6051-6058. [PMID: 30333877 PMCID: PMC6176416 DOI: 10.3892/ol.2018.9343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-associated mortality and has a high tendency to metastasize, making it a priority to develop novel diagnostic and treatment methods at the early stages. The present study investigated the role of a newly-discovered long non-coding RNA, Z38, in gastric cancer cell proliferation, metastasis and apoptosis. It was observed that Z38 was upregulated in tissues from patients with gastric cancer as well as in cultured gastric cancer cells. Knockdown of Z38 decreased the cell proliferative rate, as evidenced by colony formation assays and cell proliferation assays. In addition, Transwell assays and wound-healing assays demonstrated that depletion of Z38 significantly inhibited cell migration and invasion in AGS and MKN74 cells. Furthermore, a cell apoptosis assay and measurement of relative activities of related caspases revealed that depletion of Z38 increased cell apoptosis by promoting the activities of caspase-3 and caspase-9, but not that of caspase-8. Finally, western blot analysis further demonstrated the role of Z38 in the apoptosis of AGS and MKN74 cells. These results suggested that Z38 promotes cell proliferation and metastasis, and inhibits cell apoptosis in gastric cancer. Z38 may represent a novel therapeutic target for the treatment of gastric cancer in clinic.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012, P.R. China.,Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunhui Zheng
- Department of Oncology Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Teng Li
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Rui Zhang
- Department of Gynecology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yang Wang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jiaxin Zhang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingsi He
- Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Zuocheng Sun
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xinsheng Wang
- Department of General Surgery, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| |
Collapse
|
32
|
Guo H, Huang S, Li S, Yu H, Wu S, Zhou X. Prognostic significance of the long noncoding RNAs in nasopharyngeal carcinoma: a systematic review and meta-analysis. Cancer Manag Res 2018; 10:1763-1779. [PMID: 29988744 PMCID: PMC6029603 DOI: 10.2147/cmar.s164695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background and objective Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy. Despite recent advances in treatment, the prognosis, particularly for those at the advanced stages, remains poor. Moreover, the underlying genetic and molecular events have remained obscure so far. Recently, increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) could act as either oncogenes or tumor suppressor genes in various cancers depending on their targets. And some lncRNAs have been shown to be aberrantly expressed in NPC. In this meta-analysis, we try to elucidate the possible role of lncRNAs and their expression on prognosis in NPC. Methods We searched the databases of PubMed, Embase, and Web of Science for relevant articles ranging from January 2000 to December 2017. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate the prognostic value of lncRNAs in NPC. Odds ratios (ORs) were used to assess the association between lncRNAs and clinicopathological characteristics. Results A total of 14 eligible publications including 14 on prognosis and eight on clinicopathological characteristics were identified. Our results demonstrated that the high expression of lncRNAs was related to poor overall survival (OS; HR =1.55; 95% CI =1.01, 2.40; P=0.05) and disease-free survival (DFS; HR =1.83; 95% CI =1.07, 3.13; P=0.03) of NPC. Moreover, the expression of lncRNAs was correlated with male gender (OR =1.42; 95% CI =1.05, 1.91; P=0.02), lymph node status (OR =2.20; 95% CI =1.29, 3.73; P=0.004), and tumor node metastasis (TNM) clinical stage (OR =2.55; 95% CI =1.12, 5.78; P=0.03). Conclusion This meta-analysis shows that the level of expression of lncRNAs may be a potential prognostic indicator in NPC.
Collapse
Affiliation(s)
- HuanHuan Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,
| | - Shuo Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,
| | - Hui Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,
| | - ShiXiong Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,
| | - XuHong Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,
| |
Collapse
|
33
|
Chen G, Sun W, Hua X, Zeng W, Yang L. Long non-coding RNA FOXD2-AS1 aggravates nasopharyngeal carcinoma carcinogenesis by modulating miR-363-5p/S100A1 pathway. Gene 2018; 645:76-84. [DOI: 10.1016/j.gene.2017.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
|
34
|
Guo F, Chen YZ, Li L, Chen C, Jin JH, Yang J, Chen JJ, Chen XY, Guo M, Chen YM. Long non-coding RNA XLOC_008466 acts as an oncogenic molecular in cervical cancer tumorigenesis. Biomed Pharmacother 2018; 98:88-94. [DOI: 10.1016/j.biopha.2017.11.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
|
35
|
Guo J, Cai H, Liu X, Zheng J, Liu Y, Gong W, Chen J, Xi Z, Xue Y. Long Non-coding RNA LINC00339 Stimulates Glioma Vasculogenic Mimicry Formation by Regulating the miR-539-5p/TWIST1/MMPs Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:170-186. [PMID: 29499931 PMCID: PMC5751969 DOI: 10.1016/j.omtn.2017.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
Glioma is recognized as a highly angiogenic malignant brain tumor. Vasculogenic mimicry (VM) greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. However, the molecular mechanisms of VM formation in glioma remain unclear. Here, we demonstrated that LINC00339 was upregulated in glioma tissue as well as in glioma cell lines. The expression of LINC00339 in glioma tissues was positively correlated with glioma VM formation. Knockdown of LINC00339 inhibited glioma cell proliferation, migration, invasion, and tube formation, meanwhile downregulating the expression of VM-related molecular MMP-2 and MMP-14. Furthermore, knockdown of LINC00339 significantly increased the expression of miR-539-5p. Both bioinformatics and luciferase reporter assay revealed that LINC00339 regulated the above effects via binding to miR-539-5p. Besides, overexpression of miR-539-5p resulted in decreased expression of TWIST1, a transcription factor known to play an oncogenic role in glioma and identified as a direct target of miR-539-5p. TWIST1 upregulated the promoter activities of MMP-2 and MMP-14. The in vivo study showed that nude mice carrying tumors with knockdown of LINC00339 and overexpression of miR-539-5p exhibited the smallest tumor volume through inhibiting VM formation. In conclusion, LINC00339 may be used as a novel therapeutic target for VM formation in glioma.
Collapse
Affiliation(s)
- Junqing Guo
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
36
|
Kong YG, Cui M, Chen SM, Xu Y, Xu Y, Tao ZZ. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 2017; 639:77-84. [PMID: 28987345 DOI: 10.1016/j.gene.2017.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) have played crucial roles in various cancers, including nasopharyngeal carcinoma (NPC). In our study, we focused on the biological function and clinical significance of lncRNA LINC00460 in NPC. It was indicated that LINC00460 was markedly increased in NPC tissues and cells compared to their corresponding controls. Silencing LINC00460 was able to suppress NPC cell growth in vitro while overexpressing LINC00460 reversed this process. Moreover, in vivo tumor xenografts were established using CNE-1/SUNE-1 cells to detect the function of LINC00460 in NSCLC tumorigenesis. Rescue assay was performed to further confirm that LINC00460 contributed to the progression of NPC through regulating miR-149-5p/IL6 signal pathway. In conclusion, we have uncovered that LINC00460 could be regarded as a novel prognostic biomarker and therapeutic target in NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Min Cui
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
37
|
Wang Q, Jiang S, Song A, Hou S, Wu Q, Qi L, Gao X. HOXD-AS1 functions as an oncogenic ceRNA to promote NSCLC cell progression by sequestering miR-147a. Onco Targets Ther 2017; 10:4753-4763. [PMID: 29033588 PMCID: PMC5628688 DOI: 10.2147/ott.s143787] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide, and it occurs at a higher frequency in males. HOXD-AS1, an important cancer-associated long noncoding RNA (lncRNA), contributes to the development and progression of several cancers. However, the exact roles of HOXD-AS1 in NSCLC progression are still unknown. Here, we investigated the underlying mechanisms of HOXD-AS1 in human NSCLC tissues. We found that lncRNA HOXD-AS1 was specifically upregulated (P<0.001) in NSCLC tissues and promoted cancer cell growth by targeting miR-147a. Moreover, HOXD-AS1 expression positively correlated with NSCLC clinical pathologic characteristics (tumor size, P=0.006; tumor stage, P=0.044; recurrence, P=0.031) and survival rate (P=0.003). HOXD-AS1 knockdown reduced proliferation and promoted apoptosis of NSCLC cells. The dual-luciferase reporter assay showed that HOXD-AS1 could negatively regulate the expression of miR-147a. miR-147a inhibition abrogated the effect of HOXD-AS1 knockdown on the proliferation and apoptosis of NSCLC cells. Furthermore, HOXD-AS1 positively regulated the expression of pRB (a tumor suppressor protein) in NSCLC cells. Taken together, our data indicated that HOXD-AS1 might be an oncogenic lncRNA that promotes proliferation of NSCLC and could be a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing.,Laboratory Animal Center, Nantong University
| | - Shujun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| | - Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| | - Qinfeng Wu
- Department of Rehabilitation, Affiliated Hospital of Nantong University, Nantong University
| | - Longju Qi
- Interventional Therapy Department of the Third People's Hospital of Nantong City, Nantong University, Nantong, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| |
Collapse
|
38
|
Zeng X, Hu Z, Ke X, Tang H, Wu B, Wei X, Liu Z. Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell Cycle 2017; 16:2212-2219. [PMID: 28881158 DOI: 10.1080/15384101.2017.1361072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recently, long non-coding RNAs (lncRNAs) have emerged as new gene regulators and prognostic markers in several types of cancer, including renal cell carcinoma (RCC). In this study, we identified an upregulated lncRNA, DLX6-AS1, in RCC tumor tissues compared with normal kidney tissues. Our data suggested that DLX6-AS1 promoted RCC cell growth and tumorigenesis via targeting miR-26a. In addition, we observed that PTEN overexpression restored the renal cancer cell growth and also rescued the RCC tumorigenesis. In summary, we conclude that DLX6-AS1 promotes renal cell carcinoma development via regulation of miR-26a/PTEN axis.
Collapse
Affiliation(s)
- Xing Zeng
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhiquan Hu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xinwen Ke
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Huake Tang
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Bolin Wu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xian Wei
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
39
|
Liu Y, Tao Z, Qu J, Zhou X, Zhang C. Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-5p in nasopharyngeal carcinoma. Biochem Biophys Res Commun 2017; 491:374-381. [DOI: 10.1016/j.bbrc.2017.07.093] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 02/09/2023]
|
40
|
Ou L, Wang D, Zhang H, Yu Q, Hua F. Decreased Expression of miR-138-5p by lncRNA H19 in Cervical Cancer Promotes Tumor Proliferation. Oncol Res 2017; 26:401-410. [PMID: 28797320 PMCID: PMC7844697 DOI: 10.3727/096504017x15017209042610] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the carcinogenesis of cervical cancer. However, the expression and underlying mechanisms of miRNA in cervical cancer progression remain unclear. In the present study, our data showed that the expression of miR-138-5p was significantly downregulated in cervical cancer tissues, and decreased expression of miR-138-5p was correlated with advanced FIGO stage, poor differentiation, lymph node metastasis, and poor overall survival of cervical cancer patients. Function assays showed that overexpression of miR-138-5p reduced cervical cancer cell proliferation, arrested cells in the G0/G1 phase, and induced cell apoptosis in vitro. Remarkably, SIRT1 was confirmed as a direct target of miR-138-5p in cervical cancer, and miR-138-5p exerted the reduced tumor functions by suppressing SIRT1 expression. Moreover, we further identified that lncRNA H19 could act as a molecular sponge of miR-138-5p in cervical cancer progression. Taken together, these results suggested that miR-138-5p could suppress cervical cancer cell progression by targeting SIRT1.
Collapse
Affiliation(s)
- Lei Ou
- Department of Gynecology and Obstetrics, Zhengzhou Peoples HospitalZhengzhouP.R. China
| | - Dazhong Wang
- Department of Traditional Chinese Medicine, Zhengzhou Peoples HospitalZhengzhouP.R. China
| | - Han Zhang
- Department of Gynecology and Obstetrics, Zhengzhou Peoples HospitalZhengzhouP.R. China
| | - Qian Yu
- Department of Gynecology and Obstetrics, Zhengzhou Peoples HospitalZhengzhouP.R. China
| | - Fangfang Hua
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xinxiang Medical UniversityWeihuiP.R. China
| |
Collapse
|
41
|
Zhang CZ. Long intergenic non-coding RNA 668 regulates VEGFA signaling through inhibition of miR-297 in oral squamous cell carcinoma. Biochem Biophys Res Commun 2017; 489:404-412. [PMID: 28564590 DOI: 10.1016/j.bbrc.2017.05.155] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 01/17/2023]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been reported to have crucial regulatory efficiency in human cancer biology. Long intergenic non-coding RNA 668 (LINC00668) was regarded as an oncogene in multiple cancers. However, the underlying molecular mechanism of LINC00668 in oral squamous cell carcinoma (OSCC) has not been studied. In this study, we first demonstrated that LINC00668 expression was up-regulated, which was correlated with tumor progression, and miR-297 down-regulated in OSCC tissues and cells. Importantly, LINC00668 expression was negatively correlated with miR-297 expression in OSCC tissues. Loss-of-function of LINC00668 revealed that LINC00668 functioned as a ceRNA for miR-297 to facilitate VEGFA expression, promoting OSCC progression. Furthermore, LINC00668 knockdown suppressed tumor growth and reduced the expression of proliferation antigen ki-67 in vivo. Finally, we confirmed that LINC00668 promoted OSCC activity through VEGFA signaling. In conclusion, these results suggest that LINC00668 promotes OSCC tumorigenesis via miR-297/VEGFA axis, which may provide a new target for the diagnosis and therapy of OSCC disease.
Collapse
Affiliation(s)
- Chen-Zheng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Luoyu Rd. 237, Wuhan 430079, People's Republic of China.
| |
Collapse
|