1
|
Becker S, Swoboda A, Siemer H, Schimmelpfennig S, Sargin S, Shahin V, Schwab A, Najder K. Membrane potential dynamics of C5a-stimulated neutrophil granulocytes. Pflugers Arch 2024; 476:1007-1018. [PMID: 38613695 PMCID: PMC11139730 DOI: 10.1007/s00424-024-02947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.
Collapse
Affiliation(s)
- Stina Becker
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Aljoscha Swoboda
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Henrik Siemer
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
| | - Karolina Najder
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Kacar S, Hacioglu C, Kar F. Irradiated riboflavin over nonradiated one: Potent antimigratory, antiproliferative and cytotoxic effects on glioblastoma cells. J Cell Mol Med 2024; 28:e18288. [PMID: 38597418 PMCID: PMC11005454 DOI: 10.1111/jcmm.18288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Riboflavin is a water-soluble yellowish vitamin and is controversial regarding its effect on tumour cells. Riboflavin is a powerful photosensitizer that upon exposure to radiation, undergoes an intersystem conversion with molecular oxygen, leading to the production of ROS. In the current study, we sought to ascertain the impact of irradiated riboflavin on C6 glioblastoma cells regarding proliferation, cell death, oxidative stress and migration. First, we compared the proliferative behaviour of cells following nonradiated and radiated riboflavin. Next, we performed apoptotic assays including Annexin V and caspase 3, 7 and 9 assays. Then we checked on oxidative stress and status by flow cytometry and ELISA kits. Finally, we examined inflammatory change and levels of MMP2 and SIRT1 proteins. We caught a clear antiproliferative and cytotoxic effect of irradiated riboflavin compared to nonradiated one. Therefore, we proceeded with our experiments using radiated riboflavin. In all apoptotic assays, we observed a dose-dependent increase. Additionally, the levels of oxidants were found to increase, while antioxidant levels decreased following riboflavin treatment. In the inflammation analysis, we observed elevated levels of both pro-inflammatory and anti-inflammatory cytokines. Additionally, after treatment, we observed reduced levels of MMP2 and SIRT. In conclusion, radiated riboflavin clearly demonstrates superior antiproliferative and apoptotic effects on C6 cells at lower doses compared to nonradiated riboflavin.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
- Department of Surgery, Division of Oncologic SurgeryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of MedicineDuzce UniversityDuzceTurkey
| | - Fatih Kar
- Department of Biochemistry, Faculty of MedicineKutahya Health Sciences UniversityKutahyaTurkey
| |
Collapse
|
3
|
Stouras I, Vasileiou M, Kanatas PF, Tziona E, Tsianava C, Theocharis S. Metabolic Profiles of Cancer Stem Cells and Normal Stem Cells and Their Therapeutic Significance. Cells 2023; 12:2686. [PMID: 38067114 PMCID: PMC10705308 DOI: 10.3390/cells12232686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) are a rare cancer cell population, responsible for the facilitation, progression, and resistance of tumors to therapeutic interventions. This subset of cancer cells with stemness and tumorigenic properties is organized in niches within the tumor microenvironment (TME) and presents altered regulation in a variety of metabolic pathways, including glycolysis, oxidative phosphorylation (OXPHOS), as well as lipid, amino acid, and iron metabolism. CSCs exhibit similarities as well as differences when comparedto normal stem cells, but also possess the ability of metabolic plasticity. In this review, we summarize the metabolic characteristics of normal, non-cancerous stem cells and CSCs. We also highlight the significance and implications of interventions targeting CSC metabolism to potentially achieve more robust clinical responses in the future.
Collapse
Affiliation(s)
- Ioannis Stouras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Section of Hematology and Medical Oncology, Department of Clinical Therapeutics, General Hospital Alexandra, 11528 Athens, Greece
| | - Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis F. Kanatas
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eleni Tziona
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Tsianava
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Rion, Greece;
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
4
|
Bonuccelli G, Brooks DR, Shepherd S, Sotgia F, Lisanti MP. Antibiotics that target mitochondria extend lifespan in C. elegans. Aging (Albany NY) 2023; 15:11764-11781. [PMID: 37950722 PMCID: PMC10683609 DOI: 10.18632/aging.205229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/13/2023]
Abstract
Aging is a continuous degenerative process caused by a progressive decline of cell and tissue functions in an organism. It is induced by the accumulation of damage that affects normal cellular processes, ultimately leading to cell death. It has been speculated for many years that mitochondria play a key role in the aging process. In the aim of characterizing the implications of mitochondria in aging, here we used Caenorhabditis elegans (C. elegans) as an organismal model treated a panel of mitochondrial inhibitors and assessed for survival. In our study, we assessed survival by evaluating worm lifespan, and we assessed aging markers by evaluating the pharyngeal muscle contraction, the accumulation of lipofuscin pigment and ATP levels. Our results show that treatment of worms with either doxycycline, azithromycin (inhibitors of the small and the large mitochondrial ribosomes, respectively), or a combination of both, significantly extended median lifespan of C. elegans, enhanced their pharyngeal pumping rate, reduced their lipofuscin content and their energy consumption (ATP levels), as compared to control untreated worms, suggesting an aging-abrogating effect for these drugs. Similarly, DPI, an inhibitor of mitochondrial complex I and II, was capable of prolonging the median lifespan of treated worms. On the other hand, subjecting worms to vitamin C, a pro-oxidant, failed to extend C. elegans lifespan and upregulated its energy consumption, revealing an increase in ATP level. Therefore, our longevity study reveals that mitochondrial inhibitors (i.e., mitochondria-targeting antibiotics) could abrogate aging and extend lifespan in C. elegans.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Darren R. Brooks
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Sally Shepherd
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| |
Collapse
|
5
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
6
|
Malalasekara L, Escalante-Semerena JC. The coenzyme B 12 precursor 5,6-dimethylbenzimidazole is a flavin antagonist in Salmonella. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:178-194. [PMID: 37662669 PMCID: PMC10468695 DOI: 10.15698/mic2023.09.803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Salmonella enterica subsp. enterica sv. Typhimurium str. LT2 (hereafter S. Typhimurium) synthesizes adenosylcobalamin (AdoCbl, CoB12) de novo only under anoxic conditions, but it can assemble the lower ligand loop (a.k.a. the nucleotide loop) and can form the unique C-Co bond present in CoB12 in the presence or absence of molecular oxygen. During studies of nucleotide loop assembly in S. Typhimurium, we noticed that the growth of this bacterium could be arrested by the lower ligand nucleobase, namely 5,6-dimethylbenzimidazole (DMB). Here we report in vitro and in vivo evidence that shows that the structural similarity of DMB to the isoalloxazine moiety of flavin cofactors causes its deleterious effect on cell growth. We studied DMB inhibition of the housekeeping flavin dehydrogenase (Fre) and three flavoenzymes that initiate the catabolism of tricarballylate, succinate or D-alanine in S. Typhimurium. Notably, while growth with tricarballylate was inhibited by 5-methyl-benzimidazole (5-Me-Bza) and DMB, growth with succinate or glycerol was arrested by DMB but not by 5-Me-Bza. Neither unsubstituted benzimidazole nor adenine inhibited growth of S. Typhimurium at DMB inhibitory concentrations. Whole genome sequencing analysis of spontaneous mutant strains that grew in the presence of inhibitory concentrations of DMB identified mutations effecting the cycA (encodes D-Ala/D-Ser transporter) and dctA (encodes dicarboxylate transporter) genes and in the coding sequence of the tricarballylate transporter (TcuC), suggesting that increased uptake of substrates relieved DMB inhibition. We discuss two possible mechanisms of inhibition by DMB.
Collapse
|
7
|
Doczi J, Karnok N, Bui D, Azarov V, Pallag G, Nazarian S, Czumbel B, Seyfried TN, Chinopoulos C. Viability of HepG2 and MCF-7 cells is not correlated with mitochondrial bioenergetics. Sci Rep 2023; 13:10822. [PMID: 37402778 DOI: 10.1038/s41598-023-37677-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Alterations in metabolism are a hallmark of cancer. It is unclear if oxidative phosphorylation (OXPHOS) is necessary for tumour cell survival. In this study, we investigated the effects of severe hypoxia, site-specific inhibition of respiratory chain (RC) components, and uncouplers on necrotic and apoptotic markers in 2D-cultured HepG2 and MCF-7 tumour cells. Comparable respiratory complex activities were observed in both cell lines. However, HepG2 cells exhibited significantly higher oxygen consumption rates (OCR) and respiratory capacity than MCF-7 cells. Significant non-mitochondrial OCR was observed in MCF-7 cells, which was insensitive to acute combined inhibition of complexes I and III. Pre-treatment of either cell line with RC inhibitors for 24-72 h resulted in the complete abolition of respective complex activities and OCRs. This was accompanied by a time-dependent decrease in citrate synthase activity, suggesting mitophagy. High-content automated microscopy recordings revealed that the viability of HepG2 cells was mostly unaffected by any pharmacological treatment or severe hypoxia. In contrast, the viability of MCF-7 cells was strongly affected by inhibition of complex IV (CIV) or complex V (CV), severe hypoxia, and uncoupling. However, it was only moderately affected by inhibition of complexes I, II, and III. Cell death in MCF-7 cells induced by inhibition of complexes II, III, and IV was partially abrogated by aspartate. These findings indicate that OXPHOS activity and viability are not correlated in these cell lines, suggesting that the connection between OXPHOS and cancer cell survival is dependent on the specific cell type and conditions.
Collapse
Affiliation(s)
- Judit Doczi
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Noemi Karnok
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - David Bui
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Victoria Azarov
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Gergely Pallag
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Sara Nazarian
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Bence Czumbel
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | | | - Christos Chinopoulos
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
8
|
Ma Y, Huangfu Y, Deng L, Wang P, Shen L, Zhou Y. High serum riboflavin is associated with the risk of sporadic colorectal cancer. Cancer Epidemiol 2023; 83:102342. [PMID: 36863217 DOI: 10.1016/j.canep.2023.102342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Experimental results indicate that riboflavin is involved in tumorigenesis. Data regarding the relationship between riboflavin and colorectal cancer (CRC) are limited, and findings vary between observational studies. DESIGN This was a case-control retrospective study. OBJECTIVE This study aimed to evaluate the associations between serum riboflavin level and sporadic CRC risk. METHODS In total, 389 participants were enrolled in this study - including 83 CRC patients without family history and 306 healthy controls - between January 2020 and March 2021 at the Department of Colorectal Surgery and Endoscope Center at Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. Age, sex, body mass index, history of polyps, disease conditions (e.g., diabetes), medications, and eight other vitamins were used as confounding factors. Adjusted smoothing spline plots, subgroup analysis, and multivariate logistic regression analysis were conducted to estimate the relative risk between serum riboflavin levels and sporadic CRC risk. After fully adjusting for the confounding factors, an increased risk of colorectal cancer was suggested for individuals with higher levels of serum riboflavin (OR = 1.08 (1.01, 1.15), p = 0.03) in a dose-response relationship. CONCLUSIONS Our results support the hypothesis that higher levels of riboflavin may play a role in facilitating colorectal carcinogenesis. The finding of high levels of circulating riboflavin in patients with CRC warrants further investigation.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai 200092, China
| | - Yuchan Huangfu
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Deng
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Wang
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai 200092, China.
| | - Yunlan Zhou
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Kumari P, Kaul G, Kumar TA, Akhir A, Shukla M, Sharma S, Kamat SS, Chopra S, Chakrapani H. Heterocyclic Diaryliodonium-Based Inhibitors of Carbapenem-Resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0477322. [PMID: 36976008 PMCID: PMC10101131 DOI: 10.1128/spectrum.04773-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Finding new therapeutic strategies against Gram-negative pathogens such as Acinetobacter baumannii is challenging. Starting from diphenyleneiodonium (dPI) salts, which are moderate Gram-positive antibacterials, we synthesized a focused heterocyclic library and found a potent inhibitor of patient-derived multidrug-resistant Acinetobacter baumannii strains that significantly reduced bacterial burden in an animal model of infection caused by carbapenem-resistant Acinetobacter baumannii (CRAB), listed as a priority 1 critical pathogen by the World Health Organization. Next, using advanced chemoproteomics platforms and activity-based protein profiling (ABPP), we identified and biochemically validated betaine aldehyde dehydrogenase (BetB), an enzyme that is involved in the metabolism and maintenance of osmolarity, as a potential target for this compound. Together, using a new class of heterocyclic iodonium salts, a potent CRAB inhibitor was identified, and our study lays the foundation for the identification of new druggable targets against this critical pathogen. IMPORTANCE Discovery of novel antibiotics targeting multidrug-resistant (MDR) pathogens such as A. baumannii is an urgent, unmet medical need. Our work has highlighted the potential of this unique scaffold to annihilate MDR A. baumannii alone and in combination with amikacin both in vitro and in animals, that too without inducing resistance. Further in depth analysis identified central metabolism to be a putative target. Taken together, these experiments lay down the foundation for effective management of infections caused due to highly MDR pathogens.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Grace Kaul
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - T. Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Manjulika Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Suraj Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
10
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
11
|
Bonuccelli G, Sotgia F, Lisanti MP. Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) propagation. Aging (Albany NY) 2022; 14:9466-9483. [PMID: 36455875 PMCID: PMC9792210 DOI: 10.18632/aging.204412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
12
|
Zhang S, Zhu N, Li HF, Gu J, Zhang CJ, Liao DF, Qin L. The lipid rafts in cancer stem cell: a target to eradicate cancer. Stem Cell Res Ther 2022; 13:432. [PMID: 36042526 PMCID: PMC9429646 DOI: 10.1186/s13287-022-03111-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem cell properties that sustain cancers, which may be responsible for cancer metastasis or recurrence. Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in the plasma membrane that mediate various intracellular signaling. The occurrence and progression of cancer are closely related to lipid rafts. Emerging evidence indicates that lipid raft levels are significantly enriched in CSCs compared to cancer cells and that most CSC markers such as CD24, CD44, and CD133 are located in lipid rafts. Furthermore, lipid rafts play an essential role in CSCs, specifically in CSC self-renewal, epithelial-mesenchymal transition, drug resistance, and CSC niche. Therefore, lipid rafts are critical regulatory platforms for CSCs and promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hong Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Chan Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Duan Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China. .,Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China. .,Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
13
|
Dakik H, El Dor M, Bourgeais J, Kouzi F, Herault O, Gouilleux F, Zibara K, Mazurier F. Diphenyleneiodonium Triggers Cell Death of Acute Myeloid Leukemia Cells by Blocking the Mitochondrial Respiratory Chain, and Synergizes with Cytarabine. Cancers (Basel) 2022; 14:cancers14102485. [PMID: 35626090 PMCID: PMC9140039 DOI: 10.3390/cancers14102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an aggressive heterogeneous cancer of the blood, of which 70% of cases develop relapse. Relapse is mainly due to chemoresistant leukemic cells (LCs) that are characterized by high mitochondrial oxidative phosphorylation (OxPhos) status, i.e., cells that are dependent on the mitochondrial respiratory chain (MRC) function. The aim of our study was to determine whether diphenyleneiodonium (DPI)—known as a potent inhibitor of flavoproteins—could be used to target AML cells. Herein, we demonstrate that DPI disrupts the mitochondrial function of AML cell lines. Interestingly, we found that cells with high OxPhos are more sensitive to the apoptotic effects of DPI. Moreover, we showed that DPI sensitizes AML cell lines to cytarabine (Ara-C) treatment, suggesting that MRC inhibitors could be employed to target LCs that are resistant to this chemotherapeutic agent. Abstract Acute myeloid leukemia (AML) is characterized by the accumulation of undifferentiated blast cells in the bone marrow and blood. In most cases of AML, relapse frequently occurs due to resistance to chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly dependent on the intracellular levels of reactive oxygen species (ROS). Modulating ROS levels is therefore a valuable strategy to overcome the chemotherapy resistance of leukemic cells. In this study, we evaluated the efficiency of diphenyleneiodonium (DPI)—a well-known inhibitor of ROS production—in targeting AML cells. Results showed that although inhibiting cytoplasmic ROS production, DPI also triggered an increase in the mitochondrial ROS levels, caused by the disruption of the mitochondrial respiratory chain. We also demonstrated that DPI blocks mitochondrial oxidative phosphorylation (OxPhos) in a dose-dependent manner, and that AML cells with high OxPhos status are highly sensitive to treatment with DPI, which synergizes with the chemotherapeutic agent cytarabine (Ara-C). Thus, our results suggest that targeting mitochondrial function with DPI might be exploited to target AML cells with high OxPhos status.
Collapse
Affiliation(s)
- Hassan Dakik
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
| | - Maya El Dor
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
| | - Jérôme Bourgeais
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Department of Biological Hematology, Tours University Hospital, F-37000 Tours, France
| | - Farah Kouzi
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Biology Department, Faculty of Sciences, Lebanese University, Beirut 90656, Lebanon
| | - Olivier Herault
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Department of Biological Hematology, Tours University Hospital, F-37000 Tours, France
| | - Fabrice Gouilleux
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
| | - Kazem Zibara
- Biology Department, Faculty of Sciences, Lebanese University, Beirut 90656, Lebanon
- ER045, PRASE, Beirut 6573/14, Lebanon
- Correspondence: (K.Z.); (F.M.)
| | - Frédéric Mazurier
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Correspondence: (K.Z.); (F.M.)
| |
Collapse
|
14
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
15
|
Monzur S, Hassan G, Afify SM, Kumon K, Mansour H, Nawara HM, Sheta M, Abu Quora HA, Zahra MH, Xu Y, Fu X, Seno A, Wikström P, Szekeres FLM, Seno M. Diphenyleneiodonium efficiently inhibits the characteristics of a cancer stem cell model derived from induced pluripotent stem cells. Cell Biochem Funct 2022; 40:310-320. [PMID: 35285948 DOI: 10.1002/cbf.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Diphenyleneiodonium (DPI) has long been evaluated as an anticancer drug inhibiting NADPH oxidase, the IC50 in several cancer cell lines was reported 10 µM, which is too high for efficacy. In this study, we employed miPS-Huh7cmP cells, which we previously established as a cancer stem cell (CSC) model from induced pluripotent stem cells, to reevaluate the efficacy of DPI because CSCs are currently one of the main foci of therapeutic strategy to treat cancer, but generally considered resistant to chemotherapy. As a result, the conventional assay for the cell growth inhibition by DPI accounted for an IC50 at 712 nM that was not enough to define the effectiveness as an anticancer drug. Simultaneously, the wound-healing assay revealed an IC50 of approximately 500 nM. Comparatively, the IC50 values shown on sphere formation, colony formation, and tube formation assays were 5.52, 12, and 8.7 nM, respectively. However, these inhibitory effects were not observed by VAS2780, also a reputed NADPH oxidase inhibitor. It is noteworthy that these three assays are evaluating the characteristic of CSCs and are designed in the three-dimensional (3D) culture methods. We concluded that DPI could be a suitable candidate to target mitochondrial respiration in CSCs. We propose that the 3D culture assays are more efficient to screen anti-CSC drug candidates and better mimic tumor microenvironment when compared to the adherent monolayer of 2D culture system used for a conventional assay, such as cell growth inhibition and wound-healing assays.
Collapse
Affiliation(s)
- Sadia Monzur
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Chemistry Department, Division of Biochemistry, Faculty of Science, Menoufia University, Shebin El Kom-Menoufia, Egypt
| | - Kazuki Kumon
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hager Mansour
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hend M Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mona Sheta
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hagar A Abu Quora
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Cytology, Histology and Histochemistry, Zoology Department, Faculty of Science, Menoufia University, Shebin El Kom-Menoufia, Egypt
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yanning Xu
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Xiaoyin Fu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,R&D Division, The Laboratory of Natural Food & Medicine Co., Ltd, Okayama University Incubator, Okayama, Japan
| | | | - Ferenc L M Szekeres
- Department of Health and Education, Division of Biomedicine, University of Skövde, Skövde, Sweden
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Helweg LP, Windmöller BA, Burghardt L, Storm J, Förster C, Wethkamp N, Wilkens L, Kaltschmidt B, Banz-Jansen C, Kaltschmidt C. The Diminishment of Novel Endometrial Carcinoma-Derived Stem-like Cells by Targeting Mitochondrial Bioenergetics and MYC. Int J Mol Sci 2022; 23:ijms23052426. [PMID: 35269569 PMCID: PMC8910063 DOI: 10.3390/ijms23052426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Correspondence: ; Tel.: +49-0521-106-5619
| | - Beatrice A. Windmöller
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| | - Leonie Burghardt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
| | - Jonathan Storm
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Nils Wethkamp
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Constanze Banz-Jansen
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Department of Gynecology and Obstetrics, and Perinatal Center, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| |
Collapse
|
17
|
Anju T, Rai NKSR, Kumar A. Sauropus androgynus (L.) Merr.: a multipurpose plant with multiple uses in traditional ethnic culinary and ethnomedicinal preparations. JOURNAL OF ETHNIC FOODS 2022; 9:10. [PMCID: PMC8900104 DOI: 10.1186/s42779-022-00125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various plants form the basis of multiple traditional ethnic cuisines and ethnomedicinal practices across the globe. The ethnic cuisines cater to the nutritional, dietary and medicinal requirements of the tribal and rural communities even today. Using literature from various scholarly databases, this study was conducted to consolidate a comprehensive review on the use of Sauropus androgynus (L.) Merr. in various traditional ethnic cuisines and ethnomedicinal preparations across the globe. The survey shows that it is used in multiple ethnic cuisines and is variously known in different countries and among the communities. Further, it possesses multiple nutritional and ethnomedicinal properties. Considering its importance in ethnic foods and ethnomedicinal preparations, it is important to investigate the nutritional composition, phytochemical constitution and pharmacological basis of ethnomedicinal uses. Therefore, we further compiled this information and found that it is a rich source of both micro- and macronutrients and packed with several bioactive compounds. Survey of pharmacological studies on its traditional medicinal uses supports its ethnomedicinal properties. Despite its importance in traditional food and ethnomedicinal systems, it remains underexplored. Limited information on the toxicity of its various extracts shows that further studies should be conducted to understand its safety aspects. Further clinical studies to prospect possible drug candidates from it should be attempted.
Collapse
Affiliation(s)
- Thattantavide Anju
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| | - Nishmitha Kumari S. R. Rai
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| |
Collapse
|
18
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
19
|
Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol 2021; 11:740720. [PMID: 34722292 PMCID: PMC8554334 DOI: 10.3389/fonc.2021.740720] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the “metabolically fittest” cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the “energetically fittest” cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
20
|
Schulz C, Jung F, Küpper JH. Inhibition of phase-1 biotransformation and cytostatic effects of diphenyleneiodonium on hepatoblastoma cell line HepG2 and a CYP3A4-overexpressing HepG2 cell clone. Clin Hemorheol Microcirc 2021; 79:231-243. [PMID: 34487034 PMCID: PMC8609703 DOI: 10.3233/ch-219117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-based in vitro liver models are an important tool in the development and evaluation of new drugs in pharmacological and toxicological drug assessment. Hepatic microsomal enzyme complexes, consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs), play a decisive role in catalysing phase-1 biotransformation of pharmaceuticals and xenobiotics. For a comprehensive understanding of the phase-1 biotransformation of drugs, the availability of well-characterized substances for the targeted modulation of in vitro liver models is essential. In this study, we investigated diphenyleneiodonium (DPI) for its ability to inhibit phase-1 enzyme activity and further its toxicological profile in an in vitro HepG2 cell model with and without recombinant expression of the most important drug metabolization enzyme CYP3A4. Aim of the study was to identify effective DPI concentrations for CPR/CYP activity modulation and potentially associated dose and time dependent hepatotoxic effects. The cells were treated with DPI doses up to 5,000nM (versus vehicle control) for a maximum of 48 h and subsequently examined for CYP3A4 activity as well as various toxicological relevant parameters such as cell morphology, integrity and viability, intracellular ATP level, and proliferation. Concluding, the experiments revealed a time- and concentration-dependent DPI mediated partial and complete inhibition of CYP3A4 activity in CYP3A4 overexpressing HepG2-cells (HepG2-CYP3A4). Other cell functions, including ATP synthesis and consequently the proliferation were negatively affected in both in vitro cell models. Since neither cell integrity nor cell viability were reduced, the effect of DPI in HepG2 can be assessed as cytostatic rather than cytotoxic.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany, located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany, located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| |
Collapse
|
21
|
Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021; 10:1772. [PMID: 34359941 PMCID: PMC8304173 DOI: 10.3390/cells10071772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Cyuan Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Bo-Jung Chen
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| | - Jiun-Ru Juan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Liang-Yun Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yueh-Chun Teng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| |
Collapse
|
22
|
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
|
23
|
3D Multicellular Stem-Like Human Breast Tumor Spheroids Enhance Tumorigenicity of Orthotopic Xenografts in Athymic Nude Rat Model. Cancers (Basel) 2021; 13:cancers13112784. [PMID: 34205080 PMCID: PMC8199968 DOI: 10.3390/cancers13112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). Breast CSCs can induce the formation of new blood vessels at the site of tumor growth and a develop metastatic phenotype by enhancing a stromal cell response, similar to that of the primary breast cancer. The aim of this study was to investigate breast cancer cells cultured in stromal stem cell factor-supplemented media to generate 3D spheroids that exhibit increased stem-like properties. These 3D stem-like spheroids reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat. This approach enables a means to develop orthotopic tumors with a stem-like phenotype in a larger athymic rat rodent model of human breast cancer. Abstract Therapeutic targeting of stem cells needs to be strategically developed to control tumor growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). The development of 3D stem-like properties of human breast tumor spheroids in stem cell factor conditioned media was investigated in orthotopic xenografts for enhanced tumorgenicity in the athymic nude rat model. MCF-7, ZR-75-1, and MDA-MB-231 breast cancer cell lines were cultured in serum-free, stem cell factor-supplemented medium under non-adherent conditions and passaged to generate 3rd generation spheroids. The spheroids were co-cultured with fetal lung fibroblast (FLF) cells before orthotopic heterotransplantation into the mammary fat pads of athymic nude rats. Excised xenografts were assessed histologically by H&E staining and immunohistochemistry for breast cancer marker (ERB1), proliferation marker (Ki67), mitotic marker (pHH3), hypoxia marker (HIF-2α), CSC markers (CD47, CD44, CD24, and CD133), and vascularization markers (CD31, CD34). Breast cancer cells cultured in stem cell factor supplemented medium generated 3D spheroids exhibited increased stem-like characteristics. The 3D stem-like spheroids co-cultured with FLF as supporting stroma reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat.
Collapse
|
24
|
Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types. Pharmaceutics 2020; 13:pharmaceutics13010010. [PMID: 33374729 PMCID: PMC7823933 DOI: 10.3390/pharmaceutics13010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) have recently been recognized as important signal transducers, particularly regulating proliferation and differentiation of cells. Diphenyleneiodonium (DPI) is known as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) and is also affecting mitochondrial function. The aim of this study was to investigate the effect of DPI on ROS metabolism and mitochondrial function in human amniotic membrane mesenchymal stromal cells (hAMSCs), human bone marrow mesenchymal stromal cells (hBMSCs), hBMSCs induced into osteoblast-like cells, and osteosarcoma cell line MG-63. Our data suggested a combination of a membrane potential sensitive fluorescent dye, tetramethylrhodamine methyl ester (TMRM), and a ROS-sensitive dye, CM-H2DCFDA, combined with a pretreatment with mitochondria-targeted ROS scavenger MitoTEMPO as a good tool to examine effects of DPI. We observed critical differences in ROS metabolism between hAMSCs, hBMSCs, osteoblast-like cells, and MG-63 cells, which were linked to energy metabolism. In cell types using predominantly glycolysis as the energy source, such as hAMSCs, DPI predominantly interacted with NOX, and it was not toxic for the cells. In hBMSCs, the ROS turnover was influenced by NOX activity rather than by the mitochondria. In cells with aerobic metabolism, such as MG 63, the mitochondria became an additional target for DPI, and these cells were prone to the toxic effects of DPI. In summary, our data suggest that undifferentiated cells rather than differentiated parenchymal cells should be considered as potential targets for DPI.
Collapse
|
25
|
Inhibition of NADPH Oxidases Activity by Diphenyleneiodonium Chloride as a Mechanism of Senescence Induction in Human Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9121248. [PMID: 33302580 PMCID: PMC7764543 DOI: 10.3390/antiox9121248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
NADPH oxidases (NOX) are commonly expressed ROS-producing enzymes that participate in the regulation of many signaling pathways, which influence cell metabolism, survival, and proliferation. Due to their high expression in several different types of cancer it was postulated that NOX promote tumor progression, growth, and survival. Thus, the inhibition of NOX activity was considered to have therapeutic potential. One of the possible outcomes of anticancer therapy, which has recently gained much interest, is cancer cell senescence. The induction of senescence leads to prolonged inhibition of proliferation and contributes to tumor growth restriction. The aim of our studies was to investigate the influence of low, non-toxic doses of diphenyleneiodonium chloride (DPI), a potent inhibitor of flavoenzymes including NADPH oxidases, on p53-proficient and p53-deficient HCT116 human colon cancer cells and MCF-7 breast cancer cells. We demonstrated that the temporal treatment of HCT116 and MCF-7 cancer cells (both p53 wild-type) with DPI caused induction of senescence, that was correlated with decreased level of ROS and upregulation of p53/p21 proteins. On the contrary, in the case of p53-/- HCT116 cells, apoptosis was shown to be the prevailing effect of DPI treatment. Thus, our studies provided a proof that inhibiting ROS production, and by this means influencing ROS sensitive pathways, remains an alternative strategy to facilitate so called therapy-induced senescence in cancers.
Collapse
|
26
|
Waghela BN, Vaidya FU, Agrawal Y, Santra MK, Mishra V, Pathak C. Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem Funct 2020; 39:218-234. [PMID: 32975319 DOI: 10.1002/cbf.3589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS), formed by the partial reduction of oxygen, were for a long time considered to be a byproduct of cellular metabolism. Since, increase in cellular levels of ROS results in oxidative stress leading to damage of nucleic acids, proteins, and lipids resulting in numerous pathological conditions; ROS was considered a bane for aerobic species. Hence, the discovery of NADPH oxidases (NOX), an enzyme family that specifically generates ROS as its prime product came as a surprise to redox biologists. NOX family proteins participate in various cellular functions including cell proliferation and differentiation, regulation of genes and protein expression, apoptosis, and host defence immunological response. Balanced expression and activation of NOX with subsequent production of ROS are critically important to regulate various genes and proteins to maintain homeostasis of the cell. However, dysregulation of NOX activation leading to enhanced ROS levels is associated with various pathophysiologies including diabetes, cardiovascular diseases, neurodegenerative diseases, ageing, atherosclerosis, and cancer. Although our current knowledge on NOX signifies its importance in the normal functioning of various cellular pathways; yet the choice of ROS producing enzymes which can tip the scale from homeostasis toward damage, as mediators of biological functions remain an oddity. Though the role of NOX in maintaining normal cellular functions is now deemed essential, yet its dysregulation leading to catastrophic events cannot be denied. Hence, this review focuses on the involvement of NOX enzymes in various pathological conditions imploring them as possible targets for therapies. SIGNIFICANCE OF THE STUDY: The NOXs are multi-subunit enzymes that generate ROS as a prime product. NOX generated ROS are usually regulated by various molecular factors and play a vital role in different physiological processes. The dysregulation of NOX activity is associated with pathological consequences. Recently, the dynamic proximity of NOX enzymes with different molecular signatures of pathologies has been studied extensively. It is essential to identify the precise role of NOX machinery in its niche during the progression of pathology. Although inhibition of NOX could be a promising approach for therapeutic interventions, it is critical to expand the current understanding of NOX's dynamicity and shed light on their molecular partners and regulators.
Collapse
Affiliation(s)
- Bhargav N Waghela
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Foram U Vaidya
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Yashika Agrawal
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Pune, Maharashtra, India
| | - Manas Kumar Santra
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Pune, Maharashtra, India
| | - Vinita Mishra
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Chandramani Pathak
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
27
|
Ma S, Wang F, Zhang C, Wang X, Wang X, Yu Z. Cell metabolomics to study the function mechanism of Cyperus rotundus L. on triple-negative breast cancer cells. BMC Complement Med Ther 2020; 20:262. [PMID: 32843016 PMCID: PMC7449030 DOI: 10.1186/s12906-020-02981-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a kind of malignant tumor with higher recurrence and metastasis rate. According to historical records, the dry rhizomes Cyperus rotundus L. could be ground into powder and mixed with ginger juice and wine for external application for breast cancer. We studied the effect of the ethanol extract of Cyperus rotundus L. (EECR) on TNBC cells and found its' apoptosis-inducing effect with a dose-relationship. But the function mechanism of EECR on TNBC is still mysterious. Hence, the present research aimed to detect its function mechanism at the small molecule level through ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) metabolomics. METHODS The CCK-8 assay and the Annexin V-FITC/PI assay were applied to test the effect of EECR on MDA-MB-231 cells and MDA-MB 468 cells at various concentrations of 0, 200, 400, and 600 μg/ml. UPLC-Q-TOF-MS/MS based metabolomics was used between the control group and the EECR treatment groups. Multivariate statistical analysis was used to visualize the apoptosis-inducing action of EECR and filtrate significantly changed metabolites. RESULTS The apoptosis-inducing action was confirmed and forty-nine significantly changed metabolites (VIP > 1, p < 0.05, and FC > 1.2 or FC < 0.8) were identified after the interference of EECR. The level of significant differential metabolites between control group, middle dose group, and high dose group were compared and found that which supported the apoptosis-inducing action with dose-dependence. CONCLUSION By means of metabolism, we have detected the mechanism of EECR inducing apoptosis of TNBC cells at the level of small molecule metabolites and found that EECR impacted the energy metabolism of TNBC cells. In addition, we concluded that EECR induced apoptosis by breaking the balance between ATP-production and ATP-consumption: arresting the pathways of Carbohydrate metabolism such as Central carbon metabolism in cancer, aerobic glycolysis, and Amino sugar and nucleotide sugar metabolism, whereas accelerating the pathways of ATP-consumption including Amino Acids metabolism, Fatty acid metabolism, Riboflavin metabolism and Purine metabolism. Although further study is still needed, EECR has great potential in the clinical treatment of TNBC with fewer toxic and side effects.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 jiyan road, Jinan, 250017, Shandong, China
- Shandong Hongjitang Pharmaceutical Group Co.,Ltd., Jinan, 250000, China
| | - Fukai Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 jiyan road, Jinan, 250017, Shandong, China
| | - Caijuan Zhang
- School of life Science, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Xinzhao Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 jiyan road, Jinan, 250017, Shandong, China
| | - Xueyong Wang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| | - Zhiyong Yu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 jiyan road, Jinan, 250017, Shandong, China.
| |
Collapse
|
28
|
Peiris-Pagès M, Ozsvári B, Sotgia F, Lisanti MP. Mitochondrial and ribosomal biogenesis are new hallmarks of stemness, oncometabolism and biomass accumulation in cancer: Mito-stemness and ribo-stemness features. Aging (Albany NY) 2020; 11:4801-4835. [PMID: 31311889 PMCID: PMC6682537 DOI: 10.18632/aging.102054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
Using proteomics analysis, we previously compared MCF7 breast cancer cells grown as 3D tumor spheres, with the same cell line grown as monolayers. Our results indicated that during 3D anchorage‐independent growth, the cellular machinery associated with i) mitochondrial biogenesis and ii) ribosomal biogenesis, were both significantly increased. Here, for simplicity, we refer to these two new oncogenic hallmarks as “mito‐stemness” and “ribo‐stemness” features. We have now applied this same type of strategy to begin to understand how fibroblasts and MCF7 breast cancer cells change their molecular phenotype, when they are co‐cultured together. We have previously shown that MCF7‐fibroblast co‐cultures are a valuable model of resistance to apoptosis induced by hormonal therapies, such as Tamoxifen and Fulvestrant. Here, we directly show that these mixed co‐cultures demonstrate the induction of mito‐stemness and ribo‐stemness features, likely reflecting a mechanism for cancer cells to increase their capacity for accumulating biomass. In accordance with the onset of a stem‐like phenotype, KRT19 (keratin 19) was induced by ~6‐fold during co‐culture. KRT19 is a well‐established epithelial CSC marker that is used clinically to identify metastatic breast cancer cells in sentinel lymph node biopsies. The potential molecular therapeutic targets that we identified by label‐free proteomics of MCF7‐fibroblast co‐cultures were then independently validated using a bioinformatics approach. More specifically, we employed publically‐available transcriptional profiling data derived from primary tumor samples from breast cancer patients, which were previously subjected to laser‐capture micro‐dissection, to physically separate breast cancer cells from adjacent tumor stroma. This allowed us to directly validate that the proteins up‐regulated in this co‐culture model were also transcriptionally elevated in patient‐derived breast cancer cells in vivo. This powerful approach for target identification and translational validation, including the use of patient outcome data, can now be applied to other tumor types as well, to validate new therapeutic targets that are more clinically relevant, for patient benefit. Moreover, we discuss the therapeutic implications of these findings for new drug development, drug repurposing and Tamoxifen‐resistance, to effectively target mito‐stemness and ribo‐stemness features in breast cancer patients. We also discuss the broad implications of this “organelle biogenesis” approach to cancer therapy.
Collapse
Affiliation(s)
- Maria Peiris-Pagès
- Clinical and Experimental Pharmacology, University of Manchester, Cancer Research UK, Manchester, United Kingdom
| | - Béla Ozsvári
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
29
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
30
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
31
|
The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging (Albany NY) 2019; 10:4000-4023. [PMID: 30573703 PMCID: PMC6326696 DOI: 10.18632/aging.101690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Naturally-occurring somatic mutations in the estrogen receptor gene (ESR1) have been previously implicated in the clinical development of resistance to hormonal therapies, such as Tamoxifen. For example, the somatic mutation Y537S has been specifically associated with acquired endocrine resistance. Briefly, we recombinantly-transduced MCF7 cells with a lentiviral vector encoding ESR1 (Y537S). As a first step, we confirmed that MCF7-Y537S cells are indeed functionally resistant to Tamoxifen, as compared with vector alone controls. Importantly, further phenotypic characterization of Y537S cells revealed that they show increased resistance to Tamoxifen-induced apoptosis, allowing them to form mammospheres with higher efficiency, in the presence of Tamoxifen. Similarly, Y537S cells had elevated basal levels of ALDH activity, a marker of “stemness”, which was also Tamoxifen-resistant. Metabolic flux analysis of Y537S cells revealed a hyper-metabolic phenotype, with significantly increased mitochondrial respiration and high ATP production, as well as enhanced aerobic glycolysis. Finally, to understand which molecular signaling pathways that may be hyper-activated in Y537S cells, we performed unbiased label-free proteomics analysis. Our results indicate that TIGAR over-expression and the Rho-GDI/PTEN signaling pathway appear to be selectively activated by the Y537S mutation. Remarkably, this profile is nearly identical in MCF7-TAMR cells; these cells were independently-generated in vitro, suggesting a highly conserved mechanism underlying Tamoxifen-resistance. Importantly, we show that the Y537S mutation is specifically associated with the over-expression of a number of protein markers of poor clinical outcome (COL6A3, ERBB2, STAT3, AFP, TFF1, CDK4 and CD44). In summary, we have uncovered a novel metabolic mechanism leading to endocrine resistance, which may have important clinical implications for improving patient outcomes.
Collapse
|
32
|
Cancer Stem Cells: Powerful Targets to Improve Current Anticancer Therapeutics. Stem Cells Int 2019; 2019:9618065. [PMID: 31781251 PMCID: PMC6874936 DOI: 10.1155/2019/9618065] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
A frequent observation in several malignancies is the development of resistance to therapy that results in frequent tumor relapse and metastasis. Much of the tumor resistance phenotype comes from its heterogeneity that halts the ability of therapeutic agents to eliminate all cancer cells effectively. Tumor heterogeneity is, in part, controlled by cancer stem cells (CSC). CSC may be considered the reservoir of cancer cells as they exhibit properties of self-renewal and plasticity and the capability of reestablishing a heterogeneous tumor cell population. The endowed resistance mechanisms of CSC are mainly attributed to several factors including cellular quiescence, accumulation of ABC transporters, disruption of apoptosis, epigenetic reprogramming, and metabolism. There is a current need to develop new therapeutic drugs capable of targeting CSC to overcome tumor resistance. Emerging in vitro and in vivo studies strongly support the potential benefits of combination therapies capable of targeting cancer stem cell-targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This review will address the main characteristics, therapeutic implications, and perspectives of targeting CSC to improve current anticancer therapeutics.
Collapse
|
33
|
Bayat Mokhtari R, Baluch N, Morgatskaya E, Kumar S, Sparaneo A, Muscarella LA, Zhao S, Cheng HL, Das B, Yeger H. Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane. BMC Cancer 2019; 19:864. [PMID: 31470802 PMCID: PMC6716820 DOI: 10.1186/s12885-019-6018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. Methods Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. Results Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. Conclusions Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Rm 15.9714, Toronto, Ontario, M5G 0A4, Canada.
| | - Narges Baluch
- Department of Pediatrics, Queen's University, 76 Stuart St, Kingston, ON, K7L 2V7, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Williams Science Hall 3035, Department of Pharmaceutical Sciences 601 S. Saddle Creek Rd, Omaha, NE, 68106, USA
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Sheyun Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hai-Ling Cheng
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, ON, M5S 3G9, Canada
| | - Bikul Das
- Thoreau Laboratory for Global Health, M2D2, University of Massachusetts-Lowell, Innovation Hub, 110 Canal St, Lowell, MA, 01852, USA.,KaviKrishna Laboratory, Indian Institute of Technology Complex, Guwahati, India
| | - Herman Yeger
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Rm 15.9714, Toronto, Ontario, M5G 0A4, Canada
| |
Collapse
|
34
|
Yang R, Wei Z, Wu S. Lumiflavin increases the sensitivity of ovarian cancer stem-like cells to cisplatin by interfering with riboflavin. J Cell Mol Med 2019; 23:5329-5339. [PMID: 31187586 PMCID: PMC6652702 DOI: 10.1111/jcmm.14409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Here, we used lumiflavin, an inhibitor of riboflavin, as a new potential therapeutic chemosensitizer to ovarian cancer stem‐like cells (CSCs). This study demonstrates that the enrichment of riboflavin in CSCs is an important cause of its resistance to chemotherapy. Lumiflavin can effectively reduce the riboflavin enrichment in CSCs and sensitize the effect of cisplatin Diamminedichloroplatinum (DDP) on CSCs. In this study, CSCs of human ovarian cancer cell lines HO8910 were separated using a magnetic bead (CD133+). We also show the overexpression of the mRNA and protein of riboflavin transporter 2 and the high content of riboflavin in CSCs compared to non‐CSCs (NON‐CSCs). Moreover, CSCs were less sensitive to DDP than NON‐CSCs, whereas, the synergistic effect of lumiflavin and DDP on CSCs was more sensitive than NON‐CSCs. Further research showed that lumiflavin had synergistic effects with DDP on CSCs in increasing mitochondrial function damage and apoptosis rates and decreasing clonic function. In addition, we found that the combination of DDP and lumiflavin therapy in vivo has a synergistic cytotoxic effect on an ovarian cancer nude mice model by enhancing the DNA‐damage response and increasing the apoptotic protein expression. Notably, the effect of lumiflavin is associated with reduced riboflavin concentration, and riboflavin could reverse the effect of DDP in vitro and in vivo. Accordingly, we conclude that lumiflavin interfered with the riboflavin metabolic pathways, resulting in a significant increase in tumour sensitivity to DDP therapy. Our study suggests that lumiflavin may be a novel treatment alternative for ovarian cancer and its recurrence.
Collapse
Affiliation(s)
- Ruhui Yang
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Zhe Wei
- Department of Rehabilitation Medicine, College of Medicine and Health, Lishui University, Lishui, China
| | - Songquan Wu
- Department of Immunology, College of Medicine and Health, Lishui University, Lishui, China
| |
Collapse
|
35
|
Kopecka J, Gazzano E, Castella B, Salaroglio IC, Mungo E, Massaia M, Riganti C. Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance? Semin Cell Dev Biol 2019; 98:80-89. [PMID: 31100351 DOI: 10.1016/j.semcdb.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Mitochondria have been considered for a long time only as the principal source of building blocks and energy upon aerobic conditions. Recently they emerged as key players in cell proliferation, invasion and resistance to therapy. The most aggressive tumors are able to evade the immune-surveillance. Alterations in the mitochondria metabolism either in cancer cells or in host immune system cells are involved in such tumor-induced immune-suppression. This review will focus on the main mitochondrial dysfunctions in tumor and immune cell populations determining immune-resistance, and on the therapies that may target mitochondrial metabolism and restore a powerful anti-tumor immune-activity.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Barbara Castella
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Massaia
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy; Hematology Division, AO S Croce e Carle, Cuneo, Italy; Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy; Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Italy.
| |
Collapse
|
36
|
Szczuko M, Ziętek M, Kulpa D, Seidler T. Riboflavin - properties, occurrence and its use in medicine. Pteridines 2019. [DOI: 10.1515/pteridines-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Riboflavin is built on an isoalloxazin ring, which contains three sixcarbon rings: benzoic, pyrazine and pyrimidine. Riboflavin is synthesized by some bacteria, but among humans and animals, the only source of flavin coenzymes (FAD, FMN) is exogenous riboflavin. Riboflavin transport in enterocytes takes place via three translocators encoded by the SLC52 gene. Deficiency of dietary riboflavin has wide ranging implications for the efficacy of other vitamins, the mechanism of cellular respiration, lactic acid metabolism, hemoglobin, nucleotides and amino acid synthesis. In studies it was found that, pharmacologic daily doses (100 mg) have the potential to react with light, which can have adverse cellular effects. Extrene caution should be exercised when using riboflavin as phototherapy in premature newborns. At the cellular level, riboflavin deficiency leads to increased oxidative stress and causes disorders in the glutathione recycling process. Risk factors for developing riboflavin deficinecy include pregnancy, malnutrition (including anorexia and other eating disorders, vegitarianism, veganism and alcoholism. Furthermore, elderly people and atheletes are also at risk of developing this deficiency. Widespread use of riboflavin in medicine, cancer therapy, treatment of neurodegenerative diseases, corneal ectasia and viral infections has resulted in the recent increased interest in this flavina.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Biochemistry and Human Nutrition , Pomeranian Medical University in Szczecin , Poland
| | - Maciej Ziętek
- Clinic of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin , Poland
| | - Danuta Kulpa
- Department of Genetics, Plant Breeding and Biotechnology , West Pomeranian University of Technology in Szczecin , Poland
| | - Teresa Seidler
- Department of Human Nutrition , West Pomeranian University of Technology in Szczecin , Poland
| |
Collapse
|
37
|
Bartmann L, Schumacher D, von Stillfried S, Sternkopf M, Alampour-Rajabi S, van Zandvoort MAMJ, Kiessling F, Wu Z. Evaluation of Riboflavin Transporters as Targets for Drug Delivery and Theranostics. Front Pharmacol 2019; 10:79. [PMID: 30787877 PMCID: PMC6372557 DOI: 10.3389/fphar.2019.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
The retention and cellular internalization of drug delivery systems and theranostics for cancer therapy can be improved by targeting molecules. Since an increased uptake of riboflavin was reported for various cancers, riboflavin and its derivatives may be promising binding moieties to trigger internalization via the riboflavin transporters (RFVT) 1, 2, and 3. Riboflavin is a vitamin with pivotal role in energy metabolism and indispensable for cellular growth. In previous preclinical studies on mice, we showed the target-specific accumulation of riboflavin-functionalized nanocarriers in cancer cells. Although the uptake mechanism of riboflavin has been studied for over a decade, little is known about the riboflavin transporters and their expression on cancer cells, tumor stroma, and healthy tissues. Furthermore, evidence is lacking concerning the representativeness of the preclinical findings to the situation in humans. In this study, we investigated the expression pattern of riboflavin transporters in human squamous cell carcinoma (SCC), melanoma and luminal A breast cancer samples, as well as in healthy skin, breast, aorta, and kidney tissues. Low constitutive expression levels of RFVT1-3 were found on all healthy tissues, while RFVT2 and 3 were significantly overexpressed in melanoma, RFVT1 and 3 in luminal A breast cancer and RFVT1-3 in SCC. Correspondingly, the SCC cell line A431 was highly positive for all RFVTs, thus qualifying as suitable in vitro model. In contrast, activated endothelial cells (HUVEC) only presented with a strong expression of RFVT2, and HK2 kidney cells only with a low constitutive expression of RFVT1-3. Functional in vitro studies on A431 and HK2 cells using confocal microscopy showed that riboflavin uptake is mostly ATP dependent and primarily driven by endocytosis. Furthermore, riboflavin is partially trafficked to the mitochondria. Riboflavin uptake and trafficking was significantly higher in A431 than in healthy kidney cells. Thus, this manuscript supports the hypothesis that addressing the riboflavin internalization pathway may be highly valuable for tumor targeted drug delivery.
Collapse
Affiliation(s)
- Lisa Bartmann
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | | | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Setareh Alampour-Rajabi
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Marc A M J van Zandvoort
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany.,Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases (CARIM), School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Zhuojun Wu
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Fiorillo M, Sotgia F, Lisanti MP. "Energetic" Cancer Stem Cells (e-CSCs): A New Hyper-Metabolic and Proliferative Tumor Cell Phenotype, Driven by Mitochondrial Energy. Front Oncol 2019; 8:677. [PMID: 30805301 PMCID: PMC6370664 DOI: 10.3389/fonc.2018.00677] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Here, we provide the necessary evidence that mitochondrial metabolism drives the anchorage-independent proliferation of CSCs. Two human breast cancer cell lines, MCF7 [ER(+)] and MDA-MB-468 (triple-negative), were used as model systems. To directly address the issue of metabolic heterogeneity in cancer, we purified a new distinct sub-population of CSCs, based solely on their energetic profile. We propose the term “energetic” cancer stem cells (e-CSCs), to better describe this novel cellular phenotype. In a single step, we first isolated an auto-fluorescent cell sub-population, based on their high flavin-content, using flow-cytometry. Then, these cells were further subjected to a detailed phenotypic characterization. More specifically, e-CSCs were more glycolytic, with higher mitochondrial mass and showed significantly elevated oxidative metabolism. e-CSCs also demonstrated an increased capacity to undergo cell cycle progression, as well as enhanced anchorage-independent growth and ALDH-positivity. Most importantly, these e-CSCs could be effectively targeted by treatments with either (i) OXPHOS inhibitors (DPI) or (ii) a CDK4/6 inhibitor (Ribociclib). Finally, we were able to distinguish two distinct phenotypic sub-types of e-CSCs, depending on whether they were grown as 2D-monolayers or as 3D-spheroids. Remarkably, under 3D anchorage-independent growth conditions, e-CSCs were strictly dependent on oxidative mitochondrial metabolism. Unbiased proteomics analysis demonstrated the up-regulation of gene products specifically related to the anti-oxidant response, mitochondrial energy production, and mitochondrial biogenesis. Therefore, mitochondrial inhibitors should be further developed as promising anti-cancer agents, to directly target and eliminate the “fittest” e-CSCs. Our results have important implications for using e-CSCs, especially those derived from 3D-spheroids, (i) in tumor tissue bio-banking and (ii) as a new cellular platform for drug development.
Collapse
Affiliation(s)
- Marco Fiorillo
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Federica Sotgia
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Michael P Lisanti
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| |
Collapse
|
39
|
Ozsvari B, Nuttall JR, Sotgia F, Lisanti MP. Azithromycin and Roxithromycin define a new family of "senolytic" drugs that target senescent human fibroblasts. Aging (Albany NY) 2018; 10:3294-3307. [PMID: 30428454 PMCID: PMC6286845 DOI: 10.18632/aging.101633] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/28/2018] [Indexed: 05/17/2023]
Abstract
Here, we employed a "senolytic" assay system as a screening tool, with the goal of identifying and repurposing FDA-approved antibiotics, for the targeting of the senescent cell population. Briefly, we used two established human fibroblast cell lines (MRC-5 and/or BJ) as model systems to induce senescence, via chronic treatment with a DNA-damaging agent, namely BrdU (at a concentration of 100 μM for 8 days). Cell viability was then monitored by using the SRB assay, to measure protein content. As a consequence of this streamlined screening strategy, we identified Azithromycin and Roxithromycin as two novel clinically-approved senolytic drugs. However, Erythromycin - the very closely-related parent compound - did not show any senolytic activity, highlighting the dramatic specificity of these interactions. Interestingly, we also show that Azithromycin treatment of human fibroblasts was indeed sufficient to strongly induce both aerobic glycolysis and autophagy. However, the effects of Azithromycin on mitochondrial oxygen consumption rates (OCR) were bi-phasic, showing inhibitory activity at 50 μM and stimulatory activity at 100 μM. These autophagic/metabolic changes induced by Azithromycin could mechanistically explain its senolytic activity. We also independently validated our findings using the xCELLigence real-time assay system, which measures electrical impedance. Using this approach, we see that Azithromycin preferentially targets senescent cells, removing approximately 97% of them with great efficiency. This represents a near 25-fold reduction in senescent cells. Finally, we also discuss our current results in the context of previous clinical findings that specifically document the anti-inflammatory activity of Azithromycin in patients with cystic fibrosis - a genetic lung disorder that results in protein mis-folding mutations that cause protein aggregation.
Collapse
Affiliation(s)
- Bela Ozsvari
- Translational Medicine, University of Salford, Greater Manchester, United Kingdom
- Equal contribution
| | - John R. Nuttall
- Translational Medicine, University of Salford, Greater Manchester, United Kingdom
- Equal contribution
| | - Federica Sotgia
- Translational Medicine, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
40
|
Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L. Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 2018; 8:56. [PMID: 30410721 PMCID: PMC6215344 DOI: 10.1186/s13578-018-0257-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
Contrary to Warburg’s hypothesis, mitochondrial oxidative phosphorylation (OXPHOS) contributes significantly to fueling cancer cells. Several recent studies have demonstrated that radiotherapy-resistant and chemotherapy-resistant cancer cells depend on OXPHOS for survival and progression. Several cancers exhibit an increased risk in association with heme intake. Mitochondria are widely known to carry out oxidative phosphorylation. In addition, mitochondria are also involved in heme synthesis. Heme serves as a prosthetic group for several proteins that constitute the complexes of mitochondrial electron transport chain. Therefore, heme plays a pivotal role in OXPHOS and oxygen consumption. Further, lung cancer cells exhibit heme accumulation and require heme for proliferation and invasion in vitro. Abnormalities in mitochondrial biogenesis and mutations are implicated in cancer. This review delves into mitochondrial OXPHOS and lesser explored area of heme metabolism in lung cancer.
Collapse
Affiliation(s)
| | - Keely E FitzGerald
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | | | - Chantal Vidal
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
41
|
Sotgia F, Ozsvari B, Fiorillo M, De Francesco EM, Bonuccelli G, Lisanti MP. A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle 2018; 17:2091-2100. [PMID: 30257595 PMCID: PMC6226227 DOI: 10.1080/15384101.2018.1515551] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we wish to propose a new systematic approach to cancer therapy, based on the targeting of mitochondrial metabolism, especially in cancer stem cells (CSCs). In the future, we envision that anti-mitochondrial therapy would ultimately be practiced as an add-on to more conventional therapy, largely for the prevention of tumor recurrence and cancer metastasis. This mitochondrial based oncology platform would require a panel of FDA-approved therapeutics (e.g. Doxycycline) that can safely be used to inhibit mitochondrial OXPHOS and/or biogenesis in CSCs. In addition, new therapeutics that target mitochondria could also be developed, to optimize their ability to eradicate CSCs. Finally, in this context, mitochondrial-based biomarkers (i.e. "Mito-signatures") could be utilized as companion diagnostics, to identify high-risk cancer patients at diagnosis, facilitating the early detection of tumor recurrence and the prevention of treatment failure. In summary, we suggest that new clinical trials are warranted to test and possibly implement this emerging treatment strategy, in a variety of human cancer types. This general approach, using FDA-approved antibiotics to target mitochondria, was effective in killing CSCs originating from many different cancer types, including DCIS, breast (ER(+) and ER(-)), prostate, ovarian, lung and pancreatic cancers, as well as melanoma and glioblastoma, among others. Thus, we propose the term MITO-ONC-RX, to describe this anti-mitochondrial platform for targeting CSCs. The use of re-purposed FDA-approved drugs will undoubtedly help to accelerate the clinical evaluation of this approach, as these drugs can move directly into Phase II clinical trials, saving considerable amounts of time (10-15 y) and billions in financial resources.
Collapse
Affiliation(s)
- Federica Sotgia
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Bela Ozsvari
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Marco Fiorillo
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK.,b Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Rende , Italy
| | - Ernestina Marianna De Francesco
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK.,b Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Rende , Italy
| | - Gloria Bonuccelli
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Michael P Lisanti
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| |
Collapse
|
42
|
Qin J, Shi H, Xu Y, Zhao F, Wang Q. Tanshinone IIA inhibits cervix carcinoma stem cells migration and invasion via inhibiting YAP transcriptional activity. Biomed Pharmacother 2018; 105:758-765. [DOI: 10.1016/j.biopha.2018.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022] Open
|
43
|
Gao F, Yu X, Meng R, Wang J, Jia L. STARD13 is positively correlated with good prognosis and enhances 5-FU sensitivity via suppressing cancer stemness in hepatocellular carcinoma cells. Onco Targets Ther 2018; 11:5371-5381. [PMID: 30214243 PMCID: PMC6126513 DOI: 10.2147/ott.s170775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background STARD13 has been revealed to suppress tumor progression. However, the roles in regulating the stemness of hepatocellular carcinoma (HCC) cells are unclear. Methods Quantitative real-time PCR (qRT-PCR) was used to detect STARD13 expression in HCC tissues and normal adjacent tissues. Kaplan Meier (KM)-plotter analysis was performed to analyze the correlation between STARD13 expression and overall survival of HCC patients. Cell spheroid formation and ALDH1 activity analysis were carried out to detect the effects of STARD13 on the stemness of HCC cells. Furthermore, immunofluorescent, luciferase reporter, RhoA GTPase and F-actin visualization assays were performed to explore the mechanisms contributing to STARD13-mediated effects. Results STARD13 expression was significantly downregulated in HCC tissues compared with normal adjacent tissues, and was positively correlated with the overall survival of HCC patients. Functionally, overexpression of STARD13 inhibited cells stemness and enhanced 5-FU sensitivity in HCC cells. Mechanistically, STRAD13 overexpression suppressed RhoGTPase signaling and thus inhibited transcriptional factor YAP translocation from nuclear to cytoplasm, leading to the downregulation of transcriptional activity of YAP. Notably, the inhibitory effects of STARD13 on HCC cells stemness and 5-FU sensitivity were rescued by RhoA or YAP-5SA overexpression. Conclusion Our results indicate that STARD13 could enhances 5-FU sensitivity by suppressing cancer stemness in hepatocellular carcinoma cells via attenuating YAP transcriptional activity.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, People's Republic of China,
| | - Xiaolin Yu
- Department of Oncology, AVIC 363 Hospital, Chengdu, People's Republic of China
| | - Rongqin Meng
- Department of Oncology, AVIC 363 Hospital, Chengdu, People's Republic of China
| | - Jisheng Wang
- Department of Oncology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, People's Republic of China,
| | - Lin Jia
- Department of Oncology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, People's Republic of China,
| |
Collapse
|