1
|
Chen N, Luo J, Zhou T, Shou Y, Du C, Song G, Xu L, Zhao K, Jin Y, Li C, Yu D. Lysine β-hydroxybutyrylation promotes lipid accumulation in alcoholic liver disease. Biochem Pharmacol 2024; 228:115936. [PMID: 38012969 DOI: 10.1016/j.bcp.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Continuous (chronic or sub-chronic) alcohol consumption induces a metabolic byproduct known as ketone bodies, and the accumulation of ketones leads to a life-threatening syndrome called alcoholic ketoacidosis. However, the mechanism underlining the physiological effects of ketone accumulation in alcoholic liver disease (ALD) is still in its infancy. Here, we discovered that mitochondrial acetyl-CoA accumulation was diverted into the ketogenesis pathway in ethanol-fed mice and ethanol-exposed hepatocytes. Unexpectedly, global protein lysine β-hydroxybutyrylation (Kbhb) was induced in response to increased ketogenesis-derived β-hydroxybutyrate (BHB) levels both in hepatocytes and in livers of mice. Focusing on the solute carrier family (SLCs), we found that SLC25A5 presented obvious Kbhb at lysine residues 147 and 166. Kbhb modifications at these two lysine residues stabilized SLC25A5 expression by blocking ubiquitin-proteasome pathway. Subsequent mutation analysis revealed that Kbhb of SLC25A5 at K147 and K166 had site-specific regulatory roles by increasing peroxisome proliferator activated receptor gamma (PPARγ) expression, which further promoting lipogenesis. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (HMGCS2), a rate-limiting enzyme for BHB production, was profoundly induced by ethanol exposure, and knockout of Hmgcs2 with CRISPR/Cas9 attenuated SLC25A5 Kbhb. Together, our study demonstrated a widespread Kbhb landscape under ethanol exposure and clarified a physiological effect of Kbhb modification on liver lipid accumulation.
Collapse
Affiliation(s)
- Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Tao Zhou
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Chenlong Du
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Song
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Deng Y, Liu T, Scifo E, Li T, Xie K, Taschler B, Morsy S, Schaaf K, Ehninger A, Bano D, Ehninger D. Analysis of the senescence-associated cell surfaceome reveals potential senotherapeutic targets. Aging Cell 2024:e14312. [PMID: 39228130 DOI: 10.1111/acel.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
The accumulation of senescent cells is thought to play a crucial role in aging-associated physiological decline and the pathogenesis of various age-related pathologies. Targeting senescence-associated cell surface molecules through immunotherapy emerges as a promising avenue for the selective removal of these cells. Despite its potential, a thorough characterization of senescence-specific surface proteins remains to be achieved. Our study addresses this gap by conducting an extensive analysis of the cell surface proteome, or "surfaceome", in senescent cells, spanning various senescence induction regimes and encompassing both murine and human cell types. Utilizing quantitative mass spectrometry, we investigated enriched cell surface proteins across eight distinct models of senescence. Our results uncover significant changes in surfaceome expression profiles during senescence, highlighting extensive modifications in cell mechanics and extracellular matrix remodeling. Our research also reveals substantive heterogeneity of senescence, predominantly influenced by cell type and senescence inducer. A key discovery of our study is the identification of four unique cell surface proteins with extracellular epitopes. These proteins are expressed in senescent cells, absent or present at low levels in their proliferating counterparts, and notably upregulated in tissues from aged mice and an Alzheimer's disease mouse model. These proteins stand out as promising candidates for senotherapeutic targeting, offering potential pathways for the detection and strategic targeting of senescent cell populations in aging and age-related diseases.
Collapse
Affiliation(s)
- Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tao Li
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Sarah Morsy
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- AvenCell Europe GmbH, Dresden, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
3
|
Chang M, Gao F, Gnawali G, Xu H, Dong Y, Meng X, Li W, Wang Z, Lopez B, Carew JS, Nawrocki ST, Lu J, Zhang QY, Wang W. Selective Elimination of Senescent Cancer Cells by Galacto-Modified PROTACs. J Med Chem 2024; 67:7301-7311. [PMID: 38635879 PMCID: PMC11227109 DOI: 10.1021/acs.jmedchem.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated β-galactosidase (SA-β-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-β-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wenpan Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Zhiren Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Byrdie Lopez
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer S. Carew
- Department of Medicine, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| | - Steffan T. Nawrocki
- Department of Medicine, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| | - Jianqin Lu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Gao X, Fu J, Yu D, Lu F, Liu S. Integrated network pharmacology and phosphoproteomic analyses of Baichanting in Parkinson's disease model mice. Heliyon 2024; 10:e26916. [PMID: 38509878 PMCID: PMC10951462 DOI: 10.1016/j.heliyon.2024.e26916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The incidence rate of Parkinson's disease (PD) is increasing yearly. Neuronal apoptosis caused by abnormal protein phosphorylation is closely related to the pathogenesis of Parkinson's disease. At present, few PD-specific apoptosis pathways have been revealed. To investigate the effect of Baichanting (BCT) on apoptosis from the perspective of protein phosphorylation, α-syn transgenic mice were selected to observe the behavioral changes of the mice, and the apoptosis of substantia nigra cells were detected by the HE method and TUNEL method. Network pharmacology combined with phosphorylation proteomics was used to find relevant targets for BCT treatment of PD and was further verified by PRM and western blotting. BCT improved the morphology of neurons in the substantia nigra and reduced neuronal apoptosis. The main enriched pathways in the network pharmacology results were apoptosis, the p53 signaling pathway and autophagy. Western blot results showed that BCT significantly regulated the protein expression levels of BAX, Caspase-3, LC3B, P53 and mTOR and upregulated autophagy to alleviate apoptosis. Using phosphorylated proteomics and PRM validation, we found that Pak5, Grin2b, Scn1a, BcaN, L1cam and Braf are closely correlated with the targets of the web-based pharmacological screen and may be involved in p53/mTOR-mediated autophagy and apoptosis pathways. BCT can inhibit the activation of the p53/mTOR signaling pathway, thereby enhancing the autophagy function of cells, and reducing the apoptosis of neurons which is the main mechanism of its neuroprotective effect.
Collapse
Affiliation(s)
- Xin Gao
- Heilongjiang University of Chinese Medicine, College of Pharmacy, Harbin, 150040, China
| | - Jiaqi Fu
- Heilongjiang University of Chinese Medicine, College of Pharmacy, Harbin, 150040, China
| | - DongHua Yu
- Heilongjiang University of Chinese Medicine, Research Institute of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Heilongjiang University of Chinese Medicine, Research Institute of Chinese Medicine, Harbin, 150040, China
| | - Shumin Liu
- Heilongjiang University of Chinese Medicine, Research Institute of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
5
|
Wang L, Li J, Zhao Z, Xia Y, Xie Y, Hong D, Liu Y, Tan W. Aptamer Conjugate-Based Ratiometric Fluorescent Probe for Precise Imaging of Therapy-Induced Cancer Senescence. Anal Chem 2024; 96:154-162. [PMID: 38113452 DOI: 10.1021/acs.analchem.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Therapy-induced cellular senescence has been increasingly recognized as a key mechanism to promote various aspects of carcinogenesis in a nonautonomous manner. Thus, real-time imaging monitoring of cellular senescence during cancer therapy is imperative not only to further elucidate its roles in cancer progression but also to provide guidance for medical management of cancer. However, it has long been a challenging task due to the lack of effective imaging molecule tools with high specificity and accuracy toward cancer senescence. Herein, we report the rational design, synthesis, and evaluation of an aptamer conjugate-based ratiometric fluorescent probe for precise imaging of therapy-induced cancer senescence. Unlike traditional senescence imaging systems, our probe targets two senescence-associated markers at both cellular and subcellular dimensions, namely, aptamer-mediated membrane marker recognition for active cell targeting and lysosomal marker-triggered ratiometric fluorescence changes of two cyanine dyes for site-specific, high-contrast imaging. Moreover, such a two-channel fluorescence response is activated after a one-step reaction and at the same location, avoiding the diffusion-caused signal decay previously encountered in dual-marker activated probes, contributing to spatiotemporally specific imaging of therapy-induced cancer senescence in living cells and three-dimensional multicellular tumor spheroids. This work may offer a valuable tool for a basic understanding of cellular senescence in cancer biology and interventions.
Collapse
Affiliation(s)
- Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhihui Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Donghui Hong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Romanová M, Židlík V, Javůrková V, Kondé A, Šimetka O, Klát J. L1CAM Is Not a Predictive Factor in Early-stage Squamous-cell Cervical Cancer. In Vivo 2023; 37:2334-2339. [PMID: 37652517 PMCID: PMC10500533 DOI: 10.21873/invivo.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
AIM Our study aimed to assess expression of L1 cell adhesion molecule (L1CAM) in early-stage cervical squamous-cell cancer as a prognostic factor. PATIENTS AND METHODS This retrospective, single-institution study included 154 patients who underwent radical hysterectomy for early-stage squamous cell cervical cancer between 2007 and 2017. Tumor samples from 154 patients were available for L1CAM analysis by immunohistochemistry. Among all patients, radical abdominal hysterectomy was performed in 144 cases. RESULTS L1CAM expression was positive in 24 tumors (15.6%) of the whole group. In relation to the grade of differentiation and the presence of lymphovascular invasion, L1CAM expression did not show an association (p=0.154 and p=0.306, respectively). The disease-free interval and overall survival also did not significantly differ between L1CAM-positive and L1CAM-negative cases (p=0.427 and p=0.240, respectively). For histopathological characteristics, L1CAM-positive cases had a significantly higher median tumor size (p=0.015). Even in the selected group of 115 cases without nodal infiltration, L1CAM status had no effect on the relapse rate during follow-up. CONCLUSION Our study did not confirm the results of previous studies showing L1CAM expression to be a negative prognostic factor in cervical cancer. In our study, increased L1CAM expression in early-stage squamous-cell cervical cancer was not associated with adverse prognosis regarding disease recurrence, disease-free survival, nor overall survival. L1CAM expression was correlated only with the size of the tumor.
Collapse
Affiliation(s)
- Martina Romanová
- Department of Obstetrics and Gynecology, Gynecological Oncology Centre, University Hospital Ostrava, Ostrava Poruba, Czech Republic
| | - Vladimír Židlík
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava Poruba, Czech Republic
| | - Veronika Javůrková
- Department of Obstetrics and Gynecology, Gynecological Oncology Centre, University Hospital Ostrava, Ostrava Poruba, Czech Republic
| | - Adela Kondé
- Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava Poruba, Czech Republic
- Department of Deputy Director for Science, Research and Education, University Hospital Ostrava, Ostrava Poruba, Czech Republic
| | - Ondřej Šimetka
- Department of Obstetrics and Gynecology, Gynecological Oncology Centre, University Hospital Ostrava, Ostrava Poruba, Czech Republic
| | - Jaroslav Klát
- Department of Obstetrics and Gynecology, Gynecological Oncology Centre, University Hospital Ostrava, Ostrava Poruba, Czech Republic;
| |
Collapse
|
7
|
Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DB, Ma’ayan A. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res 2023; 51:W168-W179. [PMID: 37166973 PMCID: PMC10320098 DOI: 10.1093/nar/gkad393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Gene and protein set enrichment analysis is a critical step in the analysis of data collected from omics experiments. Enrichr is a popular gene set enrichment analysis web-server search engine that contains hundreds of thousands of annotated gene sets. While Enrichr has been useful in providing enrichment analysis with many gene set libraries from different categories, integrating enrichment results across libraries and domains of knowledge can further hypothesis generation. To this end, Enrichr-KG is a knowledge graph database and a web-server application that combines selected gene set libraries from Enrichr for integrative enrichment analysis and visualization. The enrichment results are presented as subgraphs made of nodes and links that connect genes to their enriched terms. In addition, users of Enrichr-KG can add gene-gene links, as well as predicted genes to the subgraphs. This graphical representation of cross-library results with enriched and predicted genes can illuminate hidden associations between genes and annotated enriched terms from across datasets and resources. Enrichr-KG currently serves 26 gene set libraries from different categories that include transcription, pathways, ontologies, diseases/drugs, and cell types. To demonstrate the utility of Enrichr-KG we provide several case studies. Enrichr-KG is freely available at: https://maayanlab.cloud/enrichr-kg.
Collapse
Affiliation(s)
- John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nhi Nguyen
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| |
Collapse
|
8
|
Guo Z, Li J, Tan J, Sun S, Yan Q, Qin H. Exosomal miR-214-3p from senescent osteoblasts accelerates endothelial cell senescence. J Orthop Surg Res 2023; 18:391. [PMID: 37248458 DOI: 10.1186/s13018-023-03859-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Osteoporosis is a common systemic bone disease that leads to bone fragility and increases the risk of fracture. However, the pathogenesis of osteoporosis is considered to be highly complex. The exosomes can regulate the communication between cells. The specific mechanism of information transmission between osteoblasts and endothelial cells is worthy of further study. METHODS Exosomes were isolated and verified from senescent osteoblasts. The source and properties of exosomes were determined by TEM, particle size analysis and western blot. We established the co-culture model of endothelial cells and senescent osteoblasts. We used qRT-PCR to identify differentially expressed miRNAs. The functional changes of vascular endothelial cells were verified by cell transfection. β-Galactosidase cell senescence assay, Hoechst cell apoptosis assay, Ki67 cell proliferation assay and Transwell migration assay were used to verify cell senescence, apoptosis, proliferation, and migration. The potential target gene of miRNA was detected by bio-informatics pathway and double luciferase report. RESULTS We discovered that senescent osteoblasts could promote the senescence and apoptosis of vascular endothelial cells and inhibit their proliferation and migration. miR-214-3p was upregulated in senescent osteoblast-derived exosomes. miR-214-3p could effectively promote senescence and apoptosis of endothelial cells and inhibit proliferation and migration ability. L1CAM is a miR-214-3p direct target gene determined by bio-informatics and double luciferase report. CONCLUSIONS In conclusion, senescent osteoblast-derived exosomes can accelerate endothelial cell senescence through miR-214-3p/L1CAM pathway. Our experiments reveal the role of exosomes in the skeletal microenvironment.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Jing Li
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Jiyong Tan
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Sainan Sun
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Qing Yan
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Hao Qin
- Department of Orthopedics, Guigang City People's Hospital, No. 1 Zhongshan Middle Road, Gangbei District, Guigang, 537100, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
Flaviana C, Monica P, Terenzio C, Raffaele M, Valentina A, Giulia C, Peter VE, Giorgio LN, Massimo C, Ferdinando C, Germano O, Daniela F, Clara G. L1CAM expression in human gastrointestinal tract development: From tongue to colon-rectum. J Public Health Res 2023; 12:22799036231165624. [PMID: 37213825 PMCID: PMC10192797 DOI: 10.1177/22799036231165624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/09/2023] [Indexed: 05/23/2023] Open
Abstract
Background L1CAM (L1 cell adhesion molecule) is a member of the L1 family of neural adhesion molecules, involved in the development of multiple organs and tissues, including kidneys, the enteric nervous system, and adrenal glands. The aim of this study was to analyze, at the immunohistochemical level, the expression of L1CAM in the human tongue, parotid glands, and the different segments of the gastrointestinal tract during human development. Design and method Immunohistochemical analysis for L1CAM was performed in the human tongue, parotid glands, and in the different segments of the gastrointestinal tract during development, starting from the 8th up to the 32nd week of gestation. Results Our results were given by the expression of the L1CAM protein in different segments of the gastrointestinal tract during development, starting from the 8th week up to the 32nd week of gestation. L1CAM-reactive cells appeared aggregated in small bodies, irregular in shape, showing L1CAM storage in the cytoplasm. L1CAM expressing bodies were frequently found to be connected one to the next by thin fibers, a finding suggestive of the existence of an L1CAM network inside the developing tissue. Conclusion Our study confirms that L1CAM is involved in gut development, as well as in tongue and salivary gland development. These findings confirm that the role of L1CAM in fetal development is not restricted to the central nervous system and are necessary for further studies on the role of this molecule in human development.
Collapse
Affiliation(s)
- Cau Flaviana
- Department of Medical Sciences and
Public Health, Division of Pathology, AOU of Cagliari, University of Cagliari,
Cagliari, Italy
| | - Piras Monica
- Department of Medical Sciences and
Public Health, Electron Microscopy Laboratory, Division of Pathology, AOU of
Cagliari, University of Cagliari, Cagliari, Italy
| | - Congiu Terenzio
- Department of Medical Sciences and
Public Health, Electron Microscopy Laboratory, Division of Pathology, AOU of
Cagliari, University of Cagliari, Cagliari, Italy
| | - Murru Raffaele
- Department of Medical Sciences and
Public Health, Division of Pathology, AOU of Cagliari, University of Cagliari,
Cagliari, Italy
| | - Aimola Valentina
- Department of Medical Sciences and
Public Health, Division of Pathology, AOU of Cagliari, University of Cagliari,
Cagliari, Italy
| | - Cerrone Giulia
- Department of Medical Sciences and
Public Health, Division of Pathology, AOU of Cagliari, University of Cagliari,
Cagliari, Italy
| | - Van Eyken Peter
- Department of Pathology, Genk Regional
Ziekenhuis, Genk, Belgium
| | - La Nasa Giorgio
- Department of Medical Sciences and
Public Health, Hematology Unit, University of Cagliari Cagliari, Italy
| | - Castagnola Massimo
- Laboratorio di Proteomica, Centro
Europeo di Ricerca Sul Cervello, IRCCS, Fondazione Santa Lucia, Roma, Italy
| | - Coghe Ferdinando
- Department of Clinical Laboratory,
Azienda Ospedaliero Universitaria (AOU) di Cagliari - Polo di Monserrato, Cagliari,
Italy
| | - Orru’ Germano
- Molecular Biology Service Laboratory,
Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Fanni Daniela
- Department of Medical Sciences and
Public Health, Division of Pathology, AOU of Cagliari, University of Cagliari,
Cagliari, Italy
| | - Gerosa Clara
- Department of Medical Sciences and
Public Health, Division of Pathology, AOU of Cagliari, University of Cagliari,
Cagliari, Italy
| |
Collapse
|
10
|
Xia Y, Li J, Wang L, Xie Y, Zhang L, Han X, Tan W, Liu Y. Engineering Hierarchical Recognition-Mediated Senolytics for Reliable Regulation of Cellular Senescence and Anti-Atherosclerosis Therapy. Angew Chem Int Ed Engl 2023; 62:e202214169. [PMID: 36445796 DOI: 10.1002/anie.202214169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Precise regulation of vascular senescence represents a far-reaching strategy to combat age-related diseases. However, the high heterogeneity of senescence, alongside the lack of targeting and potent senolytics, makes it very challenging. Here we report a molecular design to tackle this challenge through multidimensional, hierarchical recognition of three hallmarks commonly shared among senescence, namely, aptamer-mediated recognition of a membrane marker for active cell targeting, a self-immolative linker responsive to lysosomal enzymes for switchable drug release, and a compound against antiapoptotic signaling for clearance. Such senolytic can target and trigger severe cell apoptosis in broad-spectrum senescent endothelial cells, and importantly, distinguish them from the quiescent state. Its potential for in vivo treatment of vascular diseases is successfully illustrated in a model of atherosclerosis, with effective suppression of the plaque progression yet negligible side effects.
Collapse
Affiliation(s)
- Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoyan Han
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
11
|
Li J, Bi Z, Wang L, Xia Y, Xie Y, Liu Y. Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Senescence. Chembiochem 2023; 24:e202200364. [PMID: 36163425 DOI: 10.1002/cbic.202200364] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stable cell cycle arrest state that can be triggered by a wide range of intrinsic or extrinsic stresses. Increased burden of senescent cells in various tissues is thought to contribute to aging and age-related diseases. Thus, the detection and interventions of senescent cells are critical for longevity and treatment of disease. However, the highly heterogeneous feature of senescence makes it challenging for precise detection and selective clearance of senescent cells in different age-related diseases. To address this issue, considerable efforts have been devoted to developing senescence-targeting molecular theranostic strategies, based on the potential biomarkers of cellular senescence. Herein, we review recent advances in the field of anti-senescence research and highlight the specific visualization and elimination of senescent cells. Additionally, the challenges in this emerging field are outlined.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
12
|
Wang JW, Wang HL, Liu Q, Hu K, Yuan Q, Huang SK, Wan JH. L1CAM expression in either metastatic brain lesion or peripheral blood is correlated with peripheral platelet count in patients with brain metastases from lung cancer. Front Oncol 2022; 12:990762. [DOI: 10.3389/fonc.2022.990762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSystemic immune-inflammation states across the heterogeneous population of brain metastases from lung cancer are very important, especially in the context of complex brain-immune bidirectional communication. Previous studies from our team and others have shown that the L1 cell adhesion molecule (L1CAM) is deeply involved in the aggressive phenotype, immunosuppressive tumor microenvironment (TME), and metastasis during multiple malignancies, which may lead to an unfavorable outcome. However, little is known about the relationship between the L1CAM expression and the systemic immune-inflammation macroenvironment beyond the TME in brain metastases from lung cancer.MethodsTwo cohorts of patients with brain metastases from lung cancer admitted to the National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, were studied in the present research. The L1CAM expression in cranial metastatic lesions by immunohistochemistry was explored in patients treated with neurosurgical resection, whereas the L1CAM expression in peripheral blood by ELISA was tested in patients treated with non-surgical antitumor management. Furthermore, based on peripheral blood cell counts in the CBC test, six systemic immune-inflammation biomarkers [neutrophil count, lymphocyte count, platelet count, systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio] were calculated. Then, the relationship between the L1CAM expression and these systemic immune-inflammation biomarkers was analyzed. In addition, these systemic immune-inflammation biomarkers were also used to compare the systemic immune-inflammation states in two cohorts of patients with brain metastases from lung cancer.ResultsPositive L1CAM expressions in the metastatic brain lesions were accompanied with significantly increased peripheral platelet counts in patients treated with neurosurgical tumor resection (P < 0.05). Similarly, in patients treated with non-surgical antitumor management, L1CAM expressions in the peripheral blood were positively correlated with peripheral platelet counts (P < 0.05). In addition, patients prepared for neurosurgical tumor resection were presented with poorer systemic immune-inflammation states in comparison with the one with non-surgical antitumor management, which was characterized by a significant increase in peripheral neutrophil counts (P < 0.01), SII (P < 0.05), and NLR (P < 0.05) levels.ConclusionThe L1CAM expression in either the metastatic brain lesion or peripheral blood is positively correlated with the peripheral platelet count in patients with brain metastases from lung cancer. In addition, brain metastases that are prepared for neurosurgical tumor resection show poor systemic immune-inflammation states.
Collapse
|
13
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
14
|
Zarrineh M, Ashrafian S, Jensen P, Nawrocki A, Ansari AM, Rezadoost H, Ghassempour A, Larsen MR. Comprehensive proteomics and sialiomics of the anti-proliferative activity of safranal on triple negative MDA-MB-231 breast cancer cell lines. J Proteomics 2022; 259:104539. [PMID: 35240313 DOI: 10.1016/j.jprot.2022.104539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no efficient treatment. Researchers have indicated the importance of quantitative approaches on proteome and different post-translation modifications studies both in diagnosis and treatment purposes. Sialic acid-containing glycopeptides (the sialiome) is one of these modifications which can be used as a tool in cancer diagnosis or therapeutic strategies since the sialylation is strongly associated with cancer migration and metastasis. Based on our study, safranal, which is a non-toxic compound in orally intakes, exhibits a significant cytotoxic effect on MDA-MB-231 in comparison to normal cells. We conducted a comprehensive proteomics and sialiomics analysis of safranal treated MDA-MB-231 cells by using a combination of TMT labeling and titanium dioxide enrichment of sialylated N-linked glycopeptides to investigate the underlying molecular mechanism behind safranal-induced apoptosis. Safranal has main effect on the inhibition of metabolism and mitochondrial dysfunction. It regulates proteins considered as activator of DNA fragmentation and apoptosis mediators. Moreover, safranal regulates sialylation of glycoproteins involving in cellular adhesion, migration and survival. It suppresses cell survival and metastasis through the alteration of the sialylation level on important signaling receptors. These results highlight the impact of safranal as a potent anticancer compound on TNBCs which also can be strongly used in daily diets. SIGNIFICANCE: In first step, we evaluated the cell viability of MDA-MB-231 cell lines against the purified saffron components (total crocin, picrocrocin, crocin I and safranal). Safranal was the only compound demonstrated the anti-proliferation effect. In order to obtain an understanding of safranal cytotoxic effect on MDA-MB-231, we designed the three set of treated cell lines in 30 min, 12 h and 24 h time-points in three replicates and a combination of TMT-based labeling quantitative proteomics and titanium dioxide (TiO2)-based enrichment of sialylated N-linked glycopeptides for sialiomics analysis as a strategy to follow the more detailed mechanisms of safranal effect. The results of bioinformatics analysis revealed the multifunction role of safranal on MDA-MB-231 cell lines. Safranal mainly dysregulates mitochondrial function, inhibits metabolism and starts initial signaling of apoptosis which lead to DNA fragmentation. Moreover, safranal caused the majority of down-regulation in sialylation profile in all time-points. Safranal also declines the cell survival, adhesion and migration by dysregulation of the sialylation level in important proteins including integrins, tumor necrosis factor receptor and cell adhesion molecules (CAMs). The results provide a set of therapeutic targets for triple negative breast cancer which can help designing of effective anticancer drugs specially in targeted therapies.
Collapse
Affiliation(s)
- Mahshid Zarrineh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Shahrbanou Ashrafian
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Pia Jensen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Arkadiusz Nawrocki
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hassan Rezadoost
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran.
| | - Martin R Larsen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
15
|
Kleene R, Loers G, Castillo G, Schachner M. Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain. FASEB J 2021; 36:e22074. [PMID: 34859928 DOI: 10.1096/fj.202100816r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, β, and ɣ. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158 KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1), or ɣ-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -β, or -ɣ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Ralf Kleene
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gaston Castillo
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
16
|
Erbaba B, Burhan ÖP, Şerifoğlu N, Muratoğlu B, Kahveci F, Adams MM, Arslan-Ergül A. Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. Neurobiol Aging 2020; 94:164-175. [PMID: 32629311 DOI: 10.1016/j.neurobiolaging.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
Brain aging is a complex process, which involves multiple pathways including various components from cellular to molecular. This study aimed to investigate the gene expression changes in zebrafish brains through young-adult to adult, and adult to old age. RNA sequencing was performed on isolated neuronal cells from zebrafish brains. The cells were enriched in progenitor cell markers, which are known to diminish throughout the aging process. We found 176 statistically significant, differentially expressed genes among the groups, and identified a group of genes based on gene ontology descriptions, which were classified as cell adhesion molecules. The relevance of these genes was further tested in another set of zebrafish brains, human healthy, and Alzheimer's disease brain samples, as well as in Allen Brain Atlas data. We observed that the expression change of 2 genes, GJC2 and ALCAM, during the aging process was consistent in all experimental sets. Our findings provide a new set of markers for healthy brain aging and suggest new targets for therapeutic approaches to neurodegenerative diseases.
Collapse
Affiliation(s)
- Begün Erbaba
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Özge Pelin Burhan
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Naz Şerifoğlu
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Bihter Muratoğlu
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Fatma Kahveci
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; UMRAM, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Ayça Arslan-Ergül
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey.
| |
Collapse
|