1
|
Park YJ, Heo J, Kim Y, Cho H, Shim M, Im K, Lim W. Glucocorticoids alleviate particulate matter-induced COX-2 expression and mitochondrial dysfunction through the Bcl-2/GR complex in A549 cells. Sci Rep 2023; 13:18884. [PMID: 37919369 PMCID: PMC10622527 DOI: 10.1038/s41598-023-46257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Exposure to particulate matter (PM) causes mitochondrial dysfunction and lung inflammation. The cyclooxygenase-2 (COX-2) pathway is important for inflammation and mitochondrial function. However, the mechanisms by which glucocorticoid receptors (GRs) suppress COX-2 expression during PM exposure have not been elucidated yet. Hence, we examined the mechanisms underlying the dexamethasone-mediated suppression of the PM-induced COX-2/prostaglandin E2 (PGE2) pathway in A549 cells. The PM-induced increase in COX-2 protein, mRNA, and promoter activity was suppressed by glucocorticoids; this effect of glucocorticoids was antagonized by the GR antagonist RU486. COX-2 induction was correlated with the ability of PM to increase reactive oxygen species (ROS) levels. Consistent with this, antioxidant treatment significantly abolished COX-2 induction, suggesting that ROS is involved in PM-mediated COX-2 induction. We also observed a low mitochondrial membrane potential in PM-treated A549 cells, which was reversed by dexamethasone. Moreover, glucocorticoids significantly enhanced Bcl-2/GR complex formation in PM-treated A549 cells. Glucocorticoids regulate the PM-exposed induction of COX-2 expression and mitochondrial dysfunction and increase the interaction between GR and Bcl-2. These findings suggest that the COX-2/PGE2 pathway and the interaction between GR and Bcl-2 are potential key therapeutic targets for the suppression of inflammation under PM exposure.
Collapse
Affiliation(s)
- Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Myeongkuk Shim
- BL Healthcare, Yongin-si, Gyeonggi-do, 16827, South Korea
| | - Kyunghyun Im
- BL Healthcare, Yongin-si, Gyeonggi-do, 16827, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, 28503, South Korea.
| |
Collapse
|
2
|
Aghaei-Zarch SM, Nia AHS, Nouri M, Mousavinasab F, Najafi S, Bagheri-Mohammadi S, Aghaei-Zarch F, Toolabi A, Rasoulzadeh H, Ghanavi J, Moghadam MN, Talebi M. The impact of particulate matters on apoptosis in various organs: Mechanistic and therapeutic perspectives. Biomed Pharmacother 2023; 165:115054. [PMID: 37379642 DOI: 10.1016/j.biopha.2023.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Nouri
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Mousavinasab
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Effects of air pollution on human health - Mechanistic evidence suggested by in vitro and in vivo modelling. ENVIRONMENTAL RESEARCH 2022; 212:113378. [PMID: 35525290 DOI: 10.1016/j.envres.2022.113378] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Airborne particulate matter (PM) comprises both solid and liquid particles, including carbon, sulphates, nitrate, and toxic heavy metals, which can induce oxidative stress and inflammation after inhalation. These changes occur both in the lung and systemically, due to the ability of the small-sized PM (i.e. diameters ≤2.5 μm, PM2.5) to enter and circulate in the bloodstream. As such, in 2016, airborne PM caused ∼4.2 million premature deaths worldwide. Acute exposure to high levels of airborne PM (eg. during wildfires) can exacerbate pre-existing illnesses leading to hospitalisation, such as in those with asthma and coronary heart disease. Prolonged exposure to PM can increase the risk of non-communicable chronic diseases affecting the brain, lung, heart, liver, and kidney, although the latter is less well studied. Given the breadth of potential disease, it is critical to understand the mechanisms underlying airborne PM exposure-induced disorders. Establishing aetiology in humans is difficult, therefore, in-vitro and in-vivo studies can provide mechanistic insights. We describe acute health effects (e.g. exacerbations of asthma) and long term health effects such as the induction of chronic inflammatory lung disease, and effects outside the lung (e.g. liver and renal change). We will focus on oxidative stress and inflammation as this is the common mechanism of PM-induced disease, which may be used to develop effective treatments to mitigate the adverse health effect of PM exposure.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
He Y, Li F, Zhang C, Geng X, Syeda MZ, Du X, Shao Z, Hua W, Li W, Chen Z, Ying S, Shen H. Therapeutic Effects of the Bcl-2 Inhibitor on Bleomycin-induced Pulmonary Fibrosis in Mice. Front Mol Biosci 2021; 8:645846. [PMID: 34692765 PMCID: PMC8529052 DOI: 10.3389/fmolb.2021.645846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a distressing lung disorder with poor prognosis and high mortality rates. Limited therapeutic options for IPF is a major clinical challenge. Well-known for its anti-apoptotic properties, B-cell lymphoma 2 (Bcl-2) plays a critical role in the pathology of malignancies and inflammatory diseases, including IPF. In this study, we aimed to investigate the therapeutic effect of a Bcl-2 homology domain 3 mimetic inhibitor, ABT-199, on bleomycin (BLM)-induced pulmonary fibrosis in mice, and explore possible underlying mechanism. The lung inflammation and fibrosis model was established by intratracheal instillation of a single dose of BLM. We observed elevated Bcl-2 in the alveolar macrophages and fibroblasts derived from BLM-instilled mice from day 7. Further, we obtained in vivo evidence that early therapeutic treatment with Bcl-2 inhibitor ABT-199 from day 3, and late treatment from day 10, both alleviated airway inflammation and lung fibrosis induced by BLM. Our data suggest that ABT-199 might be an effective antifibrotic agent that interferes with profibrogenic cells, which may be a promising therapy in the treatment of clinical IPF patients.
Collapse
Affiliation(s)
- Yicheng He
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinwei Geng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Hua
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,State Key Lab of Respiratory Disease, Guangzhou, China
| |
Collapse
|
5
|
Su R, Wang H, Xiao C, Tao Y, Li M, Chen Z. Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis. Biomater Sci 2021; 9:4746-4754. [PMID: 34036969 DOI: 10.1039/d1bm00481f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delayed neutrophil apoptosis has been proved to be closely associated with acute lung injury. A Bcl-2 inhibitor, venetoclax, can improve the clinical outcome of acute lung injury based on its pro-apoptotic effect. However, pulmonary delivery of free venetoclax is hindered by its water insolubility, which results in limited bioavailability and pharmacological effects. An amphipathic polymer-based nanodelivery system has been extensively used to improve the delivery of this insoluble drug and enhance its bioavailability. In this study, an amphiphilic poly(ethylene glycol) modified poly(α-lipoic acid) nanoparticle with an extended lung tissue-resident time was utilized to deliver venetoclax. Compared to free venetoclax, the nanoformulated venetoclax (Nf-venetoclax) presented better efficacy for acute lung injury through increasing neutrophil apoptosis in vivo. In addition, a stronger pro-apoptotic effect of Nf-venetoclax was also demonstrated in vitro. Our study provides encouraging evidence that Nf-venetoclax exhibits effective therapy for acute lung injury.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China and Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Ma JX, Xiao X, Zhou KF, Huang G, Ao B, Zhang Y, Gao WJ, Lei T, Yang L, Fan XC, Li WH. Herb pair of Ephedrae Herba-Armeniacae Semen Amarum alleviates airway injury in asthmatic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113745. [PMID: 33359859 DOI: 10.1016/j.jep.2020.113745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedrae Herba (EH, Ephedra sinica Stapf.) and Armeniacae Semen Amarum (ASA, Prunus armeniaca L. var. ansu Maxim.) have been used to treat asthma, cold, fever, and cough in China for thousands of years. AIM OF THE STUDY In this study, we aimed to investigate the optimal ratio of EH and ASA compatibility (EAC) to reduce airway injury in asthmatic rats and its possible mechanism. METHODS Rats were sensitized with a mixture of acetylcholine chloride and histamine bisphosphate 1 h before sensitization by intragastric administration of EAC or dexamethasone or saline for 7 days. Subsequently, the ultrastructure of rat airway epithelial tissue changes, apoptosis of the airway epithelial cells, and the expression of mRNA and protein of EGRF and Bcl-2 were detected. RESULTS Transmission electron microscope: EAC (groups C and E) had the most prominent effect on repairing airway epithelial cells' ultrastructural changes in asthmatic rats. TUNEL: dexamethasone and EAC (groups B、C、E and F) inhibited the apoptosis of airway epithelial cells in asthmatic rats (P < 0.05). In situ hybridization: EAC (group E) inhibited the overexpression of EGFR and Bcl-2 mRNA (P < 0.05).Western Blotting: EAC (groups A、B、C、E and F) inhibited the upregulation of airway epithelial EGFR and Bcl-2 protein expression (P < 0.01). CONCLUSIONS Our findings indicate that EAC can inhibit abnormal changes in airway epithelial structure and apoptosis of airway epithelial cells, thereby alleviating airway injury. In this study, the best combination of EH and ASA to alleviate airway epithelial injury in asthmatic rats was group E (EH: ASA = 8: 4.5).
Collapse
Affiliation(s)
- Jia-Xin Ma
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xiong Xiao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Kai-Fang Zhou
- School of Pharmacy, Sanquan Medical College, Xinxiang, Henan, 453003, China
| | - Gang Huang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, 362010, China
| | - Bo Ao
- Department of Pharmacy, CITIC Huizhou Hospital, Huizhou, Guangdong, 516006, China
| | - Ying Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Wen-Jun Gao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ting Lei
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Li Yang
- Department of Pharmacy, The Ninth Hospital of Nanchang, Nanchang, Jiangxi, 330002, China
| | - Xue-Cheng Fan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Wen-Hong Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
7
|
Assessing the Anti-inflammatory Mechanism of Reduning Injection by Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6134098. [PMID: 33381562 PMCID: PMC7758122 DOI: 10.1155/2020/6134098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Reduning Injection (RDNI) is a traditional Chinese medicine formula indicated for the treatment of inflammatory diseases. However, the molecular mechanism of RDNI is unclear. The information of RDNI ingredients was collected from previous studies. Targets of them were obtained by data mining and molecular docking. The information of targets and related pathways was collected in UniProt and KEGG. Networks were constructed and analyzed by Cytoscape to identify key compounds, targets, and pathways. Data mining and molecular docking identified 11 compounds, 84 targets, and 201 pathways that are related to the anti-inflammatory activity of RDNI. Network analysis identified two key compounds (caffeic acid and ferulic acid), five key targets (Bcl-2, eNOS, PTGS2, PPARA, and MMPs), and four key pathways (estrogen signaling pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway) which would play critical roles in the treatment of inflammatory diseases by RDNI. The cross-talks among pathways provided a deeper understanding of anti-inflammatory effect of RDNI. RDNI is capable of regulating multiple biological processes and treating inflammation at a systems level. Network pharmacology is a practical approach to explore the therapeutic mechanism of TCM for complex disease.
Collapse
|
8
|
Sharma A, Kaur S, Sarkar M, Sarin BC, Changotra H. The AGE-RAGE Axis and RAGE Genetics in Chronic Obstructive Pulmonary Disease. Clin Rev Allergy Immunol 2020; 60:244-258. [PMID: 33170477 DOI: 10.1007/s12016-020-08815-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous group of lung diseases limiting the airflow due to narrowing of airways, chronic bronchitis and emphysema that leads to difficulties in breathing. Chronic inflammation is another important characteristic of COPD which leads to immune cell infiltration and helps in the alveolar destruction. Pathology of COPD is driven by various environmental and genetic factors. COPD is mainly associated with the inhalation of toxic agents mainly the cigarette smoke. Receptor for advanced glycation end products (RAGE) has emerged as a pattern recognition receptor and is a multiligand receptor expressed moderately in various cells, tissues and highly in the lungs throughout life. RAGE recognizes various ligands produced by cigarette smoke and its role has been implicated in the pathogenesis of COPD. RAGE ligands have been reported to accumulate in the lungs of patients with COPD. RAGE is a membrane receptor but its truncated form i.e. soluble RAGE (sRAGE) mainly functions as a contender of RAGE and inhibits various RAGE dependent cell signalling. Among the various ligands of RAGE, advanced glycation end products (AGEs) are majorly linked with COPD. Accumulated AGE triggers downstream RAGE-AGE axis in COPD. Moreover, RAGE genetics has long been known to play a vital role in the pathology of various airway diseases including COPD and this gene contains an associated locus. A reliable biomarker is needed for the management of this disease. sRAGE has an inverse correlation with the RAGE showed its importance as a valuable marker in COPD. This review is focused on the role of RAGE, sRAGE, RAGE axis and RAGE genetics in COPD.
Collapse
Affiliation(s)
- Ambika Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, 171 001, India
| | - B C Sarin
- Department of Chest and TB, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, 143 501, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India.
| |
Collapse
|
9
|
Davis KU, Sheats MK. The Role of Neutrophils in the Pathophysiology of Asthma in Humans and Horses. Inflammation 2020; 44:450-465. [PMID: 33150539 DOI: 10.1007/s10753-020-01362-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a common and debilitating chronic airway disease that affects people and horses of all ages worldwide. While asthma in humans most commonly involves an excessive type 2 immune response and eosinophilic inflammation, neutrophils have also been recognized as key players in the pathophysiology of asthma, including in the severe asthma phenotype where neutrophilic inflammation predominates. Severe equine asthma syndrome (sEAS) features prominent neutrophilic inflammation and has been increasingly used as a naturally occurring animal model for the study of human neutrophilic asthma. This comparative review examines the recent literature in order to explore the role of neutrophil inflammatory functions in the pathophysiology and immunology of asthma in humans and horses.
Collapse
Affiliation(s)
- Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
10
|
Wu Y, Zhao Y, Xu T, You L, Zhang H, Liu F. Alzheimer's Disease Affects Severity of Asthma Through Methylation Control of Foxp3 Promoter. J Alzheimers Dis 2020; 70:121-129. [PMID: 31127789 DOI: 10.3233/jad-190315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that severity of asthma can be modulated by neuropsychiatric conditions, while the underlying mechanisms are not clear. Here, we used ovalbumin (OVA) to induce asthma in APP/PS1 mice, a mouse model of Alzheimer's disease (AD), or in their wildtype control C57BL/6J mice. We found that all hallmarks of asthma by OVA were significantly attenuated in APP/PS1 mice, compared to age- and gender-matched C57BL/6J mice. Interestingly, significantly higher number of regulatory T cells (Treg) was detected in the APP/PS1 mouse lung, compared to those in the C57BL/6J mouse lung. Since Foxp3 is crucial for differentiation of naive T cells into Treg and is the most important marker for Treg, we examined the Foxp3 levels in the T cells from the lung of these mice. We found that the Foxp3 levels in the APP/PS1 mouse lung were significantly higher than those in the C57BL/6J mouse lung, likely resulting from reduced Foxp3 promoter methylation. Thus, our study suggests that AD may affect severity of asthma through methylation control of Foxp3 promoter in T cells.
Collapse
Affiliation(s)
- Yahui Wu
- Department of Pediatrics, Shanghai East Hospital, the Affiliated East Hospital of TongJi University, Shanghai, China
| | - Yuhua Zhao
- Department of Pediatrics, Shanghai East Hospital, the Affiliated East Hospital of TongJi University, Shanghai, China
| | - Tong Xu
- Department of Pediatrics, Changzheng Hospital Affiliated to the SMMU, Shanghai, China
| | - LiWen You
- Department of Pediatrics, Shanghai East Hospital, the Affiliated East Hospital of TongJi University, Shanghai, China
| | - Hao Zhang
- Department of Respiration, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Pediatrics, Shanghai East Hospital, the Affiliated East Hospital of TongJi University, Shanghai, China
| |
Collapse
|
11
|
Niu H, Niu W, Yu T, Dong F, Huang K, Duan R, Qumu S, Lu M, Li Y, Yang T, Wang C. Association of RAGE gene multiple variants with the risk for COPD and asthma in northern Han Chinese. Aging (Albany NY) 2020; 11:3220-3237. [PMID: 31141790 PMCID: PMC6555453 DOI: 10.18632/aging.101975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Clinical and experimental data have shown that the receptor for advanced glycation end products (RAGE) is implicated in the pathogenesis of respiratory disorders. In this study, we genotyped five widely-evaluated variants in RAGE gene, aiming to assess their association with the risk for chronic obstructive pulmonary disease (COPD) and asthma in northern Han Chinese. Genotypes were determined in 105 COPD patients, 242 asthma patients and 527 controls. In single-locus analysis, there was significant difference in the genotype distributions of rs1800624 between COPD patients and controls (p=0.022), and the genotype and allele distributions of rs1800625 differed significantly (p=0.040 and 0.016) between asthma patients and controls. Haplotype analysis revealed that haplotype T-A-G-T (allele order: rs1800625, rs1800624, rs2070600, rs184003) was significantly associated with a reduced COPD risk (OR=0.32, 95% CI: 0.06-0.60), and haplotype T-A-A-G was significantly associated with a reduced asthma risk (OR=0.19, 95% CI: 0.04-0.96). Further haplotype-phenotype analysis showed that high- and low-density lipoprotein cholesterol and blood urea nitrogen were significant mediators for COPD (psim=0.041, 0.043 and 0.030, respectively), and total cholesterol was a significant mediator for asthma (psim=0.009). Taken together, our findings indicate that RAGE gene is a promising candidate for COPD and asthma, and importantly both disorders are genetically heterogeneous.
Collapse
Affiliation(s)
- Hongtao Niu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Feng Dong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ruirui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Minya Lu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Yong Li
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.,Clinical Diagnosis Department of Respiratory Diseases Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.,Clinical Diagnosis Department of Respiratory Diseases Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
12
|
Chen S, Deng Y, He Q, Chen Y, Wang D, Sun W, He Y, Zou Z, Liang Z, Chen R, Yao L, Tao A. Toll-like Receptor 4 Deficiency Aggravates Airway Hyperresponsiveness and Inflammation by Impairing Neutrophil Apoptosis in a Toluene Diisocyanate-Induced Murine Asthma Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:608-625. [PMID: 32400128 PMCID: PMC7225000 DOI: 10.4168/aair.2020.12.4.608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Accumulating evidence has suggested that toll-like receptor 4 (TLR4) is critically involved in the pathogenesis of asthma. The aim of this study was to investigate the role of TLR4 in toluene diisocyanate (TDI)-induced allergic airway inflammation. METHODS TLR4-/- and wild-type (WT) C57BL/10J mice were sensitized and challenged with TDI to generate a TDI-induced asthma model. B-cell lymphoma 2 (Bcl-2) inhibitors, ABT-199 (4 mg/kg) and ABT-737 (4 mg/kg), were intranasally given to TDI-exposed TLR4-/- mice after each challenge. RESULTS TDI exposure led to increased airway hyperresponsiveness (AHR), granulocyte flux, bronchial epithelial shedding and extensive submucosal collagen deposition, which were unexpectedly aggravated by TLR4 deficiency. Following TDI challenge, TLR4-/- mice exhibited down-regulated interleukin-17A and increased colony-stimulating factor 3 in bronchoalveolar lavage fluid (BALF), while WT mice did not. In addition, TLR4 deficiency robustly suppressed the expression of NOD-like receptor family pyrin domain containing 3 and NLR family CARD domain containing 4, decreased caspase-1 activity in TDI-exposed mice, but had no effect on the level of high mobility group box 1 in BALF. Flow cytometry revealed that TDI hampered both neutrophil and eosinophil apoptosis, of which neutrophil apoptosis was further inhibited in TDI-exposed TLR4-/- mice, with marked up-regulation of Bcl-2. Moreover, inhibition of Bcl-2 with either ABT-199 or ABT-737 significantly alleviated neutrophil recruitment by promoting apoptosis. CONCLUSIONS These data indicated that TLR4 deficiency promoted neutrophil infiltration by impairing its apoptosis via up-regulation of Bcl-2, thereby resulting in deteriorated AHR and airway inflammation, which suggests that TLR4 could be a negative regulator of TDI-induced neutrophilic inflammation.
Collapse
Affiliation(s)
- Shuyu Chen
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Yao Deng
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Qiaoling He
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Yanbo Chen
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - De Wang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Weimin Sun
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Ying He
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Zehong Zou
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Ailin Tao
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University, Guangzhou, China. ,
| |
Collapse
|
13
|
Xu Z, Li Z, Liao Z, Gao S, Hua L, Ye X, Wang Y, Jiang S, Wang N, Zhou D, Deng X. PM 2.5 induced pulmonary fibrosis in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:112-121. [PMID: 30597315 DOI: 10.1016/j.ecoenv.2018.12.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Epidemiological studies have revealed positive correlation between particulate matter with an aerodynamic diameter of < 2.5 µm (PM2.5) and pulmonary fibrosis (PF). As etiology and pathogenesis of PF have not been fully elucidated, this study was to investigate the potential mechanism by which PM2.5 exposure adversely induced PF in vivo and in vitro. In the present study, 6-week-old C57/BL6J mice were intranasally administrated with PM2.5 (100 μg/day) for 4 weeks. Micro-CT and hematoxylin-eosin (HE) staining analysis showed that lung inflammation and incipient fibrosis symptoms were induced after PM2.5 exposure. The expression of Transforming growth factor-β1 (TGF-β1), α-Smooth muscle actin (α-SMA), and Collagen type I (COL1) in mice lung was increased. Upregulation of TGF-β1 in mice serum was also detected by ELISA after exposure to PM2.5. Moreover, chronic PM2.5 exposure on human bronchial epithelial cell line BEAS-2B cells led to activation of TGF-β1/SMAD3 pathway, TGF-β1 excretion and epithelial-mesenchymal transition (EMT), while PM2.5 also triggered the activation of TGF-β1/SMAD3 pathway, TGF-β1 excretion as well as differentiation of human pulmonary fibroblast cell line HFL-1 cells, and TGF-β1 production in mouse macrophage cell line RAW264.7 cells. Furthermore, cell culture medium of PM2.5-treated BEAS-2B and RAW264.7 cells could both activate TGF-β1/SMAD3 signaling, α-SMA and COL1 upregulation in HFL-1 cells. Therefore, we concluded that PM2.5 could induce PF by targeting pulmonary epithelium, macrophages and fibroblasts, suggesting that PM2.5 was a potent initiator of PF.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zilin Li
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziyi Liao
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sumeng Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Li Hua
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofei Ye
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shan Jiang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Ning Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Dan Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|