1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Qiu B, Qiao S, Shi X, Shen L, Deng B, Ma Z, Zhou D, Wei Y. Shen'ge Formula Protects Cardiac Function in Rats with Pressure Overload-Induced Heart Failure. Drug Des Devel Ther 2024; 18:1875-1890. [PMID: 38831869 PMCID: PMC11146625 DOI: 10.2147/dddt.s451720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background In China, Shen'ge formula (SGF), a Traditional Chinese Medicine blend crafted from ginseng and gecko, holds a revered place in the treatment of cardiovascular diseases. However, despite its prevalent use, the precise cardioprotective mechanisms of SGF remain largely uncharted. This study aims to fill this gap by delving deeper into SGF's therapeutic potential and underlying action mechanism, thus giving its traditional use a solid scientific grounding. Methods In this study, rats were subjected to abdominal aortic constriction (AAC) to generate pressure overload. Following AAC, we administered SGF and bisoprolol intragastrically at specified doses for two distinct durations: 8 and 24 weeks. The cardiac function post-treatment was thoroughly analyzed using echocardiography and histological examinations, offering insights into SGF's influence on vital cardiovascular metrics, and signaling pathways central to cardiac health. Results SGF exhibited promising results, significantly enhanced cardiac functions over both 8 and 24-week periods, evidenced by improved ejection fraction and fractional shortening while moderating left ventricular parameters. Noteworthy was SGF's role in the significant mitigation of myocardial hypertrophy and in fostering the expression of vital proteins essential for heart health by the 24-week mark. This intervention markedly altered the dynamics of the Akt/HIF-1α/p53 pathway, inhibiting detrimental processes while promoting protective mechanisms. Conclusion Our research casts SGF in a promising light as a cardioprotective agent in heart failure conditions induced by pressure overload in rats. Central to this protective shield is the modulation of the Akt/HIF-1α/p53 pathway, pointing to a therapeutic trajectory that leverages HIF-1α promotion and p53 nuclear transport inhibition.
Collapse
Affiliation(s)
- Boyong Qiu
- Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, People’s Republic of China
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Siyu Qiao
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiujuan Shi
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lin Shen
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bing Deng
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zilin Ma
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Duan Zhou
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yihong Wei
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Yang L, Dai Q, Bao X, Li W, Liu J. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA. Cytotechnology 2024; 76:179-190. [PMID: 38495290 PMCID: PMC10940562 DOI: 10.1007/s10616-023-00607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/04/2023] [Indexed: 03/19/2024] Open
Abstract
In order to investigate miR-4763-3p and associated genes' roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiac Surgery, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong China
| | - Qian Dai
- Department of Geriatric Diseases, Changyi People’s Hospital, Changyi, 261300 Shandong China
| | - Xiaoming Bao
- Department of Cardiology, Huantai County People’s Hospital, Zibo, 256400 Shandong China
| | - Wang Li
- Department of Cardiology, Tai ’an First People’s Hospital, Tai ’an, 271000 Shandong China
| | - Jie Liu
- Department of Cardiology, The Second People’s Hospital of Changzhou, 29 Xinglong Lane, Tianning District, Changzhou, 213000 Jiangsu China
| |
Collapse
|
5
|
Wang L, Liu J, Wang Z, Qian X, Zhao Y, Wang Q, Dai N, Xie Y, Zeng W, Yang W, Bai X, Yang Y, Qian J. Dexmedetomidine abates myocardial ischemia reperfusion injury through inhibition of pyroptosis via regulation of miR-665/MEF2D/Nrf2 axis. Biomed Pharmacother 2023; 165:115255. [PMID: 37549462 DOI: 10.1016/j.biopha.2023.115255] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI. We explored the mechanisms through functional experiments on an H9c2 cell hypoxia/reoxygenation (H/R) model. Cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8) and AV/PI dual staining respectively. The expressions of miR-665 and MEF2D mRNA were detected by qRT-PCR. Western blot was employed to determine the expression levels of pyroptosis- and signaling pathway- related proteins. The interplays between miR-665 and MEF2D were validated by Dual-luciferase reporter assays. Our findings indicated that Dex preconditioning dramatically attenuated hemodynamic derangements, infarct size, and histopathological damage in rats undergoing MIRI. Dex markedly augmented cell viability, while suppressing cell apoptosis and expressions of NLRP3, cleaved-caspase-1, ASC, GSDMD, IL-1β, and IL-18 in H9c2 cells subjected to H/R injury. MiR-665 was significantly upregulated, MEF2D and Nrf2 downregulated following H/R, whereas Dex preconditioning reversed these changes. MEF2D was validated to be a target gene of miR-665. Overexpression of miR-665 decreased the expression of MEF2D and blunted the protective effects of Dex in H9c2 cells. Moreover, the functional rescue experiment further verified that Dex regulated MEF2D/Nrf2 pathway via miR-665. In conclusion, Dex mitigates MIRI through inhibiting pyroptosis via regulating miR-665/MEF2D/Nrf2 axis.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Dai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuhan Xie
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weijun Zeng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiangfeng Bai
- Department of Cardiac Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
7
|
Huang S, Zhou Y, Zhang Y, Liu N, Liu J, Liu L, Fan C. Advances in MicroRNA Therapy for Heart Failure: Clinical Trials, Preclinical Studies, and Controversies. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07492-7. [PMID: 37505309 DOI: 10.1007/s10557-023-07492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Heart failure (HF) is a rapidly growing public health issue with more than 37.7 million patients worldwide and an annual healthcare cost of $108 billion. However, HF-related drugs have not changed significantly for decades, and it is essential to find biological drugs to provide better treatment for HF patients. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) with a length of approximately 21 nucleotides and play an important role in the onset and progression of cardiovascular diseases. Increasing studies have shown that miRNAs are widely involved in the pathophysiology of HF, and the regulation of miRNAs has promising therapeutic effects. Among them, there is great interest in miRNA-132, since the encouraging success of anti-miRNA-132 therapy in a phase 1b clinical trial in 2020. However, it is worth noting that the multi-target effect of miRNA may produce side effects such as thrombocytopenia, revascularization dysfunction, severe immune response, and even death. Advances in drug delivery modalities, delivery vehicles, chemical modifications, and plant-derived miRNAs are expected to address safety concerns and further improve miRNA therapy. Here, we reviewed the preclinical studies and clinical trials of HF-related miRNAs (especially miRNA-132) in the past 5 years and summarized the controversies of miRNA therapy.
Collapse
Affiliation(s)
- Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiru Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ningyuan Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Liming Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
8
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
9
|
Zhan J, Jin K, Ding N, Zhou Y, Hu G, Yuan S, Xie R, Wen Z, Chen C, Li H, Wang DW. Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:122-138. [PMID: 36618264 PMCID: PMC9813582 DOI: 10.1016/j.omtn.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Intensive glycemic control is insufficient for reducing the risk of heart failure among patients with diabetes mellitus (DM). While the "hyperglycemic memory" phenomenon is well documented, little is known about its underlying mechanisms. In this study, a type 1 DM model was established in C57BL/6 mice using streptozotocin (STZ). Leptin receptor-deficient (db/db) mice were used as a model of type 2 DM. A type 9 adeno-associated virus was used to overexpress or knock down miR-320 in vivo. Diastolic dysfunction was observed in the type 1 DM mice with elevated miR-320 expression. However, glycemic control using insulin failed to reverse diastolic dysfunction. miR-320 knockdown protected against STZ-induced diastolic dysfunction. Similar results were observed in the type 2 DM mice. In vitro, we found that miR-320 promoted CD36 expression, which in turn induced further miR-320 expression. CD36 was rapidly induced by hyperglycemia at protein level compared with the much slower induction of miR-320, suggesting a positive feedback loop of CD36/miR-320 with CD36 protein induction as the initial triggering event. In conclusion, in DM-induced cardiac injury, miR-320 and CD36 mutually enhance each other's expression, leading to a positive feedback loop and a sustained hyperlipidemic state in the heart.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Nan Ding
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China,Corresponding author: Chen Chen, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095# Jiefang Ave., Wuhan 430030, China.
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China,Corresponding author: Huaping Li, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China,Corresponding author: Dao Wen Wang, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China.
| |
Collapse
|
10
|
Ligustrazine prevents coronary microcirculation dysfunction in rats via suppression of miR-34a-5p and promotion of Sirt1. Eur J Pharmacol 2022; 929:175150. [PMID: 35835182 DOI: 10.1016/j.ejphar.2022.175150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The coronary microembolization contributes to coronary microvascular dysfunction (CMD), in which miR-34a-5p may play a critical role. Ligustrazine has been reported to improve CMD. The present study was designed to discuss the role of miR-34a-5p/Sirt1 pathway in CMD and explore the underlying mechanism of ligustrazine. METHODS Coronary microembolization (CME) was induced by left ventricle injection of sodium laurate in rats. CME formation and cardiac function were examined by HE staining and hemodynamic tests to evaluate CMD. The expressions of miR-34a-5p, Sirt1 and the downstream proteins were detected by RT-qPCR and western blot. Dual-luciferase reporter (DLR) assay was performed to confirm the connection between miR-34a-5p and Sirt1. The blood markers of endothelial dysfunction, platelet activation and inflammation were examined with ELISA. RESULTS Overt CME and cardiac dysfunction as well as up-regulated miR-34a-5p and down-regulated Sirt1 were observed in CME rats. Overexpressing miR-34a-5p aggravated while silencing miR-34a-5p inhibited CME formation. DLR assay confirmed that miR-34a-5p directly inhibited Sirt1 mRNA expression. Ligustrazine pretreatment suppressed miR-34a-5p and promoted Sirt1 expression, which alleviated endothelial dysfunction, inhibited platelet activation and inflammation, and in turn reduced CME. Overexpressing miR-34a-5p diminished the positive effects of ligustrazine; while after silencing miR-34a-5p, ligustrazine failed to further promote Sirt1 expression and inhibit CME formation. CONCLUSION MiR-34a-5p contributes to CMD by inhibiting Sirt1 expression. Ligustrazine exerts endothelial-protective, anti-platelet and anti-inflammatory effects to prevent CMD via suppressing miR-34a-5p and promoting Sirt1.
Collapse
|
11
|
Circ_0136474 contributes to the IL-1β-induced chondrocyte injury by binding to miR-665 to induce the FGFR1 upregulation. Transpl Immunol 2022:101615. [DOI: 10.1016/j.trim.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
|
12
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
13
|
Nie X, Fan J, Li H, Wang J, Xie R, Chen C, Wang DW. Identification of Cardiac CircRNAs in Mice With CVB3-Induced Myocarditis. Front Cell Dev Biol 2022; 10:760509. [PMID: 35198554 PMCID: PMC8859109 DOI: 10.3389/fcell.2022.760509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Viral myocarditis could initiate various immune response to the myocardium, resulting in myocyte damage and subsequent cardiac dysfunction. The expression profile and functions of circRNAs in this process are unknown. Methods: Fulminant myocarditis (FM) and non-FM models were induced by coxsackie B3 virus (CVB3) infection in A/J mice and C57BL/6 mice, respectively. CircRNAs expression profile was identified by RNA-seq. Quantitative RT-PCR, Spearman rank correlation, KEGG pathway, GO analysis, Western blot and flow cytometry were performed for functional analysis. Results: Severer inflammatory cell infiltration and cardiomyocyte necrosis were presented in CVB3-treated A/J mice than those in C57BL/6 mice. The dysregulated circRNAs in both of the mouse strains displayed strong correlation with the immune response, but dysregulated circRNAs in A/J mice were more prone to cardiac dysfunction. KEGG analysis indicated that the target genes of dysregulated circRNAs in A/J mice were mainly involved in viral infection, T cell and B cell receptor signaling pathways, while the target genes of dysregulated circRNAs in C57BL/6 mice were unrelated to immune pathways. Furthermore, knockdown of circArhgap32 that was downregulated in CVB3-treated A/J mice promoted cardiomyocyte apoptosis in vitro. Conclusion: Our data showed that cardiac circRNAs dysregulation is an important characteristic of viral myocarditis.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Chen
- *Correspondence: Chen Chen, ; Dao Wen Wang,
| | | |
Collapse
|
14
|
Ni Y, Deng J, Bai H, Liu C, Liu X, Wang X. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways. J Cell Mol Med 2021; 26:312-325. [PMID: 34845819 PMCID: PMC8743652 DOI: 10.1111/jcmm.17081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.
Collapse
Affiliation(s)
- Yajuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Angiotensin Receptor Blocker and Neprilysin Inhibitor Suppresses Cardiac Dysfunction by Accelerating Myocardial Angiogenesis in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet. J Renin Angiotensin Aldosterone Syst 2021; 2021:9916789. [PMID: 34394711 PMCID: PMC8357528 DOI: 10.1155/2021/9916789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Materials and Methods Male apolipoprotein E-knockout mice fed a high-fat diet were divided into control (CTL), valsartan (30 mg/kg) (VAL), sacubitril (30 mg/kg) (SAC), and valsartan plus sacubitril (30 mg/kg each) (VAL/SAC) groups after 4 weeks of prefeeding and were subsequently treated for 12 weeks. Results The VAL/SAC group exhibited significantly higher serum brain natriuretic peptide levels; more subtle changes in left ventricular systolic diameter, fractional shortening, and ejection fraction, and significantly higher expression levels of natriuretic peptide precursor B and markers of angiogenesis, including clusters of differentiation 34, vascular endothelial growth factor A, and monocyte chemotactic protein 1, than the CTL group. Conclusions Valsartan plus sacubitril preserved left ventricular systolic function in apolipoprotein E-knockout mice fed a high-fat diet. This result suggests that myocardial angiogenic factors induced by ARNI might provide cardioprotective effects.
Collapse
|
16
|
Li S, Huang T, Qin L, Yin L. Circ_0068087 Silencing Ameliorates Oxidized Low-Density Lipoprotein-Induced Dysfunction in Vascular Endothelial Cells Depending on miR-186-5p-Mediated Regulation of Roundabout Guidance Receptor 1. Front Cardiovasc Med 2021; 8:650374. [PMID: 34124191 PMCID: PMC8187595 DOI: 10.3389/fcvm.2021.650374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are endogenous non-coding RNAs involved in the progression of atherosclerosis (AS). We investigated the role of circ_0068087 in AS progression and its associated mechanism. Methods: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) were performed to analyze the viability, apoptosis, and inflammatory response of HUVECs, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the Western blot assay were performed to measure the expression of RNA and protein. Cell oxidative stress was analyzed using commercial kits. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the interaction between microRNA-186-5p (miR-186-5p) and circ_0068087 or roundabout guidance receptor 1 (ROBO1). Results: Oxidized low-density lipoprotein (ox-LDL) exposure upregulated the circ_0068087 level in HUVECs. ox-LDL-induced dysfunction in HUVECs was largely attenuated by the silence of circ_0068087. Circ_0068087 negatively regulated the miR-186-5p level by interacting with it in HUVECs. Circ_0068087 knockdown restrained ox-LDL-induced injury in HUVECs partly by upregulating miR-186-5p. ROBO1 was a downstream target of miR-186-5p in HUVECs. Circ_0068087 positively regulated ROBO1 expression by sponging miR-186-5p in HUVECs. MiR-186-5p overexpression exerted a protective role in ox-LDL-induced HUVECs partly by downregulating ROBO1. Conclusion: Circ_0068087 interference alleviated ox-LDL-induced dysfunction in HUVECs partly by reducing ROBO1 expression via upregulating miR-186-5p.
Collapse
Affiliation(s)
- Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Tao Huang
- Department of Cardiovascular Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Limin Qin
- Department of Cardiovascular Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Luchang Yin
- Department of Cardiovascular Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Zhu R, Hu X, Xu W, Wu Z, Zhu Y, Ren Y, Cheng L. LncRNA MALAT1 inhibits hypoxia/reoxygenation-induced human umbilical vein endothelial cell injury via targeting the microRNA-320a/RAC1 axis. Biol Chem 2021; 401:349-360. [PMID: 31408432 DOI: 10.1515/hsz-2019-0316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Angiogenesis is believed to protect against hypoxia/reoxygenation (H/R)-induced cell injury. MALAT1 and microRNA-320a (miR-320a) are involved in cancer angiogenesis. To investigate the function of the MALAT1/miR-320a axis in H/R-induced cell injury, human umbilical vein endothelial cell (HUVEC) angiogenesis was detected using the Cell Counting Kit-8 (CCK-8), Transwell migration, cell adhesion and tube formation assays. The expression of MALAT1 and miR-320a was revealed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The direct binding relationship between miR-320a and MALAT1 was detected by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. The data indicated that H/R induces angiogenesis injury and that the expression of MALAT1 was augmented in H/R-stimulated HUVECs. Overexpression of MALAT1 alleviated H/R-stimulated HUVEC dysfunction, whereas silencing of MALAT1 exerted the opposite effects. MALAT1 also reduced miR-320a levels in HUVECs. Overexpression of miR-320a repressed the function of MALAT1 on H/R-stimulated HUVECs, whereas inhibition of miR-320a exerted the opposite effect. Additionally, miR-320a inhibition alleviated H/R-stimulated HUVEC injury via RAC1. Taken together, this investigation concluded that MALAT1 represses H/R-stimulated HUVEC injury by targeting the miR-320a/RAC1 axis.
Collapse
Affiliation(s)
- Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yanjing Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| |
Collapse
|
18
|
Wang L, Zhou J, Guo F, Yao T, Zhang L. MicroRNA-665 Regulates Cell Proliferation and Apoptosis of Vascular Smooth Muscle Cells by Targeting TGFBR1. Int Heart J 2021; 62:371-380. [PMID: 33731513 DOI: 10.1536/ihj.20-016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary artery disease (CAD) is one of the heavy health burdens worldwide. Aberrant proliferation of vascular smooth muscle cells (VSMCs) contributes to the occurrence and development of CAD. This study aimed at exploring differentially expressed microRNAs (miRNAs) and their regulatory mechanisms in the development of CAD.The miRNA expression profile of GSE28858 was obtained from the Gene Expression Omnibus database. Differentially expressed miRNAs (DEmiRNAs) between CAD and healthy control samples were analyzed using limma package in R. Target genes of DEmiRNAs were predicted, and a miRNA-target gene network was constructed. The relationship between miR-665 and transforming growth factor beta receptor 1 (TGFBR1) was selected for further analysis. The interaction between miR-665 and TGFBR1 was confirmed by dual luciferase reporter assay. Effects of miR-665 on cell viability and apoptosis of VSMCs were evaluated by cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. Besides, western blot assays for BCL2L11 and caspase 3 were also conducted.A total of 38 upregulated miRNAs and 28 downregulated miRNAs were identified. The expression level of miR-665 was significantly downregulated in patients with CAD. TGFBR1 was proved to be a target gene of miR-665. Besides, ectopic expression of miR-665 obviously inhibited VSMC growth and promoted VSMC apoptosis. TGFBR1 overexpression in VSMCs transfected with miR-665 mimic could restore the effect of miR-665 on the proliferation and apoptosis of VSMCs.MiR-665 might participate in the proliferation and apoptosis of VSMCs by targeting TGFBR1.
Collapse
Affiliation(s)
- Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Jiali Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Fan Guo
- Department of Cardiology, Wuhan Fifth Hospital
| | - Tan Yao
- Department of Cardiology, Luotian Wanmizhai Hospital
| | - Liang Zhang
- Department of Cardiology, Luotian Wanmizhai Hospital
| |
Collapse
|
19
|
Fan J, Li H, Xie R, Zhang X, Nie X, Shi X, Zhan J, Yin Z, Zhao Y, Dai B, Yuan S, Wen Z, Chen C, Wang DW. LncRNA ZNF593-AS Alleviates Contractile Dysfunction in Dilated Cardiomyopathy. Circ Res 2021; 128:1708-1723. [PMID: 33550812 DOI: 10.1161/circresaha.120.318437] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xiaolu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China (X.S.)
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Zhongwei Yin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Beibei Dai
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| |
Collapse
|
20
|
Role of Bioinformatics in MicroRNA Analysis. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Chen T, Liang Q, Xu J, Zhang Y, Zhang Y, Mo L, Zhang L. MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1. Front Cell Dev Biol 2021; 9:700006. [PMID: 34386495 PMCID: PMC8353444 DOI: 10.3389/fcell.2021.700006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Vascular aging is considered a special risk factor for cardiovascular diseases, and vascular smooth muscle cells (VSMCs) play a major role in aging-related vascular remodeling and in the pathological process of atherosclerosis. Recent research has reported that long non-coding RNA/microRNA (lncRNA/miRNA) is a critical regulator of cellular senescence. However, the role and mechanism of lncRNA GAS5/miR-665 axis in VSMC senescence remain incompletely understood. Methods: Cellular senescence was evaluated using senescence-associated β-gal activity, the NAD+/NADH ratio, and by immunofluorescence staining of γH2AX immunofluorescence. Differentially expressed miRNAs (DEMs) were identified by miRNA microarray assays and subsequently validated by quantitative real-time PCR (qRT-PCR). A dual luciferase reporter assay was conducted to confirm the binding of lncRNA GAS5 and miR-665 as well as miR-665 and syndecan 1 (SDC1). Serum levels of miR-665, lncRNA GAS5, and SDC1 in 93 subjects were detected by qRT-PCR. The participants were subdivided into control, aging, and early vascular aging (EVA) groups, and their brachial-ankle pulse wave velocity (baPWV) was measured. Results: A total of 20 overlapping DEMs were identified in young and old VSMCs via microarray analysis. MiR-665 showed a significant alteration and, therefore, was selected for further analysis. Upregulation of miR-665 was found in aging VSMCs, and downregulation of miR-665 caused an inhibition of VSMCs senescence. Subsequently, the dual luciferase reporter assay determined the binding site of miR-665 with the 3'-UTR of lncRNA GAS5 and SDC1. Increased expression of lncRNA GAS5 expression inhibited the miR-665 level and VSMC senescence. However, as shown in rescue experiment results, either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of lncRNA GAS5 on VSMC senescence. Finally, compared with that of the control group, miR-665 was highly expressed in serum samples in the aging and EVA groups, especially in the EVA groups. On the contrary, serum levels of lncRNA GAS5 and SDC1 were lower in these two groups. Collectively, in the aging and EVA groups, miR-665 expression was negatively correlated with lncRNA GAS5 and SDC1 expression. Conclusion: miR-665 inhibition functions as a vital modulator of VSMC senescence by negatively regulating SDC1, which is achieved by lncRNA GAS5 that sponges miR-665. Our findings may provide a new treatment strategy for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianbin Chen
- Functional Experiment Center, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Mo
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li Zhang
| |
Collapse
|
22
|
Li H, Fan J, Chen C, Wang DW. Subcellular microRNAs in diabetic cardiomyopathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1602. [PMID: 33437801 PMCID: PMC7791206 DOI: 10.21037/atm-20-2205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular complications are the leading causes of diabetes-related morbidity and mortality. The high incidence and poor prognosis of heart failure in diabetic patients have been associated, in part, to the presence of an underlying cardiomyopathy characterized by cardiac hypertrophy, cardiomyocytes apoptosis, and fibrosis. It has been unclear about the mechanism that connects diabetes mellitus to the development of cardiovascular dysfunction. Micro(mi)RNAs represent a class of small, 18- to 28-nucleotide-long, non-coding RNA molecules. MiRNAs typically suppress gene expression at the post-transcriptional levels by binding directly to the 3'-UTR of the target mRNAs in the cytoplasm. Interestingly, recent studies suggest that miRNAs may also regulate gene expression in a positive manner. Our recent studies have shown that subcellular miRNAs, such as cytosol-, mitochondria- and nucleus-localized miRNAs, were dramatically dysregulated in diabetic cardiomyopathy. Specifically, cytoplasm localized miRNAs regulate genes expression in a post-transcriptional manner. Nuclear localized miRNAs regulate gene transcription or chromosomal reconstruction through the non-canonical mechanism. Mitochondrial miRNAs stimulate, rather than repress, the translation of specific mitochondrial genome-encoded transcripts. By reviewing these latest discovered functions of subcellular miRNAs in diabetic animal models, we identified new mechanistic insights for diabetic cardiomyopathy. Understanding the nature of subcellular miRNAs will provide new therapeutic targets against diabetes-associated cardiac complications in the near future.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
23
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Nie X, He M, Wang J, Chen P, Wang F, Lai J, Li C, Yu T, Zuo H, Cui G, Miao K, Jiang J, Wang DW, Chen C. Circulating miR-4763-3p Is a Novel Potential Biomarker Candidate for Human Adult Fulminant Myocarditis. Mol Ther Methods Clin Dev 2020; 17:1079-1087. [PMID: 32478123 PMCID: PMC7248292 DOI: 10.1016/j.omtm.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers in various diseases. However, whether they could serve as biomarkers for human adult fulminant myocarditis (FM) is unknown. Circulating miRNA expression profiles were detected by microarray analysis and validated by quantitative real-time PCR arrays. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to determine the critical roles of these circulating miRNAs in FM. Moreover, correlation analysis was employed between miRNAs and the parameters of cardiac functions in FM. Finally, the sensitivity and specificity of circulating long non-coding RNA (lncRNA) expression in FM diagnosis were evaluated using receiver operating characteristic curve analysis. Both microarray and quantitative real-time PCR analysis showed that the expression of miR-4763-3p and miR-4281 were upregulated in the plasma of FM at the onset, and their levels were restored as the clinical symptom recovered. The predicted target genes of miR-4763-3p and miR-4281 are involved in several pathways, mainly inflammatory and cardiac injury response. Moreover, the miRNAs enrichment was negatively correlated with the severity of FM. In addition, the expression levels of circulating miR-4763-3p were unchanged in myocardial infarction (MI) patients but showed high sensitivity and specificity for FM diagnosis. This study provides a global profile of circulating miRNAs in patients with FM, among which miR-4763-3p could serve as a potential biomarker.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinsheng Lai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenze Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yu
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Houjuan Zuo
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guanglin Cui
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Miao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiangang Jiang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Gao C, Qian H, Shi Q, Zhang H. MicroRNA-363-3p serves as a diagnostic biomarker of acute myocardial infarction and regulates vascular endothelial injury by targeting KLF2. Cardiovasc Diagn Ther 2020; 10:421-430. [PMID: 32695622 DOI: 10.21037/cdt-19-700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Acute myocardial infarction (AMI) is a serious cardiovascular disease. This study aimed to investigate the diagnostic value of microRNA-363-3p (miR-363-3p) in AMI patients and explore the effects of miR-363-3p on vascular endothelial injury in an AMI rat model. Methods The Expression of miR-363-3p was measured by quantitative real-time PCR. A receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of miR-363-3p in AMI patients. The biomarkers of endothelial injury were estimated using enzyme-linked immunosorbent assays, and the correlation of miR-363-3p with these markers was assessed. AMI rat model was constructed using coronary artery ligation, and the effects of miR-363-3p on endothelial injury and endothelial cell proliferation were analyzed. Results Serum expression of miR-363-3p was upregulated in the AMI patients compared with healthy controls. The increased serum miR-363-3p serves a candidate diagnostic biomarker of AMI. The correlation analysis indicated that serum miR-363-3p expression was positively correlated with the concentration of endothelial injury biomarkers in AMI patients. Furthermore, the increased endothelial injury biomarkers in AMI rats were all inhibited by the knockdown of miR-363-3p, and the cell proliferation of human umbilical vein endothelial cells was obviously enhanced by the reduction of miR-363-3p. The prediction results shown that Kruppel-like factor 2 (KLF2) is a target of miR-363-3p, and their interaction was proved using a luciferase reporter assay. Conclusions Collectively, overexpression of miR-363-3p acts as a diagnostic biomarker for patients with AMI, and the downregulation of miR-363-3p improves AMI-associated endothelial injury by targeting KLF2, which indicated that miR-363-3p has a potential to develop the treatment of AMI.
Collapse
Affiliation(s)
- Chao Gao
- Department of Emergency, Shanxian Central Hospital, Heze 274300, China
| | - Hengbo Qian
- Department of Emergency, Shanxian Central Hospital, Heze 274300, China
| | - Qibiao Shi
- Department of Emergency, Shanxian Central Hospital, Heze 274300, China
| | - Hua Zhang
- Department of Emergency, Shanxian Central Hospital, Heze 274300, China
| |
Collapse
|
26
|
Liu C, Tang M, Zhang X, Li J, Cao G. Knockdown of miR-665 Protects Against Cardiomyocyte Ischemia/Reperfusion Injury-Induced ROS Accumulation and Apoptosis Through the Activation of Pak1/Akt Signaling in Myocardial Infarction. Int Heart J 2020; 61:347-354. [DOI: 10.1536/ihj.19-416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chuanzhen Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Mengmeng Tang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Xiquan Zhang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Jianhua Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Guangqing Cao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| |
Collapse
|
27
|
Nazari-Shafti TZ, Exarchos V, Biefer HRC, Cesarovic N, Meyborg H, Falk V, Emmert MY. MicroRNA Mediated Cardioprotection - Is There a Path to Clinical Translation? Front Bioeng Biotechnol 2020; 8:149. [PMID: 32266222 PMCID: PMC7099408 DOI: 10.3389/fbioe.2020.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In the past 20 years, there have been several approaches to achieve cardioprotection or cardiac regeneration using a vast variety of cell therapies and remote ischemic pre-conditioning (RIPC). To date, substantial proof that either cell therapy or RIPC has the potential for clinically relevant cardiac repair or regeneration of cardiac tissue is still pending. Preclinical trials indicate that the secretome of cells in situ (during RIPC) as well as of transplanted cells may exhibit cardioprotective properties in the acute setting of cardiac injury. The secretome generally consists of cell-specific cytokines and extracellular vesicles (EVs) containing microRNAs (miRNAs). It is currently hypothesized that a subset of known miRNAs play a crucial part in the facilitation of cardioprotective effects. miRNAs are small non-coding RNA molecules that inhibit post-transcriptional translation of messenger RNAs (mRNAs) and play an important role in gene translation regulation. It is also known that one miRNAs usually targets multiple mRNAs. This makes predictability of pharmacokinetics and mechanism of action very difficult and could in part explain the inferior performance of various progenitor cells in clinical studies. Identification of miRNAs involved in cardioprotection and remodeling, the composition of miRNA profiles, and the exact mechanism of action are important to the design of future cell-based but also cell-free cardioprotective therapeutics. This review will give a description of miRNA with cardioprotective properties and a current overview on known mechanism of action and potential missing links. Additionally, we will give an outlook on the potential for clinical translation of miRNAs in the setting of myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany
| | - Vasileios Exarchos
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Héctor Rodriguez Cetina Biefer
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Cesarovic
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Heike Meyborg
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany
| | - Volkmar Falk
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Y Emmert
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Abstract
Cardiovascular disease is an enormous socioeconomic burden worldwide and remains a leading cause of mortality and disability despite significant efforts to improve treatments and personalize healthcare. Heart failure is the main manifestation of cardiovascular disease and has reached epidemic proportions. Heart failure follows a loss of cardiac homeostasis, which relies on a tight regulation of gene expression. This regulation is under the control of multiple types of RNA molecules, some encoding proteins (the so-called messenger RNAs) and others lacking protein-coding potential, named noncoding RNAs. In this review article, we aim to revisit the notion of regulatory RNA, which has been thus far mainly confined to noncoding RNA. Regulatory RNA, which we propose to abbreviate as regRNA, can include both protein-coding RNAs and noncoding RNAs, as long as they contribute, directly or indirectly, to the regulation of gene expression. We will address the regulation and functional role of messenger RNAs, microRNAs, long noncoding RNAs, and circular RNAs (ie, regRNAs) in heart failure. We will debate the utility of regRNAs to diagnose, prognosticate, and treat heart failure, and we will provide directions for future work.
Collapse
Affiliation(s)
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | - Gabriela M. Kuster
- Clinic of Cardiology and Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland (G.M.K.)
| | - Emma L. Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | - Kerrie Ford
- Imperial College London, United Kingdom (K.F., C.E.)
| | - Iain B. Squire
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Biomedical Research Centre, Glenfield Hospital, United Kingdom (I.B.S.)
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | | | | | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg (C.P.d.C.G., Y.D.)
| | - On behalf of the EU-CardioRNA COST Action (CA17129)
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg (C.P.d.C.G., Y.D.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
- Clinic of Cardiology and Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland (G.M.K.)
- Imperial College London, United Kingdom (K.F., C.E.)
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Biomedical Research Centre, Glenfield Hospital, United Kingdom (I.B.S.)
- IRCCS Policlinico San Donato, Milan, Italy (F.M.)
| |
Collapse
|
29
|
Zhang Y, Liang Q, Zhang Y, Hong L, Lei D, Zhang L. Olmesartan alleviates bleomycin-mediated vascular smooth muscle cell senescence via the miR-665/SDC1 axis. Am J Transl Res 2020; 12:5205-5220. [PMID: 33042414 PMCID: PMC7540088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/01/2020] [Indexed: 12/08/2022]
Abstract
Olmesartan (OMST) is a new angiotensin II receptor antagonist recently approved by the FDA to treat cardiovascular diseases. We investigated the molecular mechanisms by which OMST regulates vascular senescence. In the present study, bleomycin (BLM) was used to induce senescence in vascular smooth muscle cells (VSMCs); after which, the cells were treated with OMST. The effects of OMST on BLM-mediated cell senescence were evaluated using cell adhesion, NAD+/NADH, and Annevin V/PI double staining assays, as well as by immunofluorescence staining of γH2AX, Edu flow cytometry, and evaluations of senescence-associated β-gal activity. Differentially expressed microRNAs (DEMs) were identified by miRNA microarray assays, and subsequently validated by quantitative real time PCR. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the miR-665 promoter. The target genes of miR-665 were predicted and confirmed using luciferase reporter assays. We found that miR-665 was upregulated in VSMCs in response to BLM-induced cellular senescence. BSP studies revealed that CpG sites in the promoter region of the miR-665 gene underwent extensive demethylation during BLM-induced cellular senescence, and there was a concomitant up-regulation of miR-665 expression. SDC1 mRNA was identified as a direct target of miR-665. Either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of OMST on BLM-induced VSMC senescence. Moreover, SDC1 overexpression partially reversed the changes that occurred in cells with BLM-induced senescence caused by miR-665 overexpression. Our findings suggest that the miR-665/SDC1 axis functions as a vital modulator of VSMC senescence, and may represent a novel biological target for treating atherosclerosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Yanan Zhang
- College of Veterinary Medicine, Northeast Agricultural University Harbin 150030, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen Shenzhen 518116, Guangdong, China
| | - Da Lei
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| |
Collapse
|
30
|
Li H, Zhan J, Zhao Y, Fan J, Yuan S, Yin Z, Dai B, Chen C, Wang DW. Identification of ncRNA-Mediated Functions of Nucleus-Localized miR-320 in Cardiomyocytes. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:132-143. [PMID: 31837603 PMCID: PMC6920229 DOI: 10.1016/j.omtn.2019.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023]
Abstract
In recent years, systematic analyses of the subcellular distribution of microRNAs (miRNAs) suggest that the majority of miRNAs are present in both nuclear and cytoplasmic compartments. However, the full extent of nuclear miRNA function in cardiomyocytes is currently unknown. Here, subcellular fractionation, followed by the miRNA microarray, revealed that most miRNAs were detectable in both nuclear and cytoplasmic fractions of cardiomyocytes. We employed miR-320 as an example to explore the function of nucleus-localized miRNAs, finding that CRISPR-Cas9-mediated Ago2 knockdown abolished miR-320-induced transcriptional remodeling. Furthermore, nuclear Ago2 re-expression restored the effects of miR-320 in the nucleus. Moreover, liquid chromatography-mass spectrometry (LC-MS) analysis revealed the association of nuclear Ago2 with transcription factors YLP motif-containing protein 1 (Ylpm1) and single-stranded DNA binding protein 1 (Ssbp1). Intersection of the data of transcriptome-sequencing (seq) with Ago2-chromatin immunoprecipitation (ChIP)-seq revealed that the binding of Ago2 with the target promoter DNA may require promoter RNAs. Specifically, Cep57 was upregulated, whereas Fscn2 was downregulated by miR-320, and a similar effect was also observed by knockdown of their promoter RNA, respectively. Chromatin isolation by RNA purification (ChIRP) analysis showed decreased binding of the Cep57 and Fscn2 promoter RNA on their promoter DNA by miR-320 overexpression.Our work provided a preliminary idea that promoter RNA transcripts act as “pioneers” to disrupt chromatin that permits Ago2/miR-320 complexes to target Cep57 or Fscn2 promoter DNA for transcriptional regulation. miRNAs are naturally located in both cytoplasm and nucleus; however, their pathophysiological functions are largely unknown. Our work provided a theoretical basis for developing nuclear miRNA-based therapeutics against various diseases in the future.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
31
|
Fan J, Zhang X, Nie X, Li H, Yuan S, Dai B, Zhan J, Wen Z, Jiang J, Chen C, Wang D. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. SCIENCE CHINA-LIFE SCIENCES 2019; 63:724-736. [PMID: 31664601 DOI: 10.1007/s11427-018-9515-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Although numerous miRNAs have been discovered, their functions in the different subcellular organelles have remained obscure. In this study, we found that miR-665 was enriched in the nucleus of cardiomyocytes, and then investigated the underlying role of nuclear miR-665 in heart failure. RNA fluorescence in situ hybridization assays in human heart tissue sections and primary cardiomyocytes showed that miR-665 was localized in the nucleus of cardiomyocytes. Increased expression of nuclear miR-665 was observed not only in the cardiomyocytes isolated from the heart of mice treated in vivo by transverse aortic constriction (TAC), but also in phenylephrine (PE)-treated cultured cardiomyocytes in vitro. To further explore the role of miR-665 in heart failure, a type 9 recombinant adeno-associated virus (rAAV) system was employed to manipulate the expression of miR-665 in mice. Overexpression of miR-665 aggravated TAC-induced cardiac dysfunction, while down-expression of miR-665 showed opposite effects. Bioinformatic prediction and biological validation confirmed that the PTEN (phosphatase and tensin homolog) gene was one of the targets of miR-665 in the nucleus. Furthermore, restoring PTEN expression significantly eliminated the destructive effects of miR-665 over-expression in TAC-induced cardiac dysfunction. Our data showed that nuclear miR-665 aggravates heart failure via inhibiting PTEN expression, which provided a therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Xudong Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Shuai Yuan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiangang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| |
Collapse
|
32
|
Zhang WC, Yang JH, Liu GH, Yang F, Gong JL, Jia MG, Zhang MJ, Zhao LS. miR-34b/c regulates doxorubicin-induced myocardial cell injury through ITCH. Cell Cycle 2019; 18:3263-3274. [PMID: 31627713 DOI: 10.1080/15384101.2019.1673618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: To determine the underlying mechanism of miR-34b/c in regulating doxorubicin (Dox)-induced myocardial cell injury.Methods: The viability of mouse myocardial cells HL-1 was detected by MTT assay. The apoptosis of HL-1 cells was detected by TUNEL assay. mRNA expressions of ITCH, TNF-α and IL-6 were measured by qRT-PCR. Protein levels of ITCH, NF-κB, TNF-α and IL-6 were measured by western blot. Dual luciferase assay was performed to detect the regulation of miR-34b/c on ITCH. Mouse model of cardiomyopathy was induced by intraperitoneal injection of Dox.Results: Dox reduced HL-1 cell viability and activated NF-κB pathway in HL-1 cells. miR-34b/c expressions were gradually up-regulated and ITCH expression was gradually down-regulated in Dox-treated HL-1 cells. miR-34b/c expression had negative correlation with the mRNA expression of ITCH. Besides, ITCH was a target of miR-34b/c. miR-34b/c mimic reduced cell viability, suppressed ITCH expression, increased TNF-α and IL-6 level, and promoted NF-κB expression in nucleus and cytoplasm of HL-1 cells. Whereas silencing miR-34 protected HL-1 cells through regulating ITCH. Finally, we demonstrated miR-34 antagomir-protected myocardial cells in mouse model of cardiomyopathy.Conclusion: miR-34b/c decreased HL-1 cell viability and promoted the secretion of proinflammatory cytokines in Dox-induced myocardial cells through ITCH/NF-κB pathway.
Collapse
Affiliation(s)
- Wen-Cai Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Hua Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fan Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Long Gong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Ge Jia
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Juan Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luo-Sha Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Xie X, Lu W, Chen Y, Tsang CK, Liang J, Li W, Jing Z, Liao Y, Huang L. Prostaglandin E1 Alleviates Cognitive Dysfunction in Chronic Cerebral Hypoperfusion Rats by Improving Hemodynamics. Front Neurosci 2019; 13:549. [PMID: 31191236 PMCID: PMC6549528 DOI: 10.3389/fnins.2019.00549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Compensatory vascular mechanisms can restore cerebral blood flow (CBF) but fail to protect against chronic cerebral hypoperfusion (CCH)-mediated neuronal damage and cognitive impairment. Prostaglandin E1 (PGE1) is known as a vasodilator to protect against ischemic injury in animal models, but its protective role in CCH remains unclear. To determine the effect of PGE1 on cerebral hemodynamics and cognitive functions in CCH, bilateral common carotid artery occlusion (BCCAO) was used to mimic CCH in rats, which were subsequently intravenously injected with PGE1 daily for 2 weeks. Magnetic resonance imaging, immunofluorescence staining and Morris water maze (MWM) were used to evaluate CBF, angiogenesis, and cognitive functions, respectively. We found that PGE1 treatment significantly restored CBF by enhancing vertebral artery dilation. In addition, PGE1 treatment increased the number of microvascular endothelial cells and neuronal cells in the hippocampus, and decreased the numbers of astrocyte and apoptotic cells. In the MWM test, we further showed that the escape latency of CCH rats was significantly reduced after PGE1 treatment. Our results suggest that PGE1 ameliorates cognitive dysfunction in CCH rats by enhancing CBF recovery, sustaining angiogenesis, and reducing astrocyte activation and neuronal loss.
Collapse
Affiliation(s)
- Xiaomei Xie
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weibiao Lu
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Chen
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianye Liang
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenxian Li
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhen Jing
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu Liao
- Department of Pathology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
34
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
35
|
Stejskal D, Hlozankova M, Sigutova R, Andelova K, Svagera Z, Svestak M. Comparison of a new immunoassay and PCR-based method for quantification of microRNAs in whole blood. A pilot methodical study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:39-44. [DOI: 10.5507/bp.2018.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
|
36
|
Hueso M, Cruzado JM, Torras J, Navarro E. An Exonic Switch Regulates Differential Accession of microRNAs to the Cd34 Transcript in Atherosclerosis Progression. Genes (Basel) 2019; 10:genes10010070. [PMID: 30669689 PMCID: PMC6356495 DOI: 10.3390/genes10010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD34⁺ Endothelial Progenitor Cells (EPCs) play an important role in the recovery of injured endothelium and contribute to atherosclerosis (ATH) pathogenesis. Previously we described a potential atherogenic role for miR-125 that we aimed to confirm in this work. METHODS Microarray hybridization, TaqMan Low Density Array (TLDA) cards, qPCR, and immunohistochemistry (IHC) were used to analyze expression of the miRNAs, proteins and transcripts here studied. RESULTS Here we have demonstrated an increase of resident CD34-positive cells in the aortic tissue of human and mice during ATH progression, as well as the presence of clusters of CD34-positive cells in the intima and adventitia of human ATH aortas. We introduce miR-351, which share the seed sequence with miR-125, as a potential effector of CD34. We show a splicing event at an internal/cryptic splice site at exon 8 of the murine Cd34 gene (exonic-switch) that would regulate the differential accession of miRNAs (including miR-125) to the coding region or to the 3'UTR of Cd34. CONCLUSIONS We introduce new potential mediators of ATH progression (CD34 cell-clusters, miR-351), and propose a new mechanism of miRNA action, linked to a cryptic splicing site in the target-host gene, that would regulate the differential accession of miRNAs to their cognate binding sites.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Estanis Navarro
- Independent Researcher, Esplugues de Llobregat, 08950 Barcelona, Spain.
| |
Collapse
|