1
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
2
|
Viribay A, Alcantara JMA, López I, Mielgo-Ayuso J, Castañeda-Babarro A. Impact of a short-term nitrate and citrulline co-supplementation on sport performance in elite rowers: a randomized, double-blind, placebo-controlled crossover trial. Eur J Appl Physiol 2024; 124:1911-1923. [PMID: 38340156 PMCID: PMC11129974 DOI: 10.1007/s00421-024-05415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Citrulline (CIT) and beetroot extract (BR) have separately shown benefits in rowing performance-related outcomes. However, effects of combined supplementation remain to be elucidated. The main purpose of this research was to study the effects of 1 week of daily co-supplementation of 3.5 g BR (500 mg NO3-) plus 6 g CIT on aerobic performance, maximal strength, and high-intensity power and peak stroke in elite male rowers compared to a placebo and to a BR supplementation. METHODS 20 elite rowers participated in this randomized, double-blind, placebo-controlled crossover trial completing 1 week of supplementation in each group of study: Placebo group (PLAG); BR group (BRG); and BR + CIT group (BR-CITG). 3 main physical tests were performed: aerobic performance, Wingate test and CMJ jump, and metabolic biomarkers and physiological outcomes were collected. RESULTS The Wingate all-out test showed no between-condition differences in peak power, mean power, relative power, or fatigue index (P > 0.05), but clearance of lactate was better in BR-CITG (P < 0.05). In the performance test, peak power differed only between PLAG and BR-CITG (P = 0.036), while VO2peak and maximum heart rate remained similar. CMJ jumping test results showed no between-condition differences, and blood samples were consistent (P > 0.200). CONCLUSION Supplementation with 3.5 g of BR extract plus 6 g of CIT for 7 days improved lactate clearance after Wingate test and peak power in a performance test. No further improvements were found, suggesting longer period of supplementation might be needed to show greater benefits.
Collapse
Affiliation(s)
- Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004, Vitoria-Gasteiz, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, 24071, Leon, Spain
| | - Juan M A Alcantara
- Department of Health Sciences, Institute for Sustainability and Food Chain Innovation, Public University of Navarre, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Iker López
- Kirolene, San Ignacio Auzunea Etxetaldea 5, 48200, Durango, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001, Burgos, Spain.
| | - Arkaitz Castañeda-Babarro
- Health, Physical Activity, and Sports Science Laboratory, Department of Physical Activity and Sports, Faculty of Education and Sport, University of Deusto, 48007, Bizkaia, Spain
| |
Collapse
|
3
|
da Silva DVT, Baião DDS, Almeida CC, Paschoalin VMF. A Critical Review on Vasoactive Nutrients for the Management of Endothelial Dysfunction and Arterial Stiffness in Individuals under Cardiovascular Risk. Nutrients 2023; 15:nu15112618. [PMID: 37299579 DOI: 10.3390/nu15112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.
Collapse
Affiliation(s)
- Davi Vieira Teixeira da Silva
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Dos Santos Baião
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cristine Couto Almeida
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
4
|
Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023; 15:nu15030660. [PMID: 36771366 PMCID: PMC9921013 DOI: 10.3390/nu15030660] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.
Collapse
|
5
|
Gentilin A, Zanini P, Cevese A, Schena F, Tarperi C. Ergogenic effects of citrulline supplementation on exercise performance and physiological indexes of exercise performance during cycling tests: A review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Poole DC, Ferguson SK, Musch TI, Porcelli S. Role of nitric oxide in convective and diffusive skeletal microvascular oxygen kinetics. Nitric Oxide 2022; 121:34-44. [PMID: 35123062 DOI: 10.1016/j.niox.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Scott K Ferguson
- Department of Kinesiology and Exercise Science, University of Hawaii, Hilo, HI, 96720, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Burgos J, Viribay A, Calleja-González J, Fernández-Lázaro D, Olasagasti-Ibargoien J, Seco-Calvo J, Mielgo-Ayuso J. Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial. BIOLOGY 2022; 11:75. [PMID: 35053073 PMCID: PMC8772988 DOI: 10.3390/biology11010075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022]
Abstract
Citrulline (CIT) and nitrate-rich beetroot extract (BR) are widely studied ergogenic aids. Nevertheless, both supplements have been studied in short-term trials and separately. To the best of the authors' knowledge, the effects of combining CIT and BR supplementation on recovery status observed by distance covered in the Cooper test, exercise-induced muscle damage (EIMD) and anabolic/catabolic hormone status have not been investigated to date. Therefore, the main purpose of this research was to assess the effect of the long-term (9 weeks) mixture of 3 g/day of CIT plus 2.1 g/day of BR (300 mg/day of nitrates (NO3-)) supplementation on recovery by distance covered in the Cooper test, EIMD markers (urea, creatinine, AST, ALT, GGT, LDH and CK) and anabolic/catabolic hormones (testosterone, cortisol and testosterone/cortisol ratio (T/C)) in male trained triathletes. Thirty-two triathletes were randomized into four different groups of eight triathletes in this double-blind, placebo-controlled trial: placebo group (PLG), CIT group (CITG; 3 g/day of CIT), BR group (BRG; 2.1 g/day of BR (300 mg/day of NO3-)) and CIT-BR group (CIT-BRG; 3 g/day of CIT plus 2.1 g/day of BR (300 mg/day of NO3-)). Distance covered in the Cooper test and blood samples were collected from all participants at baseline (T1) and after 9 weeks of supplementation (T2). There were no significant differences in the interaction between group and time in EIMD markers (urea, creatinine, AST, ALT, GGT, LDH and CK) (p > 0.05). However, significant differences were observed in the group-by-time interaction in distance covered in the Cooper test (p = 0.002; η2p = 0.418), cortisol (p = 0.044; η2p = 0.247) and T/C (p = 0.005; η2p = 0.359). Concretely, significant differences were observed in distance covered in the Cooper test percentage of change (p = 0.002; η2p = 0.418) between CIT-BRG and PLG and CITG, in cortisol percentage change (p = 0.049; η2p = 0.257) and in T/C percentage change (p = 0.018; η2p = 0.297) between CIT-BRG and PLG. In conclusion, the combination of 3 g/day of CIT plus 2.1 g/day of BR (300 mg/day of NO3-) supplementation for 9 weeks did not present any benefit for EIMD. However, CIT + BR improved recovery status by preventing an increase in cortisol and showing an increase in distance covered in the Cooper test and T/C.
Collapse
Affiliation(s)
- José Burgos
- Department of Nursing and Physiotherapy, University of León, 24071 León, Spain;
- Burgos Nutrition, Physiology, Nutrition and Sport, 26007 Logroño, Spain
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria-Gasteiz, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Jurgi Olasagasti-Ibargoien
- Faculty of Education and Sports, University of Deusto, 20012 Donostia-San Sebastian, Spain;
- Health, Physical Activity and Sports Science Laboratory (HealthPASS), Departament of Physical Activity and Sport, Faculty of Education and Sport, University of Deusto, 48007 Bilbao, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), University of Leon, Campus de Vegazana, 24071 Leon, Spain;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
8
|
Burgos J, Viribay A, Fernández-Lázaro D, Calleja-González J, González-Santos J, Mielgo-Ayuso J. Combined Effects of Citrulline Plus Nitrate-Rich Beetroot Extract Co-Supplementation on Maximal and Endurance-Strength and Aerobic Power in Trained Male Triathletes: A Randomized Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 14:40. [PMID: 35010917 PMCID: PMC8746866 DOI: 10.3390/nu14010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Citrulline (CIT) and nitrate-rich beetroot extract (BR) are ergogenic aids and nitric oxide (NO) precursors. In addition, both supplements seem to have other actions at the level of muscle metabolism that can benefit strength and aerobic power performance. Both supplements have been studied in numerous investigations in isolation. However, scientific evidence combining both supplements is scarce, and to the best of the authors' knowledge, there is no current study of endurance athletes. Therefore, the main purpose of this study was to determine the effect of 9 weeks of CIT plus BR supplementation on maximal and endurance-strength performance and aerobic power in male triathletes. This study was a randomized double-blind, placebo-controlled trial where participants (n = 32) were randomized into four different groups: placebo group (PLG; n = 8), CIT plus BR group (CIT- BRG; 3 g/kg/day of CIT plus 3 mg/kg/day of nitrates (NO3-); n = 8), CIT group (CITG; 3 g/kg/day; n = 8) and BR group (BRG; 3 mg/kg/day of NO3-; n = 8). Before (T1) and after 9 weeks (T2), four physical condition tests were carried out in order to assess sport performance: the horizontal jump test (HJUMP), handgrip dynamometer test, 1-min abdominal tests (1-MAT) and finally, the Cooper test. Although, no significant interactions (time × supplementation groups) were found for the strength tests (p > 0.05), the CIT- BRG supplementation presented a trend on HJUMP and 1-MAT tests confirmed by significant increase between two study moments in CIT-BRG. Likewise, CIT-BRG presented significant interactions in the aerobic power test confirmed by this group's improve estimated VO2max during the study with respect to the other study groups (p = 0.002; η2p = 0.418). In summary, supplementing with 3 g/day of CIT and 2.1 g/day of BR (300 mg/day of NO3-) for 9 weeks could increase maximal and endurance strength. Furthermore, when compared to CIT or BR supplementation alone, this combination improved performance in tests related to aerobic power.
Collapse
Affiliation(s)
- José Burgos
- Department of Nursing and Physiotherapy, University of León, 24071 León, Spain
- Burgos Nutrition, Physiology, Nutrition and Sport, 26007 Logroño, Spain;
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria, Spain;
| | - Josefa González-Santos
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| |
Collapse
|
9
|
Todorovic N, Stajer V, Ratgeber L, Betlehem J, Acs P, Ostojic SM. Effects of 7-day supplementation with escalating doses of citrulline nitrate on resting and post-exercise blood pressure and safety biomarkers in healthy men: A randomized controlled trial. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/23978473211038632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of 7-day supplementation with three different dosages of citrulline nitrate (CN) on blood pressure at rest and after exercise, biochemical safety markers, and self-reported outcome measures of adverse events in healthy men. 12 apparently healthy young men (age 25.9 ± 4.0 years; weight 78.6 ± 10.0 kg, height 181.0 ± 7.0 cm) volunteered to participate in this double-blind, randomized, placebo-controlled cross-over trial. The dosages of CN were 1.5 g per day (low dose), 3.0 g per day (medium dose), and 6.0 g per day (high dose). No significant differences were found for systolic and diastolic blood pressure and heart rate at rest and after exercise between varying doses of CN and placebo ( p > 0.05). In addition, hematological indices, biochemical variables, and clinical enzyme profiles were not affected by either intervention ( p > 0.05), and the type and frequency of side effects were comparable to the placebo group. Citrulline nitrate was safe and well tolerated when administered for 7 days in dosages up to 6 g per day.
Collapse
Affiliation(s)
- Nikola Todorovic
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Valdemar Stajer
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Laszlo Ratgeber
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Jozsef Betlehem
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Pongras Acs
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Sergej M Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| |
Collapse
|
10
|
L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073293] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Arginine (Arg) has been widely used due to its functional properties as a substrate for nitric oxide (NO) generation. However, L-citrulline (CIT), whose main natural source is watermelon, is a non-essential amino acid but which has important health potential. This review provides a comprehensive approach to different studies of the endogenous synthesis of CIT, metabolism, pharmacokinetics, and pharmacodynamics as well as its ergogenic effect in exercise performance. The novel aspect of this paper focuses on the different effects of CIT, citrulline malate and CIT from natural sources such as watermelon on several topics, including cardiovascular diseases, diabetes, erectile dysfunction, cancer, and exercise performance. CIT from watermelon could be a natural food-sourced substitute for pharmacological products and therefore the consumption of this fruit is promoted.
Collapse
|