1
|
Yan H, Jiang N, Li X, Lin C, Wang F, Zhang J, Chen L, Li D. Exosomal lncRNAs as diagnostic and therapeutic targets in multiple myeloma. Front Oncol 2025; 14:1522491. [PMID: 39886670 PMCID: PMC11779718 DOI: 10.3389/fonc.2024.1522491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Multiple Myeloma (MM) is the second most common malignancy of the hematopoietic system, accounting for approximately 10% of all hematological malignancies, and currently, there is no complete cure. Existing research indicates that exosomal long non-coding RNAs (lncRNAs) play a crucial regulatory role in the initiation and progression of tumors, involving various interactions such as lncRNA-miRNA, lncRNA-mRNA, and lncRNA-RNA binding proteins (RBP). Despite the significant clinical application potential of exosomal lncRNAs, research in this area still faces challenges due to their low abundance and technical limitations. To our knowledge, this review is the first to comprehensively integrate and elucidate the three mechanisms of action of exosomal lncRNAs in MM, and to propose potential therapeutic targets and clinical cases based on these mechanisms. We highlight the latest advancements in the potential of exosomal lncRNAs as biomarkers and therapeutic targets, offering not only a comprehensive analysis of the role of exosomal lncRNAs in MM but also new perspectives and methods for future clinical diagnosis and treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hong Yan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Nan Jiang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoying Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenyang Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fang Wang
- School of Dental Medicine, Dalian University, Dalian, Liaoning, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijuan Chen
- Department of Hematopathology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Tang Y, Fahira A, Lin S, Shao Y, Huang Z. Shared and specific competing endogenous RNAs network mining in four digestive system tumors. Comput Struct Biotechnol J 2024; 23:4271-4287. [PMID: 39669749 PMCID: PMC11635987 DOI: 10.1016/j.csbj.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024] Open
Abstract
Background Digestive system malignancies, including esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), liver hepatocellular carcinoma (LIHC), and colon adenocarcinoma (COAD), pose significant global health challenges. Identifying shared and distinct regulatory mechanisms across these cancers can lead to improved therapies. This study aims to construct and compare competing endogenous RNA (ceRNA) networks across ESCA, STAD, LIHC, and COAD to identify RNA biomarkers that could serve as precision therapeutic targets to enhance clinical outcomes and advance personalized cancer care. Methods Clinical and transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to predict differentially expressed RNAs using the edgeR package. The ceRNA networks were constructed using the miRcode and ENCORI databases. Functional enrichment analysis and prognostic RNA screening were performed with ConsensusPathDB and univariate Cox regression analysis. Results we identified 6, 88, 55, and 41 RNA biomarkers in ESCA, STAD, LIHC, and COAD, respectively. Network analysis revealed shared and specific elements, with shared nodes enriched in cell cycle and mitotic processes. Several biomarkers, including HMGB3 and RGS16 (ESCA), COL4A1 and COL6A3 (STAD), CDCA5 and CDCA8 (LIHC), and LIMK1 and OSBPL3 (COAD), were consistent with prior studies, while novel biomarkers, such as C3P1 (ESCA), P2RY6 (STAD), and N4BP2L1 and PPP1R3B (LIHC), were discovered. Based on RNA correlation analysis, 1, 23, and 2 potential ceRNA regulatory axes were identified in STAD (PVT1/miR-490-3p/HMGA2), LIHC (DLX6-AS1/miR-139-5p/TOP2A, etc.), and COAD (STRCP1 & LINC00488/miR-142-3p/GAB1), respectively. Conclusions This study advances the understanding of ceRNA networks in digestive cancers, highlighting RNA biomarkers with potential as therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yulai Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Siying Lin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Yiming Shao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Zhao Y, Han S, Zeng Z, Zheng H, Li Y, Wang F, Huang Y, Zhao Y, Zhuo W, Lv G, Wang H, Zhao G, Zhao E, Hu Y, Hu P, Zhao G. Decreased lncRNA HNF4A-AS1 facilitates resistance to sorafenib-induced ferroptosis of hepatocellular carcinoma by reprogramming lipid metabolism. Theranostics 2024; 14:7088-7110. [PMID: 39629121 PMCID: PMC11610135 DOI: 10.7150/thno.99197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/12/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Resistance to sorafenib remains a major challenge in the systemic therapy of liver cancer. However, the involvement of lipid metabolism-related lncRNAs in this process remains unclear. Methods: Different expression levels of lipid metabolism-related lncRNAs in HCC were compared by analysis of Gene Expression Omnibus and The Cancer Genome Atlas databases. The influence of HNF4A-AS1 on sorafenib response was evaluated through analysis of public biobanks, cell cytotoxicity and colony formation assays. The effect of HNF4A-AS1 on sorafenib-induced ferroptosis was measured using lipid peroxidation, glutathione, malondialdehyde, and ROS levels. Furthermore, bioinformatic analyses and lipidomic profiling were conducted to study HNF4A-AS1 involvement in lipid metabolic reprogramming. Mechanistic experiments, including the luciferase reporter assay, RNA pulldown, RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP), and RNA remaining assays, were employed to uncover the downstream targets and regulatory mechanisms of HNF4A-AS1 in sorafenib resistance in HCC. Xenograft and organoid experiments were carried out to assess the impact of HNF4A-AS1 on sorafenib response. Results: Bioinformatics analysis revealed that HNF4A-AS1, a lipid metabolism-related lncRNA, is specifically high-expressed in the normal liver and associated with sorafenib resistance in HCC. We further confirmed that HNF4A-AS1 was downregulated in HCC cells and organoids that resistant to sorafenib. Moreover, both in vitro and in vivo studies demonstrated that HNF4A-AS1 overexpression reversed sorafenib resistance in HCC cells, which was further enhanced by polyunsaturated fatty acids (PUFA) supplementation. Mechanistically, HNF4A-AS1 interacted with METTL3, leading to m6A modification of DECR1 mRNA, which subsequently decreased DECR1 expression via YTHDF3-dependent mRNA degradation. Consequently, decreased HNF4A-AS1 levels caused DECR1 overexpression, leading to decreased intracellular PUFA content and promoting resistance to sorafenib-induced ferroptosis in HCC. Conclusions: Our results indicated the pivotal role of lipid metabolism-related and liver-specific HNF4A-AS1 in inhibiting sorafenib resistance by promoting ferroptosis and suggesting that HNF4A-AS1 might be a potential target for HCC.
Collapse
MESH Headings
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Humans
- Ferroptosis/drug effects
- Ferroptosis/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Animals
- Hepatocyte Nuclear Factor 4/metabolism
- Hepatocyte Nuclear Factor 4/genetics
- Mice
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Xenograft Model Antitumor Assays
- Male
- Mice, Inbred BALB C
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Jia W, Yu L, Xu B, Feng Y, Wang J, Zhu D, Xu C, Liang L, Zhou Y, Kong L, Ding W. HNF4A-AS1 inhibits the progression of hepatocellular carcinoma by promoting the ubiquitin-modulated degradation of PCBP2 and suppressing the stability of ARG2 mRNA. Int J Biol Sci 2024; 20:5087-5108. [PMID: 39430249 PMCID: PMC11488582 DOI: 10.7150/ijbs.95276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. Extensive research has revealed the significant role of long noncoding RNAs (lncRNAs) in the regulation of tumor development. In this study, high-throughput sequencing analysis was used to assess the expression levels of lncRNAs in three pairs of HCC tissues and their corresponding noncancerous tissues. Through quantitative real-time polymerase chain reaction (qRT-PCR) analysis and clinicopathological analysis, it was discovered that HNF4A-AS1 was downregulated in HCC tissues. Furthermore, its expression levels were found to be positively correlated with the prognosis of HCC patients. Subsequent in vitro and in vivo functional studies demonstrated that HNF4A-AS1 inhibits the proliferation, invasion, and stemness of HCC cells. Mechanistically, it was observed that HNF4A-AS1 physically interacts with the KH3 domain of PCBP2 through a specific segment (491-672 nt). This interaction facilitates the recruitment of PCBP2 by AIP4, leading to the ubiquitination and subsequent degradation of PCBP2. Furthermore, HNF4A-AS1 was found to regulate the stability of AGR2 mRNA by modulating PCBP2, thereby influencing the malignant phenotype of HCC. Overall, our study demonstrated a positive association between the decrease in HNF4A-AS1 expression and the prognosis of patients with HCC in a clinical setting. HNF4A-AS1 can suppress the stability of ARG2 mRNA by promoting the ubiquitin-modulated degradation of PCBP2, which suppresses HCC progression. HNF4A-AS1 may serve as a potential therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Hepatocyte Nuclear Factor 4/genetics
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/genetics
- Male
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Cell Line, Tumor
- Female
- Ubiquitin/metabolism
- Gene Expression Regulation, Neoplastic
- Animals
- Middle Aged
- Mice
- Disease Progression
- Cell Proliferation/genetics
- RNA Stability
- Mice, Nude
Collapse
Affiliation(s)
- Wenbo Jia
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Liang Yu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, China
| | - Bin Xu
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yanzhi Feng
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jinyi Wang
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Deming Zhu
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Chao Xu
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Litao Liang
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yongping Zhou
- Department of Hepatobiliary, Jiangnan University Medical Center, JUMC, China
| | - Lianbao Kong
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wenzhou Ding
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Qiu H, Jiang B, Chen Y, Lin Z, Zheng W, Cao X. Featured lncRNA-based signature for discriminating prognosis and progression of hepatocellular carcinoma. J Appl Genet 2024; 65:355-366. [PMID: 38347289 DOI: 10.1007/s13353-024-00836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in carcinogenesis and progression of hepatocellular carcinoma (HCC). This study aimed to identify a robust lncRNA signature for predicting the survival of HCC patients. We performed an integrated analysis of the lncRNA expression profiling in The Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma database to identify the prognosis-related lncRNA for the HCC. The HCC cohort was randomly divided into a training set (n = 250) and a testing set (n = 113). Following a two-step screening, we identified an 18-lncRNA signature risk score. The high-risk subgroups had significantly shorter survival time than the low-risk group in both the training set (P < 0.0001) and the testing set (P = 0.005). Stratification analysis revealed that the prognostic value of the lncRNA-based signature was independent of the tumor stage and pathologic stage. The area under the receiver operating characteristic curve (AUROC) of the 18-lncRNA signature risk score was 0.826 (95%CI, 0.764-0.888), 0.817 (95%CI, 0.759-0.876), and 0.799 (95%CI, 0.731-0.867) for 1-year, 3-year, and 5-year follow-up, respectively. Bioinformatics analyses indicated that the 18 lncRNA might mediate cell cycle, DNA replication processes, and canonical cancer-related pathways, in which MCM3AP-AS1 was a potential target for HCC. In conclusion, the 18-lncRNA signature was a robust predictive biomarker for the prognosis and progression of HCC.
Collapse
Affiliation(s)
- Huiyuan Qiu
- Medical School of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, Jiangsu, China
| | - Yinqi Chen
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhaoyi Lin
- Medical School of Nantong University, Nantong, 226001, China
| | - Wenjie Zheng
- Medical School of Nantong University, Nantong, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaolei Cao
- Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Liao B, Wang J, Yuan Y, Luo H, Ouyang X. Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors. Cancer Cell Int 2024; 24:122. [PMID: 38555465 PMCID: PMC10981830 DOI: 10.1186/s12935-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1's multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yalin Yuan
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
7
|
Zhou Y, Tan F, Wang Z, Zhou G, Yuan C. The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis. Mini Rev Med Chem 2024; 24:1685-1700. [PMID: 38616756 DOI: 10.2174/0113895575284780240327103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- AS1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.
Collapse
Affiliation(s)
- Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Zhuowei Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
8
|
Lin T, Guo X, Du Q, Liu W, Zhong X, Wang S, Cao L. MicroRNA let-7c-5p Alleviates in Hepatocellular Carcinoma by Targeting Enhancer of Zeste Homolog 2: A Study Intersecting Bioinformatic Analysis and Validated Experiments. Crit Rev Immunol 2024; 44:23-39. [PMID: 38505919 DOI: 10.1615/critrevimmunol.2024051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2)gene has a prognostic role in hepatocellular carcinoma (HCC). This study aimed to identify the role of microRNAs (miRNAs) let-7c-5p by targeting EZH2 in HCC. We downloaded gene and miRNA RNA-seq data from The Cancer Genome Atlas (TCGA) database. Differences in EZH2 expression between different groups were analyzed and the association of EZH2 expression with HCC prognosis was detected using Cox regression analysis. The miRNA-EZH2-pathway network was constructed. Dual-luciferase reporter assay was performed to detect the hsa-let-7c-5p-EZH2. Cell proliferation, migration, invasion, and apoptosis were detected by CCK-8, Wound healing, Transwell, and Flow cytometry, respectively. RT-qPCR and Western blot were used to detect the expression of let-7c-5p and EZH2. EZH2 was upregulated in HCC tumors (P < 0.0001). Cox regression analysis showed that TCGA HCC patients with high EZH2 expression levels showed a short survival time [hazard ratio (HR) = 1.677, 95% confidence interval (CI) 1.316-2.137; P < 0.0001]. Seven miRNAs were negatively correlated with EZH2 expression and were significantly downregulated in HCC tumor samples (P < 0.0001), in which hsa-let-7c-5p was associated with prognosis in HCC (HR = 0.849 95% CI 0.739-0.975; P = 0.021). We identified 14 immune cells that showed significant differences in EZH2 high- and low-expression groups. Additionally, let-7c-5p inhibited HCC cell proliferation, migration, and invasion and reversed the promoted effects of EZH2 on HCC cell malignant characteristics. hsa-let-7c-5p-EZH2 significantly suppressed HCC malignant characteristics, which can be used for HCC prognosis.
Collapse
Affiliation(s)
- Tianyu Lin
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xinli Guo
- Department of Operating Room, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Qian Du
- Department of General Surgery, The 903rd Hospital of PLA, Hangzhou 310000, China
| | - Wei Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Suihan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
9
|
Wang Y, Sun P, Hao X, Cao D, Liu J, Zhang D. Decreased DIO3OS Expression Predicts Poor Prognosis in Hepatocellular Carcinoma and is Associated with Immune Infiltration. Biochem Genet 2023; 61:1791-1806. [PMID: 36802306 DOI: 10.1007/s10528-023-10345-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Hepatocellular carcinoma has become one of the most shared cancers in the whole world because of its high morbidity, poor survival rate, and low recovery rate. LncRNA DIO3 opposite strand upstream RNA (DIO3OS) has been reported to be obviously important in several human cancers, while its biological function in hepatocellular carcinoma (HCC) remains unclear. Here, DIO3OS gene expression data and clinical information of HCC patients were extracted from the Cancer Genome Atlas (TCGA) database and the university of California Santa Cruz (UCSC) Xena database. In our study, the Wilcoxon rank sum test was used to compare DIO3OS expression between healthy individuals and HCC patients. It was found that patients with HCC had significantly lower DIO3OS expression than healthy individuals. Furthermore, Kaplan-Meier curves and Cox regression analysis showed that high DIO3OS expression tended to predict better prognosis and higher survival rate in HCC patients. In addition, the gene set enrichment analysis (GSEA) assay was used to annotate the biological function of DIO3OS. It was found that DIO3OS was significantly correlated with immune invasion in HCC. This was also aided by the subsequent ESTIMATE assay. Our study provides a novel biomarker and therapeutic strategy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China
| | - Ping Sun
- Department of Immunology, Weifang Medical University, Weifang, 261053, Shandong Province, China
| | - Xinping Hao
- Department of Intensive Care Unit, Weifang Traditional Chinese Medicine Hospital, Weifang, 261041, Shandong Province, China
| | - Daihong Cao
- Dpartment of Pathology, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, 030000, Shanxi Province, China
| | - Jiangyue Liu
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Daijuan Zhang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
10
|
Chen R, Zhao M, An Y, Liu D, Tang Q. GBAP1 functions as a tumor promotor in hepatocellular carcinoma via the PI3K/AKT pathway. BMC Cancer 2023; 23:628. [PMID: 37407932 DOI: 10.1186/s12885-023-11107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is common worldwide, and novel therapeutic targets and biomarkers are needed to improve outcomes. In this study, bioinformatics analyses combined with in vitro and in vivo assays were used to identify the potential therapeutic targets. Differentially expressed genes (DEG) in HCC were identified by the intersection between The Cancer Genome Atlas and International Cancer Genome Consortium data. The DEGs were evaluated by a gene set enrichment analysis as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. A protein interaction network, univariate Cox regression, and Lasso regression were used to screen out hub genes correlated with survival. Increased expression of the long noncoding RNA GBAP1 in HCC was confirmed in additional datasets and its biological function was evaluated in HCC cell lines and nude mice. Among 121 DEGs, GBAP1 and PRC1 were identified as hub genes with significant prognostic value. Overexpression of GBAP1 in HCC was confirmed in 21 paired clinical tissues and liver cancer or normal cell lines. The inhibition of GBAP1 expression reduced HCC cell proliferation and promoted apoptosis by inactivating the PI3K/AKT pathway in vitro and in vivo. Therefore, GBAP1 has a pro-oncogenic function in HCC and is a candidate prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| | - Meng Zhao
- Medical college, Henan University of Traditional Chinese Medicine, 450001, Henan Province, China
| | - Yanli An
- Jiangsu Provincial Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Dongfang Liu
- Jiangsu Provincial Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China
| |
Collapse
|
11
|
Long Non-coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis. Mol Biotechnol 2023; 65:624-636. [PMID: 36127622 DOI: 10.1007/s12033-022-00555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Triple negative breast cancer (TNBC) is a prevalent malignant tumor in women and is characterized by high incidence and mortality. Current evidence has suggested that multiple long noncoding RNAs (lncRNAs) play regulatory roles in TNBC, while the specific mechanism of LINC01224 in TNBC remains unclear. In this study, LINC01224 was highly expressed in TNBC cells. Moreover, LINC01224 downregulation inhibited TNBC cell proliferation, migration, and invasion, and promoted cell apoptosis. Additionally, LINC01224 stabilized NUP210 mRNA through interaction with miR-193a-5p, thereby aggravating the malignant phenotypes of TNBC. Overall, LINC01224 functions as a tumor promoter for TNBC.
Collapse
|
12
|
Chen L, Li Y, Deng X. Comprehensive analysis of pan-cancer reveals the potential of SLC16A1 as a prognostic and immunological biomarker. Medicine (Baltimore) 2023; 102:e33242. [PMID: 36930112 PMCID: PMC10019278 DOI: 10.1097/md.0000000000033242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
SLC16A1 plays an important role in the development of multiple cancer types. Pan-cancer analysis may have significant impacts on the exploration of the relationship between SLC16A1 gene expression, prognosis and the molecular mechanisms of tumorigenesis. In this study, through the analysis of TCGA and GEO datasets, we explored the expression level and survival prognosis of SLC16A1 in pan-cancer, and further explored the differences in SLC16A1 gene mutation, methylation, and phosphorylation between tumor and normal tissues. In addition, we focused on the biological function of this gene and the relationship between the prognosis and immune infiltration by immune infiltration analysis and enrichment analysis, in order to evaluate the diagnostic and prognostic significance of SLC16A1 in carcinomas. The study found that SLC16A1 was highly expressed in 14 kinds of tumors, and there were statistically significant differences in the prognosis of 9 tumors. The phosphorylation level of S467 increased in OV, RCC, and UCEC. There was a statistically negative correlation between the CD8+ T-cell infiltration level and the SLC16A1 expression in HNSC, LUSC, SARC, TGCT, and KIRC. The cancer-related fibroblasts were positively correlated with SLC16A1 expression in BLCA, BRCA, KIRC, KIRP, PAAD, PCPG, and THCA. The enrichment analysis indicated that the tumorigenesis mechanism of this gene was mainly related to "glycolysis and glucose metabolism synthesis." SLC16A1 was a promising prognostic and immunological biomarker in pan-cancer.
Collapse
Affiliation(s)
- Lingyun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xinna Deng
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer Cell Int 2022; 22:225. [PMID: 35790972 PMCID: PMC9258118 DOI: 10.1186/s12935-022-02644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Minichromosome Maintenance Complex Component 3 Associated Protein Antisense 1 (MCM3AP-AS1) is an RNA gene located on 21q22.3. The sense transcript from this locus has dual roles in the pathogenesis of solid tumors and hematological malignancies. MCM3AP-AS1 has been shown to sequester miR-194-5p, miR-876-5p, miR-543-3p, miR-28-5p, miR-93, miR-545, miR-599, miR‐193a‐5p, miR-363-5p, miR-204-5p, miR-211-5p, miR-15a, miR-708-5p, miR-138, miR-138-5p, miR-34a, miR-211, miR‐340‐5p, miR-148a, miR-195-5p and miR-126. Some cancer-related signaling pathway, namely PTEN/AKT, PI3K/AKT and ERK1/2 are influenced by this lncRNA. Cell line studies, animal studies and clinical studies have consistently reported oncogenic role of MCM3AP-AS1 in different tissues except for cervical cancer in which this lncRNA has tumor suppressor role. In the current manuscript, we collected evidence from these three sources of evidence to review the impact of MCM3AP-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Razavi H, Katanforosh A. Identification of novel key regulatory lncRNAs in gastric adenocarcinoma. BMC Genomics 2022; 23:352. [PMID: 35525925 PMCID: PMC9080188 DOI: 10.1186/s12864-022-08578-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most common and deadly cancers worldwide. Recent evidence has demonstrated that dysregulation of long noncoding RNAs (lncRNA) is associated with different hallmarks of cancer. lncRNAs also were suggested as novel promising biomarkers for cancer diagnosis and prognosis. Despite these previous investigations, the expression pattern, diagnostic role, and hallmark association of lncRNAs in STAD remain unclear. Results In this study, The STAD lncRNA-mRNA network was constructed based on RNAs that differentially expressed among tumor and normal samples and had a strong expression correlation with others. The high degree nodes of the network were associated with overall survival. In addition, we found that the hubs’ regulatory roles have previously been confirmed in different types of cancers by literature. For example, the HCG22 hub inhibited cell proliferation and invasion and induced apoptosis in oral squamous cell carcinoma (OSCC) cells. The levels of PCNA, Vimentin, and Bcl2 were decreased and E-cadherin and Bax expression was elevated in OSCC cells after HCG22 overexpression. Additionally, HCG22 overexpression inhibited the Akt, mTOR, and Wnt/β-catenin pathways. Then lncRNAs were mapped to their related GO terms and cancer hallmarks. Based on these mappings, we predict the hallmarks that might be associated with each lncRNA. Finally, the literature review confirmed our prediction. Among the 20 lncRNAs of the STAD network, 11 lncRNAs (LINC02560, SOX21-AS1, C5orf66-AS1, HCG22, PGM5-AS1, NALT1, ENSG00000241224.2, TINCR, MIR205HG, HNF4A-AS1, ENSG00000262756) demonstrated expression correlation with overall survival (OS). Based on expression analysis, survival analysis, hallmark associations, and literature review, LINC02560, SOX21-AS1, C5orf66-AS1, HCG22, PGM5-AS1, NALT1, ENSG00000241224.2, TINCR, MIR205HG, HNF4A-AS1 plays a regulatory role in STAD. For example, our prediction of association between C5orf66-AS1 expression dysregulation and “sustaining proliferative signal” and “Activating invasion and metastasis” has been confirmed in STAD, OSCC and cervical cancer. Finally, we developed a lncRNA signature with SOX21-AS1 and LINC02560, which classified patients into high and low-risk subgroups with significantly different survival outcomes. The mortality rate of the high-risk patients was significantly higher compared to the low-risk patients (28/1% vs 60.13). Conclusion These findings help in designing more precise and detailed experimental studies to find STAD biomarkers and therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08578-6.
Collapse
Affiliation(s)
- Houri Razavi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Ali Katanforosh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Monocarboxylate Transporters Are Involved in Extracellular Matrix Remodelling in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051298. [PMID: 35267606 PMCID: PMC8909080 DOI: 10.3390/cancers14051298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a five-year survival rate of <8%. PDAC is characterised by desmoplasia with an abundant extracellular matrix (ECM) rendering current therapies ineffective. Monocarboxylate transporters (MCTs) are key regulators of cellular metabolism and are upregulated in different cancers; however, their role in PDAC desmoplasia is little understood. Here, we investigated MCT and ECM gene expression in primary PDAC patient biopsies using RNA-sequencing data obtained from Gene Expression Omnibus. We generated a hypernetwork model from these data to investigate whether a causal relationship exists between MCTs and ECMs. Our analysis of stromal and epithelial tissues (n = 189) revealed nine differentially expressed MCTs, including the upregulation of SLC16A2/6/10 and the non-coding SLC16A1-AS1, and 502 ECMs, including collagens, laminins, and ECM remodelling enzymes (false discovery rate < 0.05). A causal hypernetwork analysis demonstrated a bidirectional relationship between MCTs and ECMs; four MCT and 255 ECM-related transcripts correlated with 90% of the differentially expressed ECMs (n = 376) and MCTs (n = 7), respectively. The hypernetwork model was robust, established by iterated sampling, direct path analysis, validation by an independent dataset, and random forests. This transcriptomic analysis highlights the role of MCTs in PDAC desmoplasia via associations with ECMs, opening novel treatment pathways to improve patient survival.
Collapse
|
16
|
Li YZ, Zhu HC, Du Y, Zhao HC, Wang L. Silencing lncRNA SLC16A1-AS1 Induced Ferroptosis in Renal Cell Carcinoma Through miR-143-3p/SLC7A11 Signaling. Technol Cancer Res Treat 2022; 21:15330338221077803. [PMID: 35167383 PMCID: PMC8854231 DOI: 10.1177/15330338221077803] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction: Renal cancer is one of the most common cancers in the world, but the effect of therapies on advanced renal cancer has not improved for decades. Ferroptosis is an emerging type of programmed cell death and has been proved to play a vital role in many kinds of cancers. However, the mechanisms of ferroptosis regulated by long noncoding RNA (lncRNA) in the context of renal cancer was still unknown. Methods: We used bioinformation analysis to identify SLC16A1-AS1 as a survival-related lncRNA in renal cancer. The expression levels of SLC16A1-AS1 and microRNA-143-3p (miR-143-3p) were detected by quantitative reverse transcription–polymerase chain reaction. Cell counting kit-8 assay, 5-bromo-2′-deoxyuridine proliferation assay, and colony-formation assay were performed to evaluate cell viability and proliferation. Wound-healing assay and transwell assay were used to examine cell invasive and migration capacity. Dual-luciferase reporter assay and RNA-binding protein immunoprecipitation were used to identify the interaction among SLC16A1-AS1, miR-143-3p, and the target protein solute carrier family 7 membrane 11 (SLC7A11). Reduced glutathione and glutathione and lipid peroxidation measurements were carried out to evaluate the level of ferroptosis, and the expression levels of ferroptosis-related proteins were analyzed by western blot. Results: Our study revealed that SLC16A1-AS1 has high expression and was associated with overall survival in renal cancer. Knockdown SLC16A1-AS1 inhibited cell viability, proliferation, and migration of renal cancer cells. Furthermore, it was demonstrated that SLC16A1-AS1 served as a sponge of miR-143-3p, and knockdown SLC16A1-AS1 significantly increased the enrichment of miR-143-3p. And then, SLC7A11 was identified as the target protein of miR-143-3p, and overexpression miR-143-3p remarkably inhibited the expression of SLC7A11. Moreover, knockdown SLC16A1-AS1 could aggravate this effect. Finally, through inhibiting SLC7A11 expression, silencing SLC16A1-AS1 induced ferroptosis via increasing miR-143-3p. Conclusion: The present results suggest that silencing lncRNA SLC16A1-AS1 can induce ferroptosis through miR-143-3p/SLC7A11 signaling in renal cancer. Our study provided a novel view into the pathogenesis and treatment strategy of RCC.
Collapse
Affiliation(s)
- Yan Ze Li
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Heng Cheng Zhu
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Yang Du
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Hong Chao Zhao
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Lei Wang
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
17
|
Wang B, Chen J, Lin C, Liu R, Wang L, Yuan C. MCM3AP-AS1: A LncRNA Participating in the Tumorigenesis of Cancer Through Multiple Pathways. Mini Rev Med Chem 2022; 22:2138-2145. [DOI: 10.2174/1389557522666220214100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
More and more shreds of evidence show that the occurrence and development of tumors are closely related to the abnormal expression of LncRNA. A large number of experiments have found that overexpression or under-expression of MCM3AP-AS1 can affect the occurrence and development of cancer cells in varying degrees, such as proliferation, invasion, and translocation. Besides, MCM3AP-AS1 may become a promising target for many tumor biotherapies. This article reviews the pathophysiological functions and molecular mechanisms of MCM3AP-AS1 in various tumors.
Methods:
This paper systematically summarizes the published literatures in PubMed. The molecular mechanism of MCM3AP-AS1 in a variety of tumors is reviewed.
Results:
The abnormal expression of MCM3AP-AS1 in different tumors is closely related to tumor proliferation, invasion, and migration. MCM3AP-AS1 mediates or participates in related signaling pathways to regulate the expression of targeted miRNAs and proteins. MCM3AP-AS1 plays a vital role in tumor diagnosis and treatment.
Conclusion:
LncRNA MCM3AP-AS1 is a feasible tumor marker and a potential therapeutic target for many kinds of tumors.
Collapse
Affiliation(s)
- Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chen Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Ru Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Lu Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
18
|
Duan X, Shan L, Shi S, Xu B, Chen X, Di J, Chen B, Li X, Liu S, Wang Y, Yang W. GBAP1 polymorphisms (rs140081212, rs1057941 and rs2990220) contribute to reduced risk of gastric cancer. Future Oncol 2022; 18:1861-1872. [PMID: 35156841 DOI: 10.2217/fon-2021-0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was designed to evaluate the contribution of GBAP1 variants to gastric cancer (GC) risk in a Chinese Han population. Methods: The genotypes of GBAP1 polymorphisms were detected using the Agena MassARRAY platform. Logistic regression analysis was used to calculate odds ratios (ORs) and 95% CIs. Results: GBAP1 rs140081212 (OR = 0.51, p = 4.50 × 10-07), rs1057941 (OR = 0.48, p = 1.19 × 10-08) and rs2990220 (OR = 0.46, p = 7.34 × 10-09) contribute to reduced GC risk, especially gastric adenocarcinoma. Interestingly, the contribution of GBAP1 variants to GC susceptibility was associated with age, sex, BMI, smoking and drinking. Conclusion: This research suggested that GBAP1 polymorphisms might provide a protective effect against GC occurrence in a Chinese Han population.
Collapse
Affiliation(s)
- Xianglong Duan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, XizangMinzu University, Xianyang, Shaanxi, 712082, China.,Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Liang Shan
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Shuai Shi
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Boyu Xu
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Xin Chen
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jinqin Di
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Bopeng Chen
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Xiaoqing Li
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Sida Liu
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, XizangMinzu University, Xianyang, Shaanxi, 712082, China
| | - Wei Yang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, XizangMinzu University, Xianyang, Shaanxi, 712082, China
| |
Collapse
|
19
|
Chen D, Gao W, Zang L, Zhang X, Li Z, Zhu H, Yu X. Ferroptosis-Related IncRNAs Are Prognostic Biomarker of Overall Survival in Pancreatic Cancer Patients. Front Cell Dev Biol 2022; 10:819724. [PMID: 35223846 PMCID: PMC8866714 DOI: 10.3389/fcell.2022.819724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, the mortality and morbidity of which have been increasing over the past decade. Ferroptosis, a newly identified iron-dependent cell death pattern, can be induced by iron chelators and small lipophilic antioxidants. Nonetheless, the prognostic significance of ferroptosis-related lncRNAs in PC remains to be clarified. We obtained the lncRNA expression matrix and clinicopathological information of PC patients from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) datasets in the current study. Firstly, we conducted Pearson correlation analysis to delve into the ferroptosis-related lncRNAs, and univariate Cox analysis was implemented to examine the prognostic values in PC patients. Twenty-three prognostic ferroptosis-related lncRNAs were confirmed and loaded into the least absolute shrinkage and selection operator Cox (LASSO-Cox) analysis, then a ferroptosis-related lncRNA prognostic marker (Fe-LPM) was established in the TCGA dataset. Risk scores of patients were calculated and segregated PC patients into low-risk and high-risk subgroups in each dataset. The prognostic capability of Fe-LPM was also confirmed in the ICGC dataset. Gene set enrichment analysis (GSEA) revealed that several ferroptosis-related pathways were enriched in low-risk subgroups. Furthermore, we adopted a multivariate Cox regression to establish a nomogram based on risk score, age, pathological T stage and primary therapy outcome. A competing endogenous RNA (ceRNA) network was also created relied on four of the twenty-three ferroptosis-related lncRNAs. In conclusion, the eight Fe-LPM can be utilized to anticipate the overall survival (OS) of PC patients, which are meaningful to guiding clinical strategies in PC.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Longjun Zang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Zheng Li
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hongwei Zhu, ; Xiao Yu,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hongwei Zhu, ; Xiao Yu,
| |
Collapse
|
20
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. Mapping Intellectual Structure for the Long Non-Coding RNA in Hepatocellular Carcinoma Development Research. Front Genet 2022; 12:771810. [PMID: 35047004 PMCID: PMC8762053 DOI: 10.3389/fgene.2021.771810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Emerging research suggests that long non-coding RNAs (lncRNAs) play an important role in a variety of developmental or physiological processes of hepatocellular carcinoma (HCC). Various differentially expressed lncRNAs have been identified in HCC. Thus, a deeper analysis of recent research concerning lncRNA and HCC development could provide scientists with a valuable reference for future studies. Methods: Related publications were retrieved from the Web of Science Core Collection database. CiteSpace version 5.6.R4 was employed to conduct bibliometric analysis. Several network maps were constructed to evaluate the collaborations between different countries, institutions, authors, journals, and keywords. Results: A total of 2,667 records were initially found from the year of 2010–2020. The annual related publications output had increased dramatically during these years. Although China was the most prolific country in terms of research publication, the United States played a leading role in collaborative network. The Nanjing Medical University was the most productive institute in the field of lncRNAs in HCC development. Gang Chen was the most prolific researcher, while Yang F was the most frequently co-cited author. Oncotarget, Cell, and Oncogene were the most highly co-cited journals. The most recent burst keywords were interaction, database, and pathway. Conclusion: This study provides a comprehensive overview for the field of lncRNAs in HCC development based on bibliometric and visualized methods. The results would provide a reference for scholars focusing on this field.
Collapse
Affiliation(s)
- Zhifeng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Deng Y, Wu J, Li X. lncRNA RUNDC3A-AS1 Regulates Proliferation and Apoptosis of Thyroid Cancer Cells via the miR-151b/SNRPB Axis. Int J Endocrinol 2022; 2022:9433434. [PMID: 35242185 PMCID: PMC8888066 DOI: 10.1155/2022/9433434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
The number of thyroid cancer (THCA) cases has increased dramatically worldwide. Many previous reports have confirmed that lncRNA is involved in the pathogenesis of THCA. However, the role and mechanism of lncRNA RUNDC3A-AS1 in THCA have not been studied. We intended to explore the effect of RUNDC3A-AS1 on the proliferation and apoptosis of THCA cells. Relative expression levels of RUNDC3A-AS1, microRNA (miR)-151b, and small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) were examined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in THCA cells. The localization of RUNDC3A-AS1 in THCA cells was detected by subcellular fractionation assay. The cell proliferation was tested by 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Flow cytometry was used to examine the cell apoptosis capacity. The relationships between RUNDC3A-AS1 and miR-151b or miR-151b and SNRPB were verified by luciferase reporter assay. The protein level was detected by Western blot analysis. RUNDC3A-AS1 exhibited high expression in THCA cells. RUNDC3A-AS1 knockdown suppressed cell proliferation but induced cell apoptosis. Importantly, RUNDC3A-AS1 targeted miR-151b to regulate the SNRPB expression. In rescue assays, SNRPB overexpression partially reversed the suppressive effect of RUNDC3A-AS1 knockdown on cell proliferation and the promotive effect of RUNDC3A-AS1 knockdown on cell apoptosis. The RUNDC3A-AS1/miR-151b/SNRPB axis regulated THCA cell proliferation and apoptosis, which provides novel insight into THCA investigation at the molecular level.
Collapse
Affiliation(s)
- Yan Deng
- Department of Nuclear Medicine, Wuhan Fifth Hospital, Wuhan 430050, Hubei, China
| | - Jie Wu
- Department of Laboratory, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, Hubei, China
| | - Xin Li
- Department of Nuclear Medicine, Wuhan Fifth Hospital, Wuhan 430050, Hubei, China
| |
Collapse
|
22
|
DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:205-219. [PMID: 34761103 PMCID: PMC8551476 DOI: 10.1016/j.omto.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
DNA methylation is a class of epigenetic modification manner, which is responsible for the inactivation of various tumor suppressors. Recently, long non-coding RNAs (lncRNAs) were revealed to be implicated in a variety of malignancies, including non-small cell lung cancer (NSCLC). However, the contributions of lncRNAs to DNA-methylation-induced oncogenic effects in NSCLC remain largely unknown. In this study, we identified a DNA-methylation-repressed lncRNA DIO3 opposite strand upstream RNA (DIO3OS) in NSCLC. DIO3OS is downregulated in NSCLC, and its low expression is related to poor prognosis. Ectopic expression of DIO3OS repressed NSCLC cell growth and motility and promoted NSCLC cell apoptosis in vitro. DIO3OS also repressed NSCLC tumorigenesis and metastasis in vivo. DIO3OS knockdown exhibited opposite biological effects. DIO3OS competitively bound heterogeneous nuclear ribonucleoprotein K (hnRNPK), repressed the binding of hnRNPK to MYC DNA and MYC mRNA, reduced the promoting roles of hnRNPK on MYC transcription and translation, led to the repression of MYC transcription and translation, and therefore remarkably decreased the expression of MYC and CDC25A, a downstream target of MYC. Additionally, depletion of hnRNPK blocked the tumor-suppressive roles of DIO3OS in NSCLC. In conclusion, these findings identified DIO3OS as an important protective factor against NSCLC via modulating hnRNPK-MYC-CDC25A axis.
Collapse
|
23
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
24
|
Pei S, Chen Z, Tan H, Fan L, Zhang B, Zhao C. SLC16A1-AS1 enhances radiosensitivity and represses cell proliferation and invasion by regulating the miR-301b-3p/CHD5 axis in hepatocellular carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42778-42790. [PMID: 32748357 DOI: 10.1007/s11356-020-09998-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC), a common type of human malignancies, leads to increasing incidence and fairly high mortality. An increasing number of studies have verified that long noncoding RNAs (lncRNAs) played key roles in the development of multiple human cancers. As a biomarker, SLC16A1-AS1 has been reported in non-small cell lung cancer (NSCLC) and oral squamous cell carcinoma (OSCC). Thus, we decided to investigate whether SLC16A1-AS1 exerts its biological function in HCC. In this study, we discovered that SLC16A1-AS1 was obviously downregulated in HCC tissues and cells. Overexpression of SLC16A1-AS1 inhibited HCC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) process as well as promoted cell apoptosis. Moreover, SLC16A1-AS1 was confirmed to enhance the radiosensitivity of HCC cells. Molecular mechanism exploration suggested that SLC16A1-AS1 served as a sponge for miR-301b-3p and CHD5 was the downstream target gene of miR-301b-3p in HCC cells. Rescue assays implied that CHD5 knockdown could recover the effects of SLC16A1-AS1 overexpression on HCC cellular processes. In brief, our study clarified that SLC16A1-AS1 acted as a tumor suppressor in HCC by targeting the miR-301b-3p/CHD5 axis, which may be a promising diagnostic biomarker and provide promising treatment for HCC patients.
Collapse
Affiliation(s)
- Shenglin Pei
- Department of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zuyi Chen
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Huajun Tan
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Liwei Fan
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Baina Zhang
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Chang Zhao
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China.
| |
Collapse
|
25
|
Li L, Shen L, Ma J, Zhou Q, Li M, Wu H, Wei M, Zhang D, Wang T, Qin S, Xing T. Evaluating Distribution and Prognostic Value of New Tumor-Infiltrating Lymphocytes in HCC Based on a scRNA-Seq Study With CIBERSORTx. Front Med (Lausanne) 2020; 7:451. [PMID: 33043022 PMCID: PMC7527443 DOI: 10.3389/fmed.2020.00451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a commonly diagnosed cancer with high mortality rates. The immune response plays an important role in the progression of HCC. Immunotherapies are becoming an increasingly promising tool for treating cancers. Advancements in scRNA-seq (single-cell RNA sequencing) have allowed us to identify new subsets in the immune microenvironment of HCC. Yet, distribution of these new cell types and their potential prognostic value in bulk samples from large cohorts remained unclear. This study aimed to investigate the tumor-infiltration and prognostic value of new cell subsets identified by a previous scRNA-seq study in a TCGA HCC cohort using CIBERSORTx, a machine learning method to estimate cell proportion and infer cell-type-specific gene expression profiles. We observed different distributions of tumor-infiltrating lymphocytes between tumor and normal cells. Among these, the CD4-GZMA cell subset showed association with prognosis (log-rank test, p < 0.05). We further analyzed CD4-GZMA cell specific gene expression with CIBERSORTx, and found 19 prognostic genes (univariable cox regression, p < 0.05). Finally, we applied Least absolute shrinkage and selection operator (LASSO) Cox regression to construct an immune risk score model and performed a prognostic assessment of our model in TCGA and ICGC cohorts. Taken together, the immune landscape in HCC bulk samples may be more complex than assumed, with heterogeneity and different tumor-infiltration relative to scRNA-seq results. Additionally, CD4-GZMA cells and their characteristics may yield therapeutic benefits in the immune treatment of HCC.
Collapse
Affiliation(s)
- Lixing Li
- Department of General Surgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingsong Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Mo Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Muyun Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Di Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Tonghai Xing
- Department of General Surgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
He H, Wang Y, Ye P, Yi D, Cheng Y, Tang H, Zhu Z, Wang X, Jin S. Long noncoding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:159. [PMID: 32795316 PMCID: PMC7427719 DOI: 10.1186/s13046-020-01664-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Background Emerging evidence has shown that dysregulated expression of long noncoding RNAs (lncRNAs) is implicated in liver hepatocellular carcinoma (HCC). However, the role and molecular mechanism of differentially expressed lncRNAs in HCC has not been fully explained. Methods The expression profiles of lncRNAs in HCC samples were derived from microarrays analysis or downloaded from The Cancer Genome Atlas (TCGA), and their correlation with prognosis and clinical characteristics were further analyzed. Silencing of lncRNA ZFPM2-AS1 was conducted to assess the effect of ZFPM2-AS1 in vitro. The miRcode and Target Scan databases were used to determine the lncRNA-miRNA-mRNA interactions. The biological functions were demonstrated by luciferase reporter assay, western blotting, PCR and rescue experiments. Results The expression level of lncRNA ZFPM2-AS1 was significantly higher in HCC tissues than in adjacent normal tissues, and higher ZFPM2-AS1 was remarkably related to poor survival. Functionally, silencing of lncRNA ZFPM2-AS1 inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro. Bioinformatics analysis based on the miRcode and TargetScan databases showed that lncRNA ZFPM2-AS1 regulated GDF10 expression by competitively binding to miR-139. miR-139 and downregulated GDF10 reversed cell phenotypes caused by lncRNA ZFPM2-AS1 by rescue analysis. Conclusions ZFPM2-AS1, an upregulated lncRNA in HCC, was associated with malignant tumor phenotypes and worse patient survival. ZFPM2-AS1 regulated the progression of HCC by acting as a competing endogenous RNA (ceRNA) to competitively bind to miR-139 and regulate GDF10 expression. Our study provides new insight into the posttranscriptional regulation mechanism of lncRNA ZFPM2-AS1 and suggests that ZFPM2-AS1/miR-139/GDF10 may act as a potential therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Hui He
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Yawei Wang
- Department of thoracic surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital& Institute, Shenyang, 110042, Liaoning Province, China
| | - Peng Ye
- Department of Urological Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Dehui Yi
- Department of organ transplantation& hepatobiliary surgery, the First Affiliated Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Ying Cheng
- Department of organ transplantation& hepatobiliary surgery, the First Affiliated Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Haibo Tang
- Department of Gastrointestinal & Hernia & Bariatric Surgery, the Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
| | - Zhi Zhu
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Xun Wang
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Shi Jin
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
27
|
Feng H, Zhang X, Lai W, Wang J. Long non-coding RNA SLC16A1-AS1: its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle 2020; 19:1641-1653. [PMID: 32450050 DOI: 10.1080/15384101.2020.1762048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Altered expressions of long non-coding RNAs (lncRNAs) are potential cancer prognostic biomarkers that play a critical role in the development of tumorigenesis and metastasis of cancer. However, the relationship between the expression of lncRNAs in oral squamous cell carcinoma (OSCC) and the diagnosis, progression, and prognosis of OSCC has not been thoroughly elucidated. To identify the differentially expressed lncRNAs between OSCC tissue and normal tissue, RNA-Seq data were used. lncRNA SLC16A1-AS1 was significantly highly expressed in OSCC samples than that in normal samples. Systematic bioinformatics analysis revealed that SLC16A1-AS1 was associated with histological tumor grades and overall survival status, as well as copy number variation, somatic mutation, tumor mutation burden, tumor stemness, tumor microenvironment and infiltrating immune cells. According to three advanced bioinformatic algorithms prediction (WGCNA, GSEA and GSVA), SLC16A1-AS1 played an essential role in OSCC proliferation and its biological function was related to cell-cycle regulation. Loss-of-function experiments were performed to determine the biological functions of SLC16A1-AS in OSCC cells. Silencing SLC16A1-AS1 significantly reduced the cell proliferation rate and colony-forming ability in both CAL27 and SCC25 cell lines. Flow cytometry and western blot analysis revealed that SLC16A1-AS1 silencing induced G0/G1 cell cycle arrest and inhibited the expression of cyclin D1 in both CAL27 and SCC25 cells. In conclusion, our study comprehensively investigated the role of the lncRNA SLC16A1-AS1 in OSCC growth and proved that it may serve as a new diagnostic indicator and a new target for the treatment of OSCC.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|