1
|
Verma A, Khan MA, Satrusal SR, Datta D. Emerging role of EZH2 in solid tumor metastasis. Biochim Biophys Acta Rev Cancer 2024; 1880:189253. [PMID: 39722418 DOI: 10.1016/j.bbcan.2024.189253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Cancer cells experience multiple reversible changes during their metastatic spread. Epigenetic reprogramming, being reversible, has emerged as a critical driver of cancer metastasis. Epigenetic modulator Enhancer of Zeste homolog 2 (EZH2) is an important candidate for such reprogramming events. Both EZH2 protein and its catalytic function (H3K27me3) have been shown to promote solid tumor metastasis, although EZH2 functional inhibition has limited impact on primary tumor growth in some cancers. The dichotomous gene regulatory roles of EZH2 and H3K27me3 are currently being investigated to understand how they collectively contribute to promote metastasis. Here, we examine the multifaceted role of EZH2 in modulating solid tumor metastasis and its therapeutic potential.
Collapse
Affiliation(s)
- Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Muqtada Ali Khan
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Saumya Ranjan Satrusal
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
2
|
Ryu HJ, Lee C, Yoon SO. Epigenetic and Immune Profile Characteristics in Sinonasal Undifferentiated Carcinoma. Cancer Med 2024; 13:e70413. [PMID: 39565059 PMCID: PMC11577451 DOI: 10.1002/cam4.70413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Sinonasal undifferentiated carcinoma (SNUC) is a rare and highly aggressive malignancy originating in the nasal cavity and paranasal sinuses. Its pathogenesis and immune characteristics remain poorly understood. OBJECTIVES This study investigates the molecular aspects of SNUC, focusing on tumorigenesis and immunity. METHODS For this purpose, spatial transcriptome analysis was employed to compare the gene expression profiles of SNUC tumor cells with those of normal epithelial cells, as well as to compare tumor-infiltrating immune cells with immune cells from normal, tumor-free tissue areas. For validation, next-generation sequencing tests and clinical sample studies were conducted. RESULTS Spatial transcriptome analysis revealed notable upregulation of EZH2 and the histone family gene such as H3C2 (H3-clustered histone 2) in SNUC tumor cells. Additionally, gene set enrichment analysis identified significant activations in the histone deacetylase (HDAC) signaling pathway, histone acetyltransferase (HAT) pathway, polycomb repressive complex 2 (PRC2), and DNA methylation pathways. A notable decrease was observed in downregulated genes and pathways, including the mucin family of protein genes, the keratin protein gene, and the mucin glycosylation pathway. Next-generation sequencing did not reveal specific genetic mutations within these pathways, although mutations such as IDH2 R172S were noted. Clinical SNUC tissues confirmed increased immunoexpression of EZH2 and PRC2 markers. Analysis of tumor immunity revealed a characteristic immune cell signature, with a notable predominance of naïve B cells, macrophages, CD8 memory T cells, and Tregs in the SNUC microenvironment, alongside the increased expression of LAG3 in tumor-infiltrating immune cells. CONCLUSION Our study suggests epigenetic mechanisms, particularly via EZH2, play a crucial role in SNUC carcinogenesis. Furthermore, distinctive immune cell profiles in SNUC point to potential immune-related characteristics of this malignancy.
Collapse
Affiliation(s)
- Hyang Joo Ryu
- Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulKorea
| | - Chung Lee
- Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulKorea
| | - Sun Och Yoon
- Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulKorea
| |
Collapse
|
3
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
4
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Chen J, Tang S, Zheng Q, Li J, Jiang H, Lu H, Liao G, Li K, Liang Y. The competitive mechanism of EZH1 and EZH2 in promoting oral squamous cell carcinoma. Exp Cell Res 2024; 436:113957. [PMID: 38309675 DOI: 10.1016/j.yexcr.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Enhancer of Zeste Homolog 1 (EZH1) and Enhancer of Zeste Homolog 2 (EZH2) are the key components of polycomb repressive complex 2 (PRC2); however, the roles of these proteins in oral squamous cell carcinoma (OSCC) have yet to be elucidated. In this study, we aimed to determine the respective roles of these proteins in OSCC by investigating the expression levels of EZH1 and EZH2 in OSCC tissues (N = 63) by immunohistochemistry. In addition, we used lentiviruses to construct stable OSCC cell lines that overexpressed EZH1 and EZH2. Then, we investigated these cell lines for cell viability, colony formation capacity, stemness, and epithelial-mesenchymal transition (EMT). Binding competition between EZH1 and EZH2 with PRC2 was further evaluated using Co-immunoprecipitation (Co-IP). Compared with normal tissues, the expression levels of EZH2 in OSCC tissues was up-regulated, while the expression of EZH1 was down-regulated. EZH2 enhanced cell viability, colony formation capacity, stemness, and EMT, while EZH1 did not. Furthermore, analysis indicated that EZH1 and EZH2 bound competitively to PRC2 and influenced the methylation status of H3K27. In conclusion, our findings verified that EZH1 and EZH2 play opposing roles in OSCC and that EZH1 and EZH2 compete as the key component of PRC2, thus affecting the characteristics of OSCC via the methylation of H3K27.
Collapse
Affiliation(s)
- Jianghai Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Shanshan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Qiuhan Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Hong Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Syllaios A, Gazouli M, Vailas M, Mylonas KS, Sakellariou S, Sougioultzis S, Karavokyros I, Liakakos T, Schizas D. The Expression Patterns and Implications of MALAT1, MANCR, PSMA3-AS1 and miR-101 in Esophageal Adenocarcinoma. Int J Mol Sci 2023; 25:98. [PMID: 38203269 PMCID: PMC10778904 DOI: 10.3390/ijms25010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a malignant tumor with poorly understood molecular mechanisms. This study endeavors to elucidate how the long non-coding RNAs (lncRNAs) MALAT1, MANCR and PSMA3-AS1, as well as the microRNA miR-101, exhibit specific expression patterns in the pathogenesis and prognosis of EAC. A total of 50 EAC tissue samples (tumors and lymph nodes) and a control group comprising 26 healthy individuals were recruited. The samples underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The relative expression levels of MALAT1, MANCR, PSMA3-AS1, and miR-101 were ascertained and correlated with various clinicopathological parameters including TNM staging, tumor characteristics (size and grade of the tumor) lymphatic invasion, disease-free (DFS) and overall survival (OS) of EAC patients. Quantitative analyses revealed that MALAT1 and MANCR were significantly upregulated in EAC tumors and positive lymph nodes when compared to control tissues (p < 0.05). Such dysregulations correlated positively with advanced lymphatic metastases and a higher N stage. DFS in the subgroup of patients with negative lymph nodes was higher in the setting of low-MANCR-expression patients compared to patients with high MANCR expression (p = 0.02). Conversely, miR-101 displayed a significant downregulation in EAC tumors and positive lymph nodes (p < 0.05), and correlated negatively with advanced tumor stage, lymphatic invasion and the grade of the tumor (p = 0.006). Also, patients with low miR-101 expression showed a tendency towards inferior overall survival. PSMA3-AS1 did not demonstrate statistically significant alterations (p > 0.05). This study reveals MALAT1, MANCR, and miR-101 as putative molecular markers for prognostic evaluation in EAC and suggests their involvement in EAC progression.
Collapse
Affiliation(s)
- Athanasios Syllaios
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Michail Vailas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | | | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Stavros Sougioultzis
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, 115 27 Athens, Greece;
| | - Ioannis Karavokyros
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Theodoros Liakakos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| |
Collapse
|
7
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
8
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
10
|
Zhao H, Liu H, Kang W, Zhan C, Man Y, Qu T. Analysis on EZH2: mechanism identification of related CeRNA and its immunoassay in hepatocellular carcinoma. BMC Med Genomics 2023; 16:201. [PMID: 37626362 PMCID: PMC10463302 DOI: 10.1186/s12920-023-01594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/28/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To screen the possible potential signaling pathways related to enhancer of zeste homolog 2 (EZH2) based on ceRNA mechanism, and to analyze the correlation between E2H2 and depths of various immune cell infiltration depths. The relationship between different immune checkpoints were also analyzed. METHODS First, the expression of EZH2 in pan-cancer (18 malignancies) was analyzed with the TCGA database. Hepatocellular carcinoma (HCC) tissues of 374 cases and normal tissues of 50 cases were analyzed in terms of the differential expression, overall survival (OS) and progression-free-survival (PFS). Then, we conducted GO and KEGG enrichment analysis on target gene. We also analyzed mRNA-miRNA and MicroRNA (miRNA)- long non-coding RNA (lncRNA) correlation with starbase databse, so as to determine the potential ceRNA mechanism associated with EZH2. Finally, immunoassay and drug-sensitivity analysis of EZH2 was performed. RESULTS Seven potential EZH2-related ceRNA pathways were screened out, namely lncRNA: Small Nucleolar RNA Host Gene 1 (SNHG1), SNHG 3, and SNHG 6-miR-101-3p-EZH2; and lncRNA: Long Intergenic Non-Protein Coding RNA 1978 (LINC01978), SNHG12, Ring Finger Protein 216 Pseudogene 1 (RNF216P1), and Coiled-coil Domain Containing 18 Antisense RNA 1 (CCDC18-AS1)-let-7c-5p-EZH2. Finally, 4 potential EZH2-related ceRNA pathways were identified through qPCR.According to immune correlation analysis, EZH2 may be positively correlated with T cells follicular helper, T cells Cluster of differentiation (CD)4 memory activated, Macrophages M0, and B cells memory (P < 0.05, cof > 0.2); while be negatively correlated with T cells CD4 + memory resting (P < 0.05, cof < -0.2). And EZH2 is positively correlated with Programmed Cell Death 1 (PDCD1) (R = 0.22), CD274 (R = 0.3) and Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4) (R = 0.23). According to drug sensitivity analysis, patients in the high expression group were more susceptible to the effects of various drugs including Sorafenib, 5-Fluorouracil, Doxorubicin, Etoposide, Paclitaxel, and Vinorelbine than those with low expression. CONCLUSION This study revealed seven potential pathways of Enhancer of Zeste Homolog 2 (EZH2)-related ceRNA mechanisms: lncRNA (SNHG3, 6) -Mir-101-3P-ezh2; lncRNA (SNHG12, RNF216P1)-let-7c-5p-EZH2. We also analyzed the immunity and drug sensitivity of EZH2. Our study proves that EZH2 still has great research prospects in HCC.
Collapse
Affiliation(s)
- Haoran Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150040, China
| | - Haishi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150040, China
| | - Wenli Kang
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235 Hashuang Road, Harbin, Heilongjiang Province, 150088, China
| | - Chao Zhan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150040, China
| | - Yingchun Man
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235 Hashuang Road, Harbin, Heilongjiang Province, 150088, China.
| | - Tong Qu
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235 Hashuang Road, Harbin, Heilongjiang Province, 150088, China.
| |
Collapse
|
11
|
Kan L, Yang M, Zhang H. Long noncoding RNA PSMA3-AS1 functions as a competing endogenous RNA to promote gastric cancer progression by regulating the miR-329-3p/ALDOA axis. Biol Direct 2023; 18:36. [PMID: 37403106 PMCID: PMC10318671 DOI: 10.1186/s13062-023-00392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
LncRNA PSMA3-AS1 functions as an oncogene in several cancers, including ovarian cancer, lung cancer, and colorectal cancer. However, its role in gastric cancer (GC) progression remains unclear. In this study, the levels of PSMA3-AS1, miR-329-3p, and aldolase A (ALDOA) in 20 paired human GC tissues and adjacent nontumorous tissues were measured by real-time PCR. GC cells were transfected with recombinant plasmid carrying full-length PSMA3-AS1 or shRNA targeting PSMA3-AS1. The stable transfectants were selected by G418. Then, the effects of PSMA3-AS1 knockdown or overexpression on GC progression in vitro and in vivo were evaluated. The results showed that PSMA3-AS1 was highly expressed in human GC tissues. Stable knockdown of PSMA3-AS1 significantly restrained proliferation/migration/invasion, enhanced cell apoptosis, and induced oxidative stress in vitro. Tumor growth and matrix metalloproteinase expression in tumor tissues were markedly inhibited, while oxidative stress was enhanced in nude mice after stable PSMA3-AS1 knockdown. Additionally, PSMA3-AS1 negatively regulated miR-329-3p while positively regulated ALDOA expression. MiR-329-3p directly targeted ALDOA-3'UTR. Interestingly, miR-329-3p knockdown or ALDOA overexpression partially attenuated the tumor-suppressive effects of PSMA3-AS1 knockdown. Conversely, PSMA3-AS1 overexpression exhibited the opposite effects. PSMA3-AS1 promoted GC progression by regulating the miR-329-3p/ALDOA axis. PSMA3-AS1 might serve as a promising and effective target for GC treatment.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Meiqi Yang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
12
|
Zhang W, Nie Q, Zhang X, Huang L, Pang G, Chu J, Yuan X. miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer. Expert Opin Ther Targets 2023; 27:1285-1297. [PMID: 38155599 DOI: 10.1080/14728222.2023.2293750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis. RESEARCH DESIGN & METHODS Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships. RESULTS Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis. CONCLUSION EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Qiwei Nie
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Xuling Zhang
- Department of Nursing, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Xiaoxu Yuan
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
13
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
14
|
Multiomics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Biosci Rep 2023; 43:232355. [PMID: 36545914 PMCID: PMC9842950 DOI: 10.1042/bsr20222230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a significant epigenetic regulator that plays a critical role in the development and progression of cancer. However, the multiomics features and immunological effects of EZH2 in pan-cancer remain unclear. Transcriptome and clinical raw data of pan-cancer samples were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and subsequent data analyses were conducted by using R software (version 4.1.0). Furthermore, numerous bioinformatics analysis databases also reapplied to comprehensively explore and elucidate the oncogenic mechanism and therapeutic potential of EZH2 from pan-cancer insight. Finally, quantitative reverse transcription polymerase chain reaction and immunohistochemical assays were performed to verify the differential expression of EZH2 gene in various cancers at the mRNA and protein levels. EZH2 was widely expressed in multiple normal and tumor tissues, predominantly located in the nucleoplasm. Compared with matched normal tissues, EZH2 was aberrantly expressed in most cancers either at the mRNA or protein level, which might be caused by genetic mutations, DNA methylation, and protein phosphorylation. Additionally, EZH2 expression was correlated with clinical prognosis, and its up-regulation usually indicated poor survival outcomes in cancer patients. Subsequent analysis revealed that EZH2 could promote tumor immune evasion through T-cell dysfunction and T-cell exclusion. Furthermore, expression of EZH2 exhibited a strong correlation with several immunotherapy-associated responses (i.e., immune checkpoint molecules, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) status, and neoantigens), suggesting that EZH2 appeared to be a novel target for evaluating the therapeutic efficacy of immunotherapy.
Collapse
|
15
|
Li Y, Chen G, Zhang K, Cao J, Zhao H, Cong Y, Qiao G. Integrated transcriptome and network analysis identifies EZH2/CCNB1/PPARG as prognostic factors in breast cancer. Front Genet 2023; 13:1117081. [PMID: 36712863 PMCID: PMC9873965 DOI: 10.3389/fgene.2022.1117081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) has high morbidity, with significant relapse and mortality rates in women worldwide. Therefore, further exploration of its pathogenesis is of great significance. This study selected therapy genes and possible biomarkers to predict BC using bioinformatic methods. To this end, the study examined 21 healthy breasts along with 457 BC tissues in two Gene Expression Omnibus (GEO) datasets and then identified differentially expressed genes (DEGs). Survival-associated DEGs were screened using the Kaplan-Meier curve. Based on Gene Ontology (GO) annotation, survival-associated DEGs were mostly associated with cell division and cellular response to hormone stimulus. The enriched Kyoto Encyclopedia of Gene and Genome (KEGG) pathway was mostly correlated with cell cycle and tyrosine metabolism. Using overlapped survival-associated DEGs, a survival-associated PPI network was constructed. PPI analysis revealed three hub genes (EZH2, CCNB1, and PPARG) by their degree of connection. These hub genes were confirmed using The Cancer Genome Atlas (TCGA)-BRCA dataset and BC tissue samples. Through Gene Set Enrichment Analysis (GSEA), the molecular mechanism of the potential therapy and prognostic genes were evaluated. Thus, hub genes were shown to be associated with KEGG_CELL_CYCLE and VANTVEER_BREAST_CANCER_POOR_PROGNOSIS gene sets. Finally, based on integrated bioinformatics analysis, this study identified three hub genes as possible prognostic biomarkers and therapeutic targets for BC. The results obtained further understanding of the underground molecular mechanisms related to BC occurrence and prognostic outcomes.
Collapse
Affiliation(s)
- Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Kun Zhang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
16
|
Cristóbal I, Santos A, Rojo F, García-Foncillas J. The SMAD3-induced effects in colorectal cancer are orchestrated by a complex network of long noncoding RNAs. J Cell Physiol 2023; 238:3-4. [PMID: 35023150 DOI: 10.1002/jcp.30681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Medical Oncology Department, University Hospital "Fundacion Jimenez Diaz", Madrid, Spain
| |
Collapse
|
17
|
Liu N, Yang C, Gao A, Sun M, Lv D. MiR-101: An Important Regulator of Gene Expression and Tumor Ecosystem. Cancers (Basel) 2022; 14:cancers14235861. [PMID: 36497343 PMCID: PMC9739992 DOI: 10.3390/cancers14235861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
MiRNAs are small single-stranded non-coding RNAs. MiRNA contributes to the transcriptional and post-transcriptional regulation of mRNA in different cell types, including mRNA transcription inhibition and mRNA decay and phenotypes via the effect of several essential oncogenic processes and tumor microenvironment. MiR-101 is a highly conserved miRNA that was found to alter the expression in various human cancers. MiR-101 has been reported to have tumor oncogenic and suppressive effects to regulate tumorigenesis and tumor progression. In this review, we summarize the new findings about the roles of miR-101 in cancers and the underlying mechanisms of targeting genes degradation and microenvironment regulation, which will improve biological understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Ang Gao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
- Correspondence: (M.S.); (D.L.)
| | - Deguan Lv
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Correspondence: (M.S.); (D.L.)
| |
Collapse
|
18
|
Sun H, Wang X, Zhang X, Wang X, Tan C, Weng W, Zhang M, Ni S, Wang L, Huang D, Xu M, Sheng W. Multiplexed immunofluorescence analysis of CAF-markers, EZH2 and FOXM1 in gastric tissue: associations with clinicopathological parameters and clinical outcomes. BMC Cancer 2022; 22:1188. [DOI: 10.1186/s12885-022-10312-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
The aim of this study is to explore the expression and clinical relevance of CAF-associated markers, EZH2 and FOXM1 in gastric samples.
Methods
Protein expression were detected and evaluated by multi-plex immunofluorescence (mIF) in 93 cases of gastric cancer (GC) and 31 cases of gastric intraepithelial neoplasia (GIN). The correlation among their expression, and the relationship of them with clinicopathological parameters and prognosis in GC were then analyzed.
Results
FAP was specific expressed in the CAFs of GC samples, and thus be utilized as a CAF-associated marker in our subsequently analysis. The immunostaining of EZH2, FOXM1 and FAP were significantly upregulated in patients with GC tissues than in those normal gastric mucosa or GIN tissues. The average fluorescence intensity of FAP was slightly positively correlated with EZH2 in GC, GIN and normal samples, whereas the percentage of FAP positive cells has no correlation with that of EZH2. Both the percentage of positive cells and the average fluorescence intensity of FOXM1 were positively correlated with that of FAP and EZH2 in GC, GIN and normal samples, except for FOXM1 and EZH2 expression in normal tissue samples. No significant association was observed between FAP expression and any clinicopathological parameters, whereas the positive frequency of EZH2 and FOXM1 were correlated with tumor location significantly and tumor invasion depth, respectively. In addition, there was strong positive correlations between FAP protein expression and overall survival (OS) and disease-free survival (DFS), and EZH2 expression was positively associated with OS in patients with GC. Furthermore, EZH2 and FAP protein expression was an independent prognostic factor for OS and DFS, respectively.
Conclusions
These results suggest that both EZH2 and FOXM1 expression was positively associated with CAFs abundance in GC. They may be potential cellular target for therapeutic intervention, especially in patients with a large number of CAFs.
Collapse
|
19
|
Zhao L, Liu X, Ren C, Zhang H, Gao L. Silencing of LncRNA SNHG6 protects trophoblast cells through regulating miR-101-3p/OTUD3 axis in unexplained recurrent spontaneous abortion. J Mol Histol 2022; 53:871-882. [PMID: 36173586 DOI: 10.1007/s10735-022-10102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Recurrent spontaneous abortion (RSA) is a gestational disease with complex pathogenesis, and trophoblast cells are closely involved in the pathogenesis of RSA. This study aimed to explore the regulatory effects and mechanisms of SNHG6 on trophoblast cells. The expression of SNHG6, miR-101-3p, and OTUD3 were detected in villous tissues from patients with unexplained RSA and normal pregnant women with induced abortion by qRT-PCR. The target relationships between miR-101-3p and SNHG6/OTUD3 were confirmed by dual-luciferase reporter assay. The viability, migration, and apoptosis of trophoblast cells were measured by MTT, wound healing, and flow cytometry assays, respectively. Western blot was performed to detect the protein expression of OTUD3, Ki-67, Bax, and Bcl-2. The results showed that SNHG6 and OTUD3 were up-regulated, and miR-101-3p was down-regulated in RSA patients. MiR-101-3p was a target of SNHG6, and OTUD3 was a target of miR-101-3p. There were negative correlations between the expression of miR-101-3p and OTUD3/SNHG6 in RSA patients. In addition, both SNHG6 silencing and miR-101-3p overexpression could increase cell viability and migration, decrease cell apoptosis, up-regulate Ki-67 and Bcl-2, and down-regulate Bax in HTR-8/SVneo cells. The effects of SNHG6 silencing on HTR-8/SVneo cells were reversed by miR-101-3p silencing or OTUD3 overexpression. To sum up, silencing of SNHG6 enhanced the viability and migration, and inhibited the apoptosis of trophoblast cells through regulating miR-101-3p/OTUD3. SNHG6/miR-101-3p/OTUD3 may be potential targets for the prevention of unexplained RSA.
Collapse
Affiliation(s)
- Lijuan Zhao
- Jahwa ward, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng City, 252000, Shandong Province, China
| | - Xiuhua Liu
- Obstetrics Seventh Area, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng City, 252000, Shandong Province, China
| | - Chunyan Ren
- Jahwa ward, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng City, 252000, Shandong Province, China
| | - Hua Zhang
- Wards of Department of Gynaecology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng City, 252000, Shandong Province, China
| | - Li Gao
- Obstetrics First Area, Liaocheng Dongchangfu District Maternal and Child Health Hospital, No. 129, Zhenxing West Road, Dongchangfu District, Liaocheng City, 252000, Shandong Province, China.
| |
Collapse
|
20
|
Liu L, Zhang Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Yao L, Zhang Z, Xiao Z, Du F. Therapeutic prospects of ceRNAs in COVID-19. Front Cell Infect Microbiol 2022; 12:998748. [PMID: 36204652 PMCID: PMC9530275 DOI: 10.3389/fcimb.2022.998748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
Since the end of 2019, COVID-19 caused by SARS-CoV-2 has spread worldwide, and the understanding of the new coronavirus is in a preliminary stage. Currently, immunotherapy, cell therapy, antiviral therapy, and Chinese herbal medicine have been applied in the clinical treatment of the new coronavirus; however, more efficient and safe drugs to control the progress of the new coronavirus are needed. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) may provide new therapeutic targets for novel coronavirus treatments. The first aim of this paper is to review research progress on COVID-19 in the respiratory, immune, digestive, circulatory, urinary, reproductive, and nervous systems. The second aim is to review the body systems and potential therapeutic targets of lncRNAs, miRNAs, and circRNAs in patients with COVID-19. The current research on competing endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA) in SARS-CoV-2 is summarized. Finally, we predict the possible therapeutic targets of four lncRNAs, MALAT1, NEAT1, TUG1, and GAS5, in COVID-19. Importantly, the role of PTEN gene in the ceRNA network predicted by lncRNA MALAT1 and lncRNA TUG1 may help in the discovery and clinical treatment of effective drugs for COVID-19.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| |
Collapse
|
21
|
Wang H. Role of EZH2 in adipogenesis and obesity: Current state of the art and implications - A review. Medicine (Baltimore) 2022; 101:e30344. [PMID: 36086687 PMCID: PMC10980444 DOI: 10.1097/md.0000000000030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is characterized by excessive accumulation of adiposity and has been implicated in a strong predisposition to metabolic disorders and cancer, constituting one of the major public health issues worldwide. The formation of new mature adipocytes through differentiation of progenitor or precursor cells during adipogenesis can lead to the expansion of adipose tissue. Recent studies have revealed that the intrinsic risk of obesity arises not only through genetic variants but also through epigenetic predisposition. Enhancer of zeste homolog 2 (EZH2) is an enzymatic catalytic component of polycomb repressive complex 2 that acts as an epigenetic modulator in the regulation of gene expression. EZH2 can modulate the expression of its target genes by the trimethylation of Lys-27 in histone 3 or methylation of non-histone proteins. Emerging evidence has shown the important role played by EZH2 in adipogenesis and obesity. This review provides the latest knowledge about the involvement of EZH2 in the process of adipogenesis and obesity involving adipocyte differentiation, extract key concepts, and highlight open questions toward a better understanding of EZH2 function and the molecular mechanisms underlying obesity.
Collapse
Affiliation(s)
- Haixia Wang
- Zhejiang Changzheng Vocational and Technical College, Hangzhou, P. R. China
| |
Collapse
|
22
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Ortiz-Ortiz J, Torres-Rojas FI, Ávila-López PA. Integrated bioinformatics analysis reveals that EZH2-rich domains promote transcriptional repression in cervical cancer. EXCLI JOURNAL 2022; 21:852-868. [PMID: 36172073 PMCID: PMC9489889 DOI: 10.17179/excli2022-5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Cervical cancer is the third female cancer most common worldwide. The carcinogenic process involves an alteration of the mechanisms associated with transcription. Several studies have reported an oncogenic role of the polycomb complex subunit, EZH2. However, the role of EZH2 in cervical cancer is unknown. Hence, the objective of this study was to determine the role of EZH2 in transcriptional regulation in cervical cancer. The EZH2 expression and the methylation status of its promoter were analyzed in The Cancer Genome Atlas. The EZH2 enrichment profile was analyzed using chromatin immunoprecipitation with massively parallel DNA sequencing data provided by ENCODE project. The chromatin compartments were identified in the 4D Nucleome Data Portal. The functional annotation was examined in Enrichr. We report that EZH2 expression is increased in cervical cancer which is associated with hypomethylation of its promoter. EZH2 is enriched at promoter and distal intergenic regions. We identified that EZH2 defines chromatin domains enriched with H3K27me3 within repressive compartments in the HeLa-S3 cell line. Additionally, high EZH2 expression is associated with the repression of the senescent phenotype in cervical cancer patients. Our results suggest the participation of EZH2 in the generation of domains with a silencer function in cervical cancer, which regulate the expression of genes associated with cellular senescence.
Collapse
Affiliation(s)
- Eric G. Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, México
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, México
| | - Francisco I. Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, México
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA,*To whom correspondence should be addressed: Pedro A. Ávila-López, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Telephone number: +52 55 6098 2694, E-mail:
| |
Collapse
|
23
|
LINC00114 stimulates growth and glycolysis of esophageal cancer cells by recruiting EZH2 to enhance H3K27me3 of DLC1. Clin Epigenetics 2022; 14:51. [PMID: 35414117 PMCID: PMC9006613 DOI: 10.1186/s13148-022-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/27/2022] [Indexed: 11/15/2022] Open
Abstract
Objective LINC00114 could promote the development of colorectal cancer, but its mechanism has been rarely discussed in esophageal cancer (EC). Herein, we explored the molecular mechanism of LINC00114 via mediating enhancer of zeste homolog 2/deleted in liver cancer 1 (EZH2/DLC1) axis in EC.
Methods LINC00114, EZH2 and DLC1 expression in EC tissues and cells were tested. LINC00114, EZH2 and DLC1 expression were altered in EC cells through transfection with different constructs, and cell proliferation, migration, invasion, apoptosis and glycolysis were subsequently observed. The interaction between LINC00114 and EZH2 and that between EZH2 and DLC1 were explored. Tumor formation was also conducted to confirm the in vitro results. Results The expression levels of LINC00114 and EZH2 were elevated while those of DLC1 were reduced in EC. Inhibiting LINC00114 or reducing EZH2 blocked cell proliferation, migration, invasion and glycolysis and induce cell apoptosis in EC. LINC00114 promoted H3K27 trimethylation of DLC1 by recruiting EZH2. Knockdown of DLC1 stimulated cell growth and glycolysis in EC and even mitigated the role of LINC00114 inhibition in EC. In vivo experiment further confirmed the anti-tumor effect of LINC00114 inhibition in EC. Conclusion The data indicate that LINC00114 promotes the development of EC by recruiting EZH2 to enhance H3K27me3 of DLC1. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01258-y.
Collapse
|
24
|
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, da Silva JS. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection. Front Immunol 2022; 13:784463. [PMID: 35370994 PMCID: PMC8965071 DOI: 10.3389/fimmu.2022.784463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutics Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro Jesus
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
26
|
Feng F, Yang J, Chen A, Cui M, Li L. Long non-coding RNA long intergenic non-protein coding RNA 1232 promotes cell proliferation, migration and invasion in bladder cancer via modulating miR-370-5p/PIM3 axis. J Tissue Eng Regen Med 2022; 16:575-585. [PMID: 35338769 DOI: 10.1002/term.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Increasing evidences have suggested that long non-coding RNAs are critical regulators in the progression of tumor growth. Long intergenic non-protein coding RNA 1232 (LINC01232) was verified as an oncogene in multiple cancers. Nevertheless, its function in bladder cancer (BC) remains to be uncovered. In the current study, we detected LINC01232 expression utilizing quantitative real-time polymerase chain reaction (RT-qPCR) and discovered that LINC01232 was overexpressed in BC cell lines versus normal cell line. Besides, the effect of LINC01232 on BC cell behaviors was measured by colony formation, Cell Counting Kit-8 (CCK-8), transwell, TdT-mediated dUTP Nick-End Labeling and caspase-3/8 activity assays. Functionally, LINC01232 deficiency suppressed cell proliferation, migration and invasion. Next, miR-370-5p was proved to bind with LINC01232 by RNA pull down, RNA-binding protein immunoprecipitation (RIP) and luciferase reporter assays. Furthermore, PIM3 expression was negatively modulated by miR-370-5p and markedly increased in BC cell lines. Moreover, PIM3 silence repressed proliferation, migration and invasion but triggered apoptosis of BC cells. The rescue assays validated that upregulation of PIM3 recovered the effects of LINC01232 silence on the growth of BC cells. To summarize, our study manifested that LINC01232 accelerates BC progression by targeting miR-370-5p/PIM3 axis. Targeting LINC01232 might offer novel insight into BC treatment.
Collapse
Affiliation(s)
- Feng Feng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jing Yang
- Department of Central Sterile Supply, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liao Cheng, Shandong, China
| | - Meng Cui
- Department of Gynecology, Shandong Provincial Maternity and Childcare Hospital, Jinan, Shandong, China
| | - Lianjun Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
27
|
Sun D, Li F, Liu L, Yu S, Wang H, Gao X, Liu G, Zhao Y, Qiu G, Jiang X. PSMA3-AS1 induced by transcription factor PAX5 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-376a-3p to up-regulate LAMC1. Aging (Albany NY) 2022; 14:509-525. [PMID: 35022330 PMCID: PMC8791211 DOI: 10.18632/aging.203828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to exhibit a crucial regulatory role in tumor progression, including cholangiocarcinoma (CCA). As a promising lncRNA, proteasome 20S subunit alpha 3 antisense RNA 1 (PSMA3-AS1) is involved in development of various tumors. However, the role and function of PSMA3-AS1 in CCA remain unclear. The aim of this study is to examine the expression, function, mechanism, and clinical significance of PSMA3-AS1 in CCA development. By TCGA database analysis, we found that PSMA3-AS1 was overexpressed in CCA. Consistent with the TCGA analysis, PSMA3-AS1 was significantly overexpressed in CCA tissues and cells by RT-qPCR. Upregulated PSMA3-AS1 was related to lymph node invasion, advanced TNM stage and poor survival, and was an independent risk factor of prognosis for CCA patients. Functionally, CCK-8, EdU and colony formation assays confirmed that upregulated PSMA3-AS1 promoted CCA cell proliferation, whereas downregulated PSMA3-AS1 inhibited proliferation. This result was further confirmed by subcutaneous tumor formation in nude mice. Wound healing and transwell assays confirmed that increased PSMA3-AS1 promoted CCA cell migration and invasion, whereas decreased PSMA3-AS1 inhibited these biological phenotypes. In addition, PSMA3-AS1 promoted the EMT process of CCA by downregulating E-cadherin and upregulating N-cadherin and vimentin. Mechanistically, transcription factor PAX5 bound to the promoter region of PSMA3-AS1 and promoted its transcription. Simultaneously, PSMA3-AS1 primarily localized in the cytoplasm could competitively bind miR-376a-3p to upregulate LAMC1, thereby accelerating CCA progression. This study uncovers that PSMA3-AS1 functions as a cancer-promoting gene in CCA, and PAX5/PSMA3-AS1/miR-376a-3p/LAMC1 axis plays a vital role in CCA development.
Collapse
Affiliation(s)
- Dongsheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fujun Li
- Department of General Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Lang Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shaobo Yu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Haicun Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xin Gao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Guanglin Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xingming Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
28
|
Qiu BQ, Lin XH, Lai SQ, Lu F, Lin K, Long X, Zhu SQ, Zou HX, Xu JJ, Liu JC, Wu YB. ITGB1-DT/ARNTL2 axis may be a novel biomarker in lung adenocarcinoma: a bioinformatics analysis and experimental validation. Cancer Cell Int 2021; 21:665. [PMID: 34906142 PMCID: PMC8670189 DOI: 10.1186/s12935-021-02380-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most lethal malignant tumors that endangers human health. Lung adenocarcinoma (LUAD) has increased dramatically in recent decades, accounting for nearly 40% of all lung cancer cases. Increasing evidence points to the importance of the competitive endogenous RNA (ceRNA) intrinsic mechanism in various human cancers. However, behavioral characteristics of the ceRNA network in lung adenocarcinoma need further study. METHODS Groups based on SLC2A1 expression were used in this study to identify associated ceRNA networks and potential prognostic markers in lung adenocarcinoma. The Cancer Genome Atlas (TCGA) database was used to obtain the patients' lncRNA, miRNA, and mRNA expression profiles, as well as clinical data. Informatics techniques were used to investigate the effect of hub genes on prognosis. The Cox regression analyses were performed to evaluate the prognostic effect of hub genes. The methylation, GSEA, and immune infiltration analyses were utilized to explore the potential mechanisms of the hub gene. The CCK-8, transwell, and colony formation assays were performed to detect the proliferation and invasion of lung cancer cells. RESULTS We eventually identified the ITGB1-DT/ARNTL2 axis as an independent fact may promote lung adenocarcinoma progression. Furthermore, methylation analysis revealed that hypo-methylation may cause the dysregulated ITGB1-DT/ARNTL2 axis, and immune infiltration analysis revealed that the ITGB1-DT/ARNTL2 axis may affect the immune microenvironment and the progression of lung adenocarcinoma. The CCK-8, transwell, and colonu formation assays suggested that ITGB1-DT/ARNTL2 promotes the progression of lung adenocarcinoma. And hsa-miR-30b-3p reversed the ITGB1/ARNTL2-mediated oncogenic processes. CONCLUSION Our study identified the ITGB1-DT/ARNTL2 axis as a novel prognostic biomarker affects the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia-Hui Lin
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Song-Qing Lai
- Institute of Cardiovascular Disease, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
29
|
Xu Z, Jin H, Duan X, Liu H, Zhao X, Fan S, Wang Y, Yao T. LncRNA PSMA3-AS1 promotes cell proliferation, migration, and invasion in ovarian cancer by activating the PI3K/Akt pathway via the miR-378a-3p/GALNT3 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2562-2577. [PMID: 34520102 DOI: 10.1002/tox.23370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The crucial roles of the long noncoding RNAs (lncRNAs) in the development of ovarian cancer (OC) have been extensively studied. According to the prediction result from the Kaplan-Meier Plotter database, high expression of lncRNA proteasome subunit α type-3 antisense RNA1 (PSMA3-AS1) is associated with the poor prognosis in patients with OC. Thus, the study aimed to investigate the role of lncRNA PSMA3-AS1 in OC. Reverse transcription quantitative polymerase chain reaction analysis revealed that PSMA3-AS1 expression was significantly upregulated in OC cells and tissues. PSMA3-AS1 silencing inhibited OC cell proliferation, migration, and invasion, as shown by results of cell counting kit-8, colony formation, wound healing, and Transwell assays, respectively. Additionally, PSMA3-AS1 deficiency suppressed tumor growth in vivo. Mechanistically, luciferase reporter and RNA pulldown assays implied that PSMA3-AS1 served as a competing endogenous RNA for miR-378a-3p to upregulate the expression of polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). GALNT3 was a target gene of miR-378a-3p in OC. Moreover, PSMA3-AS1 activated the PI3K/Akt pathway by upregulating GALNT3 expression. Overall, PSMA3-AS1 promotes OC cell proliferation, migration, invasion, and xenograft tumor growth by activating the PI3K/Akt pathway via the miR-378a-3p/GALNT3 axis.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Jin
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyang Duan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hong Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiwa Zhao
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaoshuang Fan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tiezhu Yao
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
30
|
Liu J, Shao J, Zhang C, Qin G, Liu J, Li M, Wu P, Zhao X, Zhang Y. Immuno-oncological role of 20S proteasome alpha-subunit 3 in aggravating the progression of esophageal squamous cell carcinoma. Eur J Immunol 2021; 52:338-351. [PMID: 34755333 DOI: 10.1002/eji.202149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/05/2022]
Abstract
PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingwen Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jiayin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Miaomiao Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Wu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, P. R. China
| |
Collapse
|
31
|
Zhang M, Xu Y, Yin S, Qiu F. YY1-induced long non-coding RNA PSMA3 antisense RNA 1 functions as a competing endogenous RNA for microRNA 214-5p to expedite the viability and restrict the apoptosis of bladder cancer cells via regulating programmed cell death-ligand 1. Bioengineered 2021; 12:9150-9161. [PMID: 34720049 PMCID: PMC8809964 DOI: 10.1080/21655979.2021.1994907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. Our research aimed to explore the function and underlying mechanisms of long noncoding RNA (lncRNA) PSMA3-AS1 in BC. RT-qPCR was utilized to detect the levels of PSMA3-AS1, miR-214-5p, and PD-L1. ChIP assay was employed to confirm the transcription factor of PSMA3-AS1. Luciferase reporter assay was carried out to demonstrate the relationships between miR-214-5p and PSMA3-AS1 or PD-L1. The diagnostic value of PSMA3-AS1 was evaluated by the ROC curve. CCK-8, wound healing, transwell, and flow cytometry assays were applied to analyze cell viability, migration, invasion, and apoptosis. Western blotting was used to confirm the expression of cleaved caspase-3. The present study revealed that BC tissues and cells exhibited an increased expression in PSMA3-AS1. High expression of PSMA3-AS1 was related to poor prognosis in BC patients. Then, the area under the ROC curve for PSMA3-AS1 was up to 0.8954. Moreover, ChIP assay elaborated that YY1 could bind to the PSMA3-AS1 promoter region. Furthermore, it was found that that PSMA3-AS1 knockdown repressed BC cell viability and metastasis, and promoted apoptosis. In addition, miR-214-5p was inversely correlated with PSMA3-AS1 or PD-L1 levels. MiR-214-5p deletion reversed the impacts of PSMA3-AS1 deletion on BC progression, and PD-L1 inhibition also abrogated the influence of miR-214-5p deletion in BC development. In conclusion, YY1-induced PSMA3-AS1 exerted an oncogenic function in BC cells via targeting miR-214-5p and enhancing PD-L1, providing potential biomarkers for BC therapy.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Yunfeng Xu
- Department of Urology, KunShan Second People's Hospital, Suzhou, P.R. China
| | - Shuai Yin
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Feng Qiu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
32
|
Wang S, Xie X, Li C, Jia J, Chen C. Integrative network analysis of N 6 methylation-related genes reveal potential therapeutic targets for spinal cord injury. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8174-8187. [PMID: 34814294 DOI: 10.3934/mbe.2021405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The diagnosis of the severity of spinal cord injury (SCI) and the revelation of potential therapeutic targets are crucial for urgent clinical care and improved patient outcomes. Here, we analyzed the overall gene expression data in peripheral blood leukocytes during the acute injury phase collected from Gene Expression Omnibus (GEO) and identified six m6A regulators specifically expressed in SCI compared to normal samples. LncRNA-mRNA network analysis identified AKT2/3 and PIK3R1 related to m6A methylation as potential therapeutic targets for SCI and constructed a classifier to identify patients of SCI to assist clinical diagnosis. Moreover, FTO (eraser) and RBMX (reader) were found to be significantly down-regulated in SCI and the functional gene co-expressed with them was found to be involved in the signal transduction of multiple pathways related to nerve injury. Through the construction of the drug-target gene network, eight key genes were identified as drug targets and it was emphasized that fostamatinib can be used as a potential drug for the treatment of SCI. Taken together, our study characterized the pathogenesis and identified a potential therapeutic target of SCI providing theoretical support for the development of precision medicine.
Collapse
Affiliation(s)
- Shanzheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Xinhui Xie
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Chao Li
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Jun Jia
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force, PLA, 101 Xingyuan North Road, Wuxi 214000, China
| | - Changhong Chen
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Middle Road, Jiangyin 214400, China
| |
Collapse
|
33
|
Li Y, Meng Y, Liu Y, van Wijnen AJ, Eirin A, Lerman LO. Differentially Expressed Functional LncRNAs in Human Subjects With Metabolic Syndrome Reflect a Competing Endogenous RNA Network in Circulating Extracellular Vesicles. Front Mol Biosci 2021; 8:667056. [PMID: 34485379 PMCID: PMC8415968 DOI: 10.3389/fmolb.2021.667056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Metabolic syndrome (MetS), a collective cluster of disease risk factors that include dyslipidemia, obesity, inflammation, hypertension, and insulin resistance, affects numerous people worldwide. Accumulating studies have shown that long non-coding RNAs (lncRNAs) serve as competing endogenous RNAs (ceRNAs) to play essential roles in regulating gene expression in various diseases. To explore the role of lncRNAs as ceRNAs in MetS, we examined a MetS-associated network in circulating extracellular vesicles (EVs) collected from the systemic blood of MetS and control patients (n = 5 each). In total, 191 differentially expressed lncRNAs, 1,389 mRNAs, and 138 miRNAs were selected for further analysis. Biological processes and pathway functional enrichment analysis were performed based on the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The lncRNA/mRNA/miRNA ceRNA network was constructed by Cytoscape v3.8 based on the DE-RNAs and included 13 lncRNAs, 8 miRNAs, and 64 mRNAs. MetS patients showed elevated body weight, glucose, blood pressure, insulin, liver injury, and inflammatory marker levels. We found that lncRNAs reflect a ceRNA network that may regulate central cellular processes and complications of MetS, including cancer. These findings suggest that MetS alters the interactions among the ceRNA network components in circulating EVs and that this cargo of circulating EVs may have potential translational ramifications for MetS.
Collapse
Affiliation(s)
- Yongxin Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Yu Meng
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, China.,Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanhang Liu
- Health Sciences Research and Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
34
|
Targeting lncRNA PSMA3-AS1, a Prognostic Marker, Suppresses Malignant Progression of Oral Squamous Cell Carcinoma. DISEASE MARKERS 2021; 2021:3138046. [PMID: 34457087 PMCID: PMC8397548 DOI: 10.1155/2021/3138046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Objective Oral squamous cell carcinoma (OSCC) represents the most common maxillofacial malignancy. This study elucidated the clinicopathological value and molecular mechanisms of PSMA3 antisense RNA 1 (PSMA3-AS1) in OSCC. Methods Totally, 135 OSCC patients were recruited. PSMA3-AS1 expression and its prognostic value were assessed in this cohort. si-PSMA3-AS1 was transfected into HN4 and CAL-27 OSCC cells. Then, cell proliferation was evaluated by CCK-8, colony formation, and EdU staining. Migration and invasion were investigated through wound healing, transwell, and western blot. The PSMA3-AS1/miR-136-5p and miR-136-5p/FN1 interactions were validated by dual luciferase report, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot. Results PSMA3-AS1 upregulation was determined in OSCC tissues. The upregulation indicated pessimistic patients' outcomes. Multivariate Cox regression analyses confirmed PSMA3-AS1 as an independent prognostic indicator. Its upregulation was also found in OSCC cells. Under transfection with si-PSMA3-AS1, proliferation, migration, and invasion were all restrained in HN4 and CAL-27 OSCC cells. Furthermore, its knockdown induced the increase in E-cadherin expression and the reduction in N-cadherin and Vimentin expression. PSMA3-AS1 was a sponge of miR-136-5p. Mutual inhibition was found between two and the interactions were confirmed by dual luciferase report. It was confirmed that FN1 was a target of miR-136-5p. FN1 expression was increased by miR-136-5p inhibitors, which was lessened by si-PSMA3-AS1 cotransfection. Conclusion Collectively, PSMA3-AS1 as a risk factor facilitated malignant behaviors of OSCC cells, related to the miR-136-5p/FN1 axis. Hence, PSMA3-AS1 as a potential therapeutic target for OSCC deserved further exploration.
Collapse
|
35
|
Syllaios A, Sakellariou S, Garmpis N, Sarlani E, Damaskos C, Apostolou K, Kykalos S, Gazouli M, Karavokyros I, Schizas D. The role of miR-101 in esophageal and gastric cancer. Per Med 2021; 18:491-499. [PMID: 34402321 DOI: 10.2217/pme-2021-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
miR-101 is downregulated in various types of cancer, leading to the notion that miR-101 acts as a suppressor in cancer cell progression. The comprehensive mechanisms underlying the effects of miR-101 and the exact role of miR-101 dysregulations in esophagogastric tumors have not been fully elucidated. This review aims to summarize all current knowledge on the association between miR-101 expression and esophagogastric malignancies and to clarify the pathogenetic pathways and the possible prognostic and therapeutic role of miR-101 in those cancer types. miR-101 seems to play crucial role in esophageal and gastric cancer biology and tumorigenesis. It could also be a promising novel diagnostic and therapeutic target, as well as it may serve as a significant predictive biomarker in esophagogastric cancer.
Collapse
Affiliation(s)
- Athanasios Syllaios
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 11527, Greece
| | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Nikolaos Garmpis
- Second Propedeutic Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 11527, Greece
| | - Eleni Sarlani
- First Department of Pathology, Medical School, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery & Surgical Research, Medical School, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Konstantinos Apostolou
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 11527, Greece
| | - Stylianos Kykalos
- Second Propedeutic Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 11527, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Ioannis Karavokyros
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 11527, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 11527, Greece
| |
Collapse
|
36
|
Huang T, Chen Y, Zeng Y, Xu C, Huang J, Hu W, Chen X, Fu H. Long non-coding RNA PSMA3-AS1 promotes glioma progression through modulating the miR-411-3p/HOXA10 pathway. BMC Cancer 2021; 21:844. [PMID: 34294084 PMCID: PMC8296684 DOI: 10.1186/s12885-021-08465-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioma is a common type of brain tumor and is classified as low and high grades according to morphology and molecules. Growing evidence has proved that long non-coding RNAs (lncRNAs) play pivotal roles in numerous tumors or diseases including glioma. Proteasome 20S subunit alpha 3 antisense RNA 1 (PSMA3-AS1), as a member of lncRNAs, has been disclosed to play a tumor-promoting role in cancer progression. However, the role of PSMA3-AS1 in glioma remains unknown. Therefore, we concentrated on researching the regulatory mechanism of PSMA3-AS1 in glioma. METHODS PSMA3-AS1 expression was detected using RT-qPCR. Functional assays were performed to measure the effects of PSMA3-AS1 on glioma progression. After that, ENCORI ( http://starbase.sysu.edu.cn/ ) database was used to predict potential genes that could bind to PSMA3-AS1, and miR-411-3p was chosen for further studies. The interaction among PSMA3-AS1, miR-411-3p and homeobox A10 (HOXA10) were confirmed through mechanism assays. RESULTS PSMA3-AS1 was verified to be up-regulated in glioma cells and promote glioma progression. Furthermore, PSMA3-AS1 could act as a competitive endogenous RNA (ceRNA) for miR-411-3p to regulate HOXA10 and thus affecting glioma progression. CONCLUSION PSMA3-AS1 stimulated glioma progression via the miR-411-3p/HOXA10 pathway, which might offer a novel insight for the therapy and treatment of glioma.
Collapse
Affiliation(s)
- Tianzao Huang
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yingxian Chen
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Yile Zeng
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Chaoyang Xu
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jinzhong Huang
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Weipeng Hu
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Huangde Fu
- Department of Neurosurgery, The Second Nanning People's Hospital, 13 Dancun Road, Jiangnan District, Nanning, 530031, Guangxi, China.
| |
Collapse
|
37
|
Huang XC, Pang FX, Ou SS, Wei XJ, Xu YJ, Lai YH. Risk Score Based on Two microRNAs as a Prognostic Marker of Hepatocellular Carcinoma and the Corresponding Competitive Endogenous RNA Network. Int J Gen Med 2021; 14:3377-3385. [PMID: 34285562 PMCID: PMC8286150 DOI: 10.2147/ijgm.s318516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Liver transplantation (LT) currently yields the best outcomes for hepatocellular carcinoma (HCC). However, tumor recurrence still occurs in some patients. Identifying markers that predict HCC recurrence after LT is an unmet medical need. Methods In this study, differential expression analysis was used to identify differentially expressed microRNAs (DEmiRs) between HCC and liver tissues in the The Cancer Genome Atlas database and in data from patients with recurrent or non-recurrent HCC in the GSE64989 dataset. The expression profiles of the overlap DEmiRs were used to construct an miRNA-based risk score to predict prognosis using Cox regression analysis. The target genes of the miRNAs of interest were predicted, and they were analyzed for functional enrichment. Furthermore, we used the miRNAs of interest to construct a competitive endogenous RNA (ceRNA) network of long non-coding RNAs (lncRNAs), miRs and mRNAs. Results Four up-regulated and three down-regulated miRNAs in HCC and recurrent HCC after LT were considered as candidate miRs. MiR-3200-3p and miR-3690 were selected to construct the miR-based risk score, which was found to be associated with poor overall survival and progression-free survival. Furthermore, it proved to be an independent prognostic factor after adjusting for other clinicopathological factors. The corresponding ceRNA networks of these two miRs that we constructed may help to understand their regulatory mechanisms in HCC. Conclusion We propose a risk score based on miR-3200-3p and miR-3690 that may be useful as a prognostic marker to predict HCC recurrence after LT. We generated a ceRNA network involving these miRNAs, which may help reveal their regulatory roles in HCC.
Collapse
Affiliation(s)
- Xiao-Chun Huang
- Department of Transplantation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Academy Of Medical Sciences, Nanning, Guangxi, 530021, People's Republic of China
| | - Fei-Xiong Pang
- Department of Transplantation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Academy Of Medical Sciences, Nanning, Guangxi, 530021, People's Republic of China
| | - Sheng-Song Ou
- Department of Transplantation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Academy Of Medical Sciences, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiao-Jiao Wei
- Department of Transplantation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Academy Of Medical Sciences, Nanning, Guangxi, 530021, People's Republic of China
| | - Yu-Ju Xu
- Department of Transplantation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Academy Of Medical Sciences, Nanning, Guangxi, 530021, People's Republic of China
| | - Yan-Hua Lai
- Department of Transplantation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Academy Of Medical Sciences, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
38
|
Bakutenko IY, Hileuskaya ID, Nikitchenko NV, Sechko EV, Tchitchko AM, Batyan GM, Sukalo AV, Ryabokon NI. Polymorphism of Proteasomal Genes Can Be a Risk Factor for Systemic Autoimmune Diseases in Children. J Pediatr Genet 2021; 10:98-104. [PMID: 33996179 PMCID: PMC8110351 DOI: 10.1055/s-0040-1714697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
The study aimed to assess the involvement of three proteasomal genes, PSMA6 , PSMC6 , and PSMA3 , in autoimmune pathogenesis by analyzing associations between single nucleotide polymorphisms and systemic rheumatic diseases with a different autoimmune component: juvenile idiopathic arthritis (JIA), the juvenile form of systemic lupus erythematosus, and Kawasaki's disease (KD). Our results showed that the PSMA6 (rs1048990) polymorphism can be a risk factor for JIA (false discovery rate q ≤ 0.090), while PSMA3 (rs2348071) has a tendency to be nonspecific and is shared with JIA and other autoimmune diseases, including KD, an illness with very low autoimmune activity and high autoinflammation.
Collapse
Affiliation(s)
- Ivan Y. Bakutenko
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Irena D. Hileuskaya
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Natalia V. Nikitchenko
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Elena V. Sechko
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Alexej M. Tchitchko
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Galina M. Batyan
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Alexander V. Sukalo
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Nadezhda I. Ryabokon
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| |
Collapse
|
39
|
Wang L, He Y, Ning W. Role of enhancer of zeste homolog 2 in osteoclast formation and periodontitis development by downregulating microRNA-101-regulated VCAM-1. J Tissue Eng Regen Med 2021; 15:534-545. [PMID: 33686766 DOI: 10.1002/term.3187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) represents a potential target for periodontitis treatment; however, its role in the development of periodontitis remains unclear. The current study aimed to elucidate the role of EZH2 in osteoclasts (OCs) growth as well as the mechanism underpinning the related process. The potential interaction among EZH2, microRNA-101 (miR-101), and vascular cell adhesion molecule 1 (VCAM-1) was evaluated using chromatin immunoprecipitation and dual-luciferase reporter gene assay. The expressions of EZH2 and miR-101 in OCs were examined by Western blot analysis and reverse transcription squantitative polymerase chain reaction. Loss- and gain-function assays were then performed to determine the role of EZH2/miR-101/VCAM-1 in periodontitis and OCs proliferation, followed by OC growth and proliferation detected using tartrate resistant acid phosphatase (TRAP) and 5-ethynyl-2'-deoxyuridine staining. Enzyme-linked immunoassay was conducted to determine the expression of interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α). A periodontitis rat model was established to investigate the effect of EZH2 and VCAM-1 in vivo. EZH2 was overexpressed, while miR-101 was downregulated in the OCs of periodontitis. Silencing of EZH2, VCAM-1 repression, or miR-101 elevation suppressed the growth and proliferation of OC while acting to encumber the release of IL-1β and TNF-α. EZH2 negatively targeted miR-101, while miR-101 negatively targeted VCAM-1. Moreover, silencing of EZH2 or VCAM-1 was observed to attenuate periodontitis which was evidenced by an increase in BMD, BV/TV, and BS/BV as well as reduction in TRAP and cathepsin K in vivo. Taken together, the key findings of the current study demonstrate that EZH2 knockdown inhibited OC formation by elevating the expression of miR-101 via suppression of VCAM-1, ultimately attenuating periodontitis.
Collapse
Affiliation(s)
- Li Wang
- Department of Periodontology, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanyan He
- Department of Stomatology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wanchen Ning
- Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
40
|
Zhang J, Li Y, Liu Y, Xu G, Hei Y, Lu X, Liu W. Long non‑coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA‑324‑5p and upregulating KCTD20 expression. Oncol Rep 2021; 46:125. [PMID: 33982764 PMCID: PMC8129970 DOI: 10.3892/or.2021.8076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that long non‑coding RNAs (lncRNAs) serve a key role in the development and progression of several types of cancer, including glioma. The lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) contributes to cancer growth through its effects on cell proliferation, migration, invasion and drug resistance. However, the exact regulatory mechanisms via which NEAT1 acts in glioma are unclear. In the present study, the expression levels and function of NEAT1 in glioma tissues and cell lines were examined in vitro and in vivo. By reverse transcription‑quantitative PCR and fluorescence in situ hybridization analysis, NEAT1 expression was upregulated in glioma tissues compared with in adjacent normal brain tissues, and elevated NEAT1 levels were associated with poor prognosis. Cell Counting Kit‑8, colony formation, ethynyldeoxyuridine, flow cytometry and western blotting assays were performed to detect the effects of NEAT1 on cell biological behavior. Knockdown of NEAT1 in glioma cell lines was associated with cell cycle arrest at the G0/G1 phase, decreased proliferation and elevated apoptosis in vitro, and resulted in reduced tumor growth and increased survival in a mouse xenograft model of glioma. Using bioinformatics analysis, RNA immunoprecipitation experiments and luciferase reporter assays, it was demonstrated that NEAT1 may competitively bind to microRNA (miR)‑324‑5p, thus blocking its interaction with target mRNAs. Potassium channel tetramerization protein domain containing 20 (KCTD20) was identified as a specific miR‑324‑5p target. Accordingly, the inhibition of NEAT1 resulted in the downregulation of KCTD20 through competitive binding with miR‑324‑5p, decreased cell proliferation and increased apoptosis. Concomitant NEAT1 knockdown and inhibition of miR‑324‑5p partially reversed the effects of NEAT1 knockdown on cell proliferation and apoptosis, and further regulated KCTD20 expression. Collectively, the present findings demonstrated that NEAT1 acted as a competing endogenous RNA for miR‑324‑5p, and identified the NEAT1/miR‑324‑5p/KCTD20 axis as a novel regulatory axis and a potential therapeutic target for human glioma.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yangyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuqi Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guangzhi Xu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoming Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
41
|
Li Q, Wang J, Meng X, Chen W, Feng J, Mao J. Identification of autophagy-related gene and lncRNA signatures in the prognosis of HNSCC. Oral Dis 2021; 29:138-153. [PMID: 33901303 DOI: 10.1111/odi.13889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The aim of this study was to identify prognostic autophagy-related genes and lncRNAs to predict clinical outcomes in head and neck squamous cell carcinoma (HNSCC). SUBJECTS AND METHODS Differentially expressed autophagy-related genes and autophagy-related lncRNAs were identified by comparing pare-carcinoma and carcinoma samples of HNSCC. And then, we constructed an ARG and an AR-lncRNA signature risk score. Receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) functional annotation were used to analysis the functions of ARGs and AR-lncRNAs. RESULTS Six ARGs and thirteen AR-lncRNAs were identified in the ARG and AR-lncRNA signatures, and overall survival (OS) in the high-risk group was significantly shorter than the low-risk group. ROC analysis showed the ARG and AR-lncRNA signatures have excellent ability of predicting the total OS of patients with HNSCC. What's more, GSEA and GO functional annotation proved that autophagy-related pathways are mainly enriched in the high-risk group. CONCLUSIONS These findings indicated that our ARG signature and AR-lncRNA signature could be considered to predict the prognosis of patients with HNSCC and provide a deep understanding of the biological mechanisms of autophagy in HNSCC.
Collapse
Affiliation(s)
- Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Zhao R, Shan Y, Zhou X, Zhang C, Zhao R, Zhao L, Shan B. MicroRNA‑485‑5p suppresses the progression of esophageal squamous cell carcinoma by targeting flotillin‑1 and inhibits the epithelial‑mesenchymal transition. Oncol Rep 2021; 45:93. [PMID: 33846817 PMCID: PMC8047942 DOI: 10.3892/or.2021.8044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
As esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in Asia, it is crucial to uncover its underlying molecular mechanisms that support its development and progression. Several articles have reported that microRNA (miR)-485-5p inhibits the malignant phenotype in a number of cancer types, such as lung, gastric and breast cancer, but to the best of our knowledge, its function in ESCC has not been studied in depth until the present study. It is of great significance to probe the regulatory action and underlying mechanism of miR-485-5p in ESCC. In brief, this study identified that miR-485-5p expression in ESCC tissues was significantly lower than that in normal tissues. The decrease in miR-485-5p expression was associated with a larger tumour size and poor histology and stage. The expression of miR-485-5p was relatively high in Eca 109 and TE-1 cells, but relatively low in KYSE 30. The overexpression of miR-485-5p inhibited cell proliferation, migration and invasion in vitro, whereas miR-485-5p knockdown did the opposite. Flotillin-1 (FLOT-1) can facilitate the malignant phenotype in various cancer types. The present study found that in ESCC tissue, the protein expression of FLOT-1 was negatively correlated with miR-485-5p expression. Further experiments showed that miR-485-5p directly targeted the 3′-untranslated region of FLOT-1. The overexpression of miR-485-5p significantly suppressed the mRNA and protein expression levels of FLOT-1, whereas knockdown had the reverse effects. Furthermore, overexpression of miR-485-5p restrained epithelial-mesenchymal metastasis (EMT)-related factors at both the mRNA and protein levels. At the same time, it also inhibited the growth of ESCC and restrained the EMT in vivo. In summary, miR-485-5p was found to be an inhibitor of ESCC and may have potential as a novel target candidate for ESCC treatment.
Collapse
Affiliation(s)
- Riyang Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanan Shan
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinliang Zhou
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Cong Zhang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ruinian Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lianmei Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
43
|
Liu Z, Yang S, Chen X, Dong S, Zhou S, Xu S. LncRNA LINC00467 acted as an oncogene in esophageal squamous cell carcinoma by accelerating cell proliferation and preventing cell apoptosis via the miR-485-5p/DPAGT1 axis. J Gastroenterol Hepatol 2021; 36:721-730. [PMID: 32720371 DOI: 10.1111/jgh.15201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Esophageal carcinoma has been regarded as one of the top 10 common malignancies globally. Esophageal squamous cell carcinoma (ESCC) is an important subtype of esophageal carcinoma with approximately 20% survival rate. Long noncoding RNAs were documented to regulate the occurrence or progression of several tumors. However, neither the biological role nor the molecular mechanism of LINC00467 has been explored. This research is aimed to investigating the regulatory mechanism of LINC00467 in ESCC. METHODS In this study, a series of experiments including reverse transcription-quantitative polymerase chain reaction, Cell Counting Kit-8, luciferase reporter, western blot, and RNA immunoprecipitation were designed and conducted to explore the potential function and mechanism of LINC00467 in ESCC. RESULTS According to experimental results, we found out upregulated LINC00467 improved cell proliferation, but hindered cell apoptosis. In mechanism, miR-485-5p was predicted, screened out, and validated to combine with LINC00467, which displayed lower expression in ESCC. Additionally, miR-485-5p negatively regulated and directly targeted DPAGT1. Rescue assays suggested that DPAGT1 amplification was able to recover the influence of LINC00467 deficiency on cell proliferation and apoptosis. Furthermore, knockdown of LINC00467 suppressed tumor growth in vivo. CONCLUSION We proved that LINC00467 acted as an oncogene in ESCC by accelerating cell proliferation and preventing cell apoptosis via miR-485-5p/DPAGT1 axis. This may provide a potential diagnostic marker for ESCC treatment.
Collapse
Affiliation(s)
- Zhenghua Liu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shize Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xitao Chen
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyu Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shun Xu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Ren Y, Guo T, Xu J, Liu Y, Huang J. The novel target of esophageal squamous cell carcinoma: lncRNA GASL1 regulates cell migration, invasion and cell cycle stagnation by inactivating the Wnt3a/β-catenin signaling. Pathol Res Pract 2021; 217:153289. [PMID: 33248356 DOI: 10.1016/j.prp.2020.153289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Long non-coding RNA (lncRNA) Growth-Arrest Associated LncRNA 1 (GASL1) is a lncRNA with a suppressive role in glioma, prostate carcinoma and gastric carcinoma, whereas its involvement in esophageal cancer is unknown. In the present study, we used RT-qPCR to detect the expression of GASL1 in esophageal cancer cell carcinoma (ESCC) cell lines, and constructed the overexpression and interference plasmids of GASL1 and the interference plasmid of DKK1. CCK8 was used to detect the cell proliferation level, clone formation experiment was used to detect the cell clonal formation ability, flow cytometry was used to detect the cell cycle level, and wound healing and Transwell experiments were respectively used to detect the cell invasion and migration. The interference and overexpression plasmids of GASL1 were injected into mice subcutaneously for tumor-bearing experiment. The body weight, tumor growth curve, and tumor weight of mice were recorded, and western blot was used to detect the expression of proliferation-, invasion-, and migration-related proteins and the expression of Wnt3a/β-catenin signal-related proteins in tumor tissues. LncRNA GASL1 was down-regulated in ESCC cell lines, and GASL1 inhibited ESCC cell progression and regulated cell cycle arrest in ESCC cells. In vivo, GASL1 inhibited tumor growth. GASL1 decreased the protein levels of DDK1, Wnt3a, β-catenin, and c-MYC in ESCC cell lines. Interfering DKK1 activates Wnt3a/β--catenin signal to reverse the inhibitory effects of GASL1 on proliferation, cell cycle acceleration, invasion, and migration. In conclusion, lncRNA GASL1 regulates cell migration, invasion and cell cycle stagnation by inactivating the wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, Jiangsu Province, 225300, China; Department of Oncology, The People's Hospital of Taizhou, Taizhou, Jiangsu Province, 225300, China
| | - Ting Guo
- Institute of Clinical Medicine, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, Jiangsu Province, 225300, China
| | - Jie Xu
- Institute of Clinical Medicine, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, Jiangsu Province, 225300, China
| | - Yongbiao Liu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China.
| | - Junxing Huang
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, Jiangsu Province, 225300, China; Department of Oncology, The People's Hospital of Taizhou, Taizhou, Jiangsu Province, 225300, China.
| |
Collapse
|
45
|
Liu H, Zhang L, Ding X, Sui X. LINC00861 inhibits the progression of cervical cancer cells by functioning as a ceRNA for miR‑513b‑5p and regulating the PTEN/AKT/mTOR signaling pathway. Mol Med Rep 2020; 23:24. [PMID: 33179755 PMCID: PMC7673320 DOI: 10.3892/mmr.2020.11662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been discovered to serve important roles in a variety of types of cancer, including cervical cancer. The low expression of lncRNA long intergenic non‑protein coding RNA 861 (LINC00861) is related to poor prognosis in ovarian cancer. However, the effects and underlying mechanisms of LINC00861 in cervical cancer remain largely unknown. The present study aimed to examine the role of LINC00861 in the development and progression of ovarian cancer and its underlying mechanisms. The expression levels of LINC00861 and microRNA (miR)‑513b‑5p were analyzed using reverse transcription‑quantitative PCR analysis. Cell proliferation, migration and invasion were measured by using Cell Counting Kit‑8, colony formation, wound healing and Transwell assays, respectively. A luciferase assay was used to determine whether miR‑513b‑5p targeted LINC00861 and PTEN. The expression of protein was measured by using western blot assay. The results of the present study discovered that LINC00861 expression levels were significantly downregulated in cervical cancer tissues and CaSki and ME‑180 cell lines. Downregulated LINC00861 expression levels were identified to be associated with an advanced‑stage, lymph node metastasis and the poor survival of patients with cervical cancer. Gene Set Enrichment Analysis revealed that the PI3K/AKT/mTOR signaling pathway was significantly enriched in cervical tumors expressing low expression levels of LINC00861 compared with tumors expressing high levels of LINC00861. The overexpression of LINC00861 reduced cervical cancer cell proliferation, migration, invasion and epithelial‑mesenchymal transition (EMT) processes, upregulated PTEN protein expression levels and downregulated phosphorylated (p)‑AKT and p‑mTOR protein expression levels. The regulatory relationship between LINC00861, microRNA (miR)‑513b‑5p and PTEN was validated using a dual luciferase reporter gene assay. PTEN expression levels were significantly downregulated in the miR‑513b‑5p mimic group and significantly upregulated in the miR‑513b‑5p inhibitor group compared with the mimic NC and inhibitor NC in both cell lines. Furthermore, LINC00861 was suggested to serve as a competing endogenous RNA by sponging miR‑513b‑5p and consequently upregulating the expression levels of PTEN in cervical cancer cells. The expression of PTEN, the phosphorylation of Akt and mTOR and and the EMT phenotype were rescued following co‑transfection with LINC00861 and miR‑513b‑5p mimics. In conclusion, the findings of the present study indicated that the LINC00861/miR‑513b‑5p axis may inhibit the progression of cervical cancer cells through the PTEN/AKT/mTOR signaling pathway to suppress the EMT process.
Collapse
Affiliation(s)
- Hui Liu
- Department of Gynaecology and Obstetrics, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264013, P.R. China
| | - Ling Zhang
- Department of Gynaecology and Obstetrics, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Xiaoling Ding
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Qingzhou, Qingzhou, Shandong 264000, P.R. China
| | - Xuezuo Sui
- Department of Gynaecology and Obstetrics, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264013, P.R. China
| |
Collapse
|
46
|
Wang N, Zhou P, Chen Y, Qu H, Lu K, Xia J. MicroRNA-149: A review of its role in digestive system cancers. Pathol Res Pract 2020; 216:153266. [PMID: 33197838 DOI: 10.1016/j.prp.2020.153266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of highly conserved, short (18-25 nucleotide long) non-coding RNAs which play important functional roles in cellular differentiation, biological development, pathogenesis and disease susceptibility and have been linked to both tumorigenesis and the malignant progression of various cancers. miRNAs primarily exert their function through the negative regulation of their target gene's transcription via the specific recognition of their 3' untranslated region. A single miRNA can regulate multiple target genes and most miRNAs are controlled by several factors. Recent studies have shown that microRNA-149 (miR-149) plays a pivotal role in the pathogenesis of digestive system cancers and may act as a potential diagnostic marker and therapeutic target. In this review, we summarize and discuss the most recent reports describing miR-149 in digestive system cancers, including its single nucleotide polymorphisms, expression levels, target genes, drug sensitivity and clinical significance.
Collapse
Affiliation(s)
- Ning Wang
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Peng Zhou
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Keyu Lu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China.
| |
Collapse
|
47
|
Jiang H, Li L, Zhang J, Wan Z, Wang Y, Hou J, Yu Y. MiR-101-3p and Syn-Cal14.1a Synergy in Suppressing EZH2-Induced Progression of Breast Cancer. Onco Targets Ther 2020; 13:9599-9609. [PMID: 33061442 PMCID: PMC7532305 DOI: 10.2147/ott.s264600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
Objective EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and has been documented as an oncogene in breast cancer. The microRNA (miR)-101-3p can suppress breast cancer progression by targeting with EZH2. Syn-cal14.1a, a synthetic peptide derived from Californiconus californicus (Cal14.1a), can decrease the cell viability and activate the cell apoptosis in cancer. In this study, we explored whether the synergy of miR-101-3p mimic and syn-cal14.1a could inhibit the expression of EZH2. We also investigated this binding treatment’s effects on the suppression of breast cancer cells. Methods MiR-101-3p mimic was transfected and syn-cal14.1a was added in SK-BR-3 and MCF-7 breast cancer cells. The expression of EZH2 protein level was determined. Then, cell proliferation, migration, invasion, and apoptosis were observed. Results MiR-101-3p and syn-cal14.1a, when applied together, exerted a synergistic anti-EZH2 expression in breast cancer cells. The combination of miR-101-3p and syn-cal14.1a synergistically suppressed the EZH2-induced breast cancer cell migration, invasion, and proliferation. In parallel, this synergy treatment was able to promote the apoptosis of breast cancer cells. To our knowledge, this is the first report describing inhibition of EZH2 in human breast cancer cell lines by syn-cal14.1a. Conclusion The anti-EZH2 roles of miR-101-3p and/or syn-cal14.1a could provide an effective therapeutic strategy in breast cancer. These data provide significant insights into molecular mechanisms of breast cancer and may have benefits in clinical therapeutics for breast cancer.
Collapse
Affiliation(s)
- Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Zhang
- Department of Plastic Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Wang
- Department of Health Medicine, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
48
|
Shen FF, Zhang F, Yang HJ, Li JK, Su JF, Yu PT, Zhou FY, Che GW. ADAMTS9-AS2 and CADM2 expression and association with the prognosis in esophageal squamous cell carcinoma. Biomark Med 2020; 14:1415-1426. [PMID: 32892630 DOI: 10.2217/bmm-2020-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: We investigated whether ADAMTS9-AS2 and CADM2 were related to esophageal squamous cell carcinoma (ESCC). Methodology: ESCC microarray datasets and reverse transcriptase qualitative PCR were used to analyze ADAMTS9-AS2 and CADM2 expression. Results: The GSE120356 and GSE33810 datasets identified ADAMTS9-AS2 and CADM2 as the candidates and ADAMTS9-AS2 and CADM2 expression was downregulated in ESCC. ADAMTS9-AS2 and CADM2 were positively correlated with ESCC. ADAMTS9-AS2 and CADM2 expression could discriminate ESCC from normal tissue. Five-year overall survival was shorter in underexpressed ADAMTS9-AS2 patients, and CADM2 expression level was related to 5-year overall survival. ADAMTS9-AS2 and CADM2 expression were independent prognosis indicators in ESCC patients. Conclusion: Our findings shed new light on the clinical significance of ADAMTS9-AS2 and CADM2 in ESCC carcinogenesis.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Fan Zhang
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hai-Jun Yang
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jun-Kuo Li
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jing-Fen Su
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Pan-Ting Yu
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Fu-You Zhou
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Guo-Wei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Abstract
Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.
Collapse
Affiliation(s)
- Ran Duan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenfang Du
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
50
|
Wang L, Wu L, Pang J. Long noncoding RNA PSMA3‑AS1 functions as a microRNA‑409‑3p sponge to promote the progression of non‑small cell lung carcinoma by targeting spindlin 1. Oncol Rep 2020; 44:1550-1560. [PMID: 32945481 PMCID: PMC7448465 DOI: 10.3892/or.2020.7693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
PSMA3 antisense RNA 1 (PSMA3‑AS1), a long noncoding RNA, promotes the progression of esophageal squamous cell carcinoma. However, no study to date has explored the expression or roles of PSMA3‑AS1 in non‑small cell lung carcinoma (NSCLC). The present study examined the expression profile and role of PSMA3‑AS1 in NSCLC. It also aimed to identify how PSMA3‑AS1 promotes the malignant phenotype of NSCLC cells. PSMA3‑AS1 expression in NSCLC tissues and cell lines was measured by reverse transcription‑quantitative polymerase chain reaction. Cell Counting Kit‑8, cell apoptosis, Transwell migration and invasion, and xenograft tumor assays were conducted to study the effects of PSMA3‑AS1 on the aggressive phenotype of NSCLC cells. Furthermore, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, western blotting, and rescue experiments were used to elucidate the interaction among PSMA3‑AS1, microRNA‑409‑3p (miR‑409‑3p), and spindlin 1 (SPIN1) in NSCLC cells. In the present study, high levels of PSMA3‑AS1 were confirmed in both NSCLC tissues and cell lines. An increased PSMA3‑AS1 level was correlated with advanced tumor‑node‑metastasis stage and increased lymph node metastasis. Patients with NSCLC with high PSMA3‑AS1 levels had shorter overall survival than those with low PSMA3‑AS1 levels. PSMA3‑AS1 depletion significantly decreased NSCLC cell proliferation, migration, and invasion, as well as substantially increased cell apoptosis in vitro. Furthermore, PSMA3‑AS1 deficiency decreased NSCLC tumor growth in vivo. Through molecular mechanism assays, it was revealed that PSMA3‑AS1 acted as a molecular sponge for miR‑409‑3p and consequently increased SPIN1 expression. Notably, rescue experiments revealed that the inhibition of miR‑409‑3p or restoration of SPIN1 expression abrogated the effects of PSMA3‑AS1 knockdown in NSCLC cells. Collectively, PSMA3‑AS1 functioned as an oncogenic long noncoding RNA in NSCLC. PSMA3‑AS1 sponged miR‑409‑3p and thus increased SPIN1 expression, promoting the aggressive phenotype of NSCLC cells.
Collapse
Affiliation(s)
- Lingling Wang
- Precision Medical Center, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Lei Wu
- Department of Thoracic Surgery, Jilin City Central Hospital, Capital Medical University, Jilin, Jilin 132010, P.R. China
| | - Jinfeng Pang
- Department of Neurosurgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|