1
|
Zhang P, Feng Q, Chen W, Bai X. Catalpol antagonizes LPS-mediated inflammation and promotes osteoblast differentiation through the miR-124-3p/DNMT3b/TRAF6 axis. Acta Histochem 2024; 126:152118. [PMID: 38039796 DOI: 10.1016/j.acthis.2023.152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Dysregulated inflammation and osteoblast differentiation are implicated in osteoporosis. Exploring the activity of catalpol in inflammation and osteoblast differentiation deepens the understanding of osteoporosis pathogenesis. METHODS LPS was used to treated hFOB1.19 cells to induce inflammation and repress osteoblast differentiation. FOB1.19 cells were induced in osteoblast differentiation medium and treated with LPS and catalpol. Cell viability was assessed using CCK-8. ALP and Alizarin red S staining were conducted for analyzing osteoblast differentiation. The levels of IL-1β, TNF-α and IL-6 were examined by ELISA. The methylation of TRAF6 promoter was examined through MS-PCR. The binding of miR-124-3p to DNMT3b and DNMT3b to TRAF6 promoter was determined with dual luciferase reporter and ChIP assays. RESULTS LPS enhanced secretion of inflammatory cytokines and suppressed osteoblast differentiation. MiR-124-3p and TRAF6 were upregulated and DNMT3b was downregulated in LPS-induced hFOB1.19 cells. Catalpol protected hFOB1.19 cells against LPS via inhibiting inflammation and promoting osteoblast differentiation. MiR-124-3p targeted DNMT3b, and its overexpression abrogated catalpol-mediated protection in LPS-treated hFOB1.19 cells. In addition, DNMT3b methylated TRAF6 promoter to restrain its expression. Catalpol exerted protective effects through suppression of the miR-124-3p/DNMT3b/TRAF6 axis in hFOB1.19 cells. CONCLUSION Catalpol antagonizes LPS-mediated inflammation and suppressive osteoblast differentiation via controlling the miR-124-3p/DNMT3b/TRAF6 axis.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Qun Feng
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Wenxiao Chen
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Busnelli M, Manzini S, Colombo A, Franchi E, Chiara M, Zaffaroni G, Horner D, Chiesa G. Effect of diet and genotype on the miRNome of mice with altered lipoprotein metabolism. iScience 2023; 26:107615. [PMID: 37664585 PMCID: PMC10474470 DOI: 10.1016/j.isci.2023.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
The molecular mechanism by which lipid/lipoprotein biosynthesis is regulated in mammals involves a very large number of genes that are subject to multiple levels of regulation. miRNAs are recognized contributors to lipid homeostasis at the post-transcriptional level, although the elucidation of their role is made difficult by the multiplicity of their targets and the ability of more miRNAs to affect the same mRNAs. In this study, an evaluation of how miRNA expression varies in organs playing a key role in lipid/lipoprotein metabolism was conducted in control mice and in two mouse models carrying genetic ablations which differently affect low-density lipoprotein metabolism. Mice were fed a lipid-poor standard diet and a diet enriched in cholesterol and saturated fat. The results obtained showed that there are no miRNAs whose expression constantly vary with dietary or genetic changes. Furthermore, it appears that diet, more than genotype, impacts on organ-specific miRNA expression profiles.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Gaia Zaffaroni
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - David Horner
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Zhu Y, Tan JK, Wong SK, Goon JA. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24119168. [PMID: 37298120 DOI: 10.3390/ijms24119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
5
|
Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun Rev 2023; 22:103308. [PMID: 36822387 DOI: 10.1016/j.autrev.2023.103308] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We investigated the relationship between oxidative stress and inflammatory myopathies. We searched in the current literature the role of mitochondria and respiratory chain defects as sources of oxidative stress and reactive oxygen species production that led to muscle weakness and fatigue. Different molecules and pathways contribute to redox milieu, reactive oxygen species generation, accumulation of misfolded and carbonylated proteins that lose their ability to fulfil cellular activities. Small peptides and physical techniques proved, in mice models, to reduce oxidative stress. We focused on inclusion body myositis, as a major expression of myopathy related to oxidative stress, where mitochondrial abnormalities are causative agents as well. We described the effect of physical exercise in inclusion body myositis that showed to increase strength and to reduce beta amyloid accumulation with subsequent improvement of the mitochondrial functions. We illustrated the influence of epigenetic control on the immune system by non-coding genetic material in the interaction between oxidative stress and inflammatory myopathies.
Collapse
|
6
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
7
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
8
|
Catalpol Enhances Random-Pattern Skin Flap Survival by Activating SIRT1-Mediated Enhancement of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5668226. [PMID: 35620575 PMCID: PMC9129999 DOI: 10.1155/2022/5668226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Random-pattern skin flap necrosis limits its application in the clinic. It is still a challenge for plastic surgeons. Catalpol is an effective ingredient extracted from Rehmannia glutinosa, which is reported to promote angiogenesis and protect against ischemic cerebral disease. The aim of our experiment is to assess whether catalpol can facilitate random flap survival and the underlying mechanisms. Male “McFarlane flap” rat models were employed to explore the protective effects of catalpol. The range of necrosis in the flap was calculated 7 days after the models were established. The flap specimens were harvested for further experiments, including angiogenesis, apoptosis, oxidative stress, and autophagy evaluation. Catalpol-treated group promoted the average survival area of the flap than that in the control group. Based on immunohistochemical staining, Western blotting, and ROS detection, we found that catalpol significantly reduces oxidative stress and apoptosis and increases angiogenesis. Hematoxylin and eosin (H&E) staining and laser Doppler images further clarified the enhancement of angiogenesis after catalpol treatment. The impact of catalpol in flap was switched by using 3-methyladenine (3MA), proving the important role of autophagy in curative effect of catalpol on skin flaps. Importantly, the ability of catalpol to regulate autophagy is mediated by the activation of sirtuin 1 (SIRT1) based on its high affinity for SIRT1. Our findings revealed that catalpol improved the viability of random skin flaps by activating SIRT1-mediated autophagy pathway.
Collapse
|
9
|
Zhang W, Lin H, Cheng W, Huang Z, Zhang W. Protective Effect and Mechanism of Plant-Based Monoterpenoids in Non-alcoholic Fatty Liver Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4839-4859. [PMID: 35436113 DOI: 10.1021/acs.jafc.2c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
10
|
Chen C, Chang X, Zhang S, Zhao Q, Lei C. CircRNA CTNNB1 (circCTNNB1) ameliorates cerebral ischemia/reperfusion injury by sponging miR-96-5p to up-regulate scavenger receptor class B type 1 (SRB1) expression. Bioengineered 2022; 13:10258-10273. [PMID: 35435123 PMCID: PMC9162012 DOI: 10.1080/21655979.2022.2061304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging studies show that circRNA catenin beta 1 (circCTNNB1) plays a critical role in cancer. However, the expression and function of circCTNNB1 in cerebral ischemia/reperfusion injury (IRI) have not been reported. The present study discovered that circCTNNB1 and scavenger receptor class B type 1 (SRB1) expression levels were significantly down-regulated in mouse astrocytes (mAS) treated with oxygen glucose deprivation and reperfusion (OGD/R), and similar results were observed in a mouse middle cerebral artery occlusion model. Overexpression of circCTNNB1 alleviated cell apoptosis, oxidative stress and the inflammatory response induced by OGD/R in vitro. Up-regulation of circCTNNB1 increased SRB1 expression levels to protect mAS cells from OGD/R-induced damage. CircCTNNB1 and SRB1 interacted with miR-96-5p, and the overexpression of miR-96-5p efficiently reversed the function of circCTNNB1 in OGD/R-treated mAS cells. CircCTNNB1 protected against cerebral ischemia-reperfusion injury by up-regulating SRB1 in vivo. In conclusion, our findings suggest that circCTNNB1 acts as a competitive endogenous RNA for miR-96-5p to alleviate cerebral IRI, which provides novel evidence that circCTNNB1 and SRB1 may be biomarkers and therapeutic targets for cerebral IRI.
Collapse
Affiliation(s)
- Chun Chen
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolong Chang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shifei Zhang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qi Zhao
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Xu X, Wang S, Zhou D, Qu J, Zhang C, Xu Y, Sun L. The Haoqin-Huaban formula alleviates UVB-induced skin damage through HOXA11-AS-mediated stabilization of EZH2. Am J Transl Res 2022; 14:2212-2230. [PMID: 35559404 PMCID: PMC9091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/31/2021] [Indexed: 06/15/2023]
Abstract
Exposure of skin to ultraviolet B (UVB) irradiation induces oxidative damage, immune suppression, inflammation, and skin cancer. Recently, an increase in the use of traditional Chinese medicine decoction with antioxidant properties has emerged as protection for skin tissues against UVB-induced damage. The aim of this study was to investigate mechanisms of the protective effect of the Haoqin-Huaban formula (HQHB) on UVB-induced skin damage. First, cell survival, apoptosis, and oxidative stress were evaluated upon UVB irradiation in the presence of HQHB using HaCaT cells and mice as model systems. Subsequently, bioinformatic analyses, RNA pulldown assays, RNA immunoprecipitation, luciferase reporter assays, and chromatin immunoprecipitation were conducted to verify the regulation among HQHB, hypoxia-inducible factor 1α (HIF-1α), HOXA11-AS and enhancer of zeste homolog 2 (EZH2) in HaCaT cells. In this study, we found that administration of HQHB inhibited, in a dose-dependent manner, UVB-induced skin damage by eliminating oxidative stress. HQHB was found to upregulate HOXA11-AS expression by activating HIF-1α. Furthermore, HOXA11-AS stabilized the EZH2 protein by inhibiting its ubiquitination and proteasomal degradation. Consequently, rescue assays demonstrated that HOXA11-AS promoted proliferation and inhibited apoptosis in HaCaT cells by reducing oxidative stress. Taken together, our results help to elucidate the function and regulatory mechanism of HQHB in reducing UVB-induced skin damage.
Collapse
Affiliation(s)
- Xuying Xu
- Department of Ulcerative Vascular Surgery, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| | - Siyi Wang
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| | - Dongmei Zhou
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| | - Jianhua Qu
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| | - Cang Zhang
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| | - Yichuan Xu
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| | - Liyun Sun
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| |
Collapse
|
12
|
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022; 52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
Collapse
Affiliation(s)
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.,Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Afshan N Malik
- Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Yu Y, He C, Tan S, Huang M, Guo Y, Li M, Zhang Q. MicroRNA-137-3p Improves Nonalcoholic Fatty Liver Disease through Activating AMPK α. Anal Cell Pathol (Amst) 2021; 2021:4853355. [PMID: 35004133 PMCID: PMC8731301 DOI: 10.1155/2021/4853355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide and can develop to nonalcoholic steatohepatitis and later hepatic cirrhosis with a high prevalence to hepatocellular carcinoma. Oxidative stress and chronic hepatic inflammation are implicated in the pathogenesis of NAFLD. MicroRNA-137-3p (miR-137-3p) are associated with oxidative stress and inflammation; however, its role and mechanism in NAFLD remain unclear. Mice were fed with a high-fat diet (HFD) for 24 weeks to establish the NAFLD model. To overexpress or suppress hepatic miR-137-3p expression, mice were intraperitoneally injected with the agomir, antagomir, or respective controls of miR-137-3p at a dose of 100 mg/kg weekly for 6 consecutive weeks before the mice were sacrificed. To validate the involvement of AMP-activated protein kinase alpha (AMPKα) or cAMP-specific phosphodiesterase 4D (PDE4D), HFD mice were intraperitoneally injected with 20 mg/kg compound C or 0.5 mg/kg rolipram every other day for 8 consecutive weeks before the mice were sacrificed. Hepatic miR-137-3p expression was significantly decreased in mice upon HFD stimulation. miR-137-3p agomir alleviated, while miR-137-3p antagomir facilitated HFD-induced oxidative stress, inflammation, and hepatic dysfunction in mice. Mechanistically, we revealed that miR-137-3p is directly bound to the 3'-untranslated region of PDE4D and subsequently increased hepatic cAMP level and protein kinase A activity, thereby activating the downstream AMPKα pathway. In summary, miR-137-3p improves NAFLD through activating AMPKα and it is a promising therapeutic candidate to treat NAFLD.
Collapse
Affiliation(s)
- Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Chunping He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Mengjun Huang
- Department of Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Yitian Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
14
|
Ma C, Wang C, Zhang Y, Zhou H, Li Y. Potential Natural Compounds for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: A Review on Molecular Mechanisms. Curr Mol Pharmacol 2021; 15:846-861. [PMID: 34923950 DOI: 10.2174/1874467215666211217120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic stress-induced liver injury closely related to insulin resistance and genetic susceptibility, and there is no specific drug for its clinical treatment currently. In recent years, a large amount of literature has reported that many natural compounds extracted from traditional Chinese medicine (TCM) can improve NAFLD through various mechanisms. According to the latest reports, some emerging natural compounds have shown great potential to improve NAFLD but are seldom used clinically due to the lacking special research. PURPOSE This paper aims to summarize the molecular mechanisms of the potential natural compounds on improving NAFLD, thus providing a direction and basis for further research on the pathogenesis of NAFLD and the development of effective drugs for the prevention and treatment of NAFLD. METHODS By searching various online databases, such as Web of Science, SciFinder, PubMed, and CNKI, NAFLD and these natural compounds were used as the keywords for detailed literature retrieval. RESULTS The pathogenesis of NAFLD and the molecular mechanisms of the potential natural compounds on improving NAFLD have been reviewed. CONCLUSION Many natural compounds from traditional Chinese medicine have a good prospect in the treatment of NAFLD, which can serve as a direction for the development of anti-NAFLD drugs in the future.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
15
|
Gu M, Yuan YP, Qin ZN, Xu Y, Shi NN, Wang YP, Zhai HQ, Qian ZZ. A combined quality evaluation method that integrates chemical constituents, appearance traits and origins of raw Rehmanniae Radix pieces. Chin J Nat Med 2021; 19:551-560. [PMID: 34247780 DOI: 10.1016/s1875-5364(21)60056-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/27/2022]
Abstract
The quality control of Chinese herbal medicine is a current challenge for the internationalization of traditional Chinese medicine. Traditional quality evaluation methods lack quantitative analysis, while modern quality evaluation methods ignore the origins and appearance traits. Therefore, an integrated quality evaluation method is urgent in need. Raw Rehmanniae Radix (RRR) is commonly used in Chinese herbal medicine. At present, much attention has been drwan towards its quality control, which however is limited by the existing quality evaluation methods. The present study was designed to establish a comprehensive and practical method for the quality evaluation and control of RRR pieces based on its chemical constituents, appearance traits and origins. Thirty-three batches of RRR pieces were collected from six provinces, while high-performance liquid chromatography (HPLC) was applied to determine the following five constituents, including catalpol, rehmannioside A, rehmannioside D, leonuride and verbascoside in RRR pieces. Their appearance traits were quantitatively observed. Furthermore, correlation analysis, principal components analysis (PCA), cluster analysis and t-test were performed to evaluate the qualities of RRR pieces. These batches of RRR pieces were divided into three categories: samples from Henan province, samples from Shandong and Shanxi provinces, and those from other provinces. Furthermore, the chemical constituents and appearance traits of RRR pieces were significantly different from diverse origins. The combined method of chemical contituents, appearance traits and origins can distinguish RRR pieces with different qualities, which provides basic reference for the quality control of Chinese herbal medicine.
Collapse
Affiliation(s)
- Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yi-Ping Yuan
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zi-Nan Qin
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Xu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nan-Nan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Ping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hua-Qiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Zhong-Zhi Qian
- National Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
16
|
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J Cell Mol Med 2021; 25:5899-5911. [PMID: 34061461 PMCID: PMC8256341 DOI: 10.1111/jcmm.16063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury represents an event characterized by anoxic cell death and an inflammatory response, that can limit the treatment efficacy of liver surgery. Ischaemic preconditioning agents such as sevoflurane (Sevo) have been highlighted to play protective roles in hepatic I/R injury. The current study aimed to investigate the molecular mechanism underlying the effects associated with Sevo in hepatic I/R injury. Initially, mouse hepatic I/R injury models were established via occlusion of the hepatic portal vein and subsequent reperfusion. The expression of forkhead box protein O4 (FOXO4) was detected using reverse transcription quantitative polymerase chain reaction and Western blot analysis from clinical liver tissue samples obtained from patients who had previously undergone liver transplantation, mouse I/R models and oxygen-deprived hepatocytes. The morphology of the liver tissues was analysed using haematoxylin-eosin (HE) staining, with apoptosis detected via TUNEL staining. Immunohistochemistry methods were employed to identify the FOXO4-positive cells. Mice with knocked out FOXO4 (FOXO4-KO mice) were subjected to I/R. In this study, we found FOXO4 was highly expressed following hepatic I/R injury. After treatment with Sevo, I/R modelled mice exhibited an alleviated degree of liver injury, fewer apoptotic cells and FOXO4-positive cells. FOXO4 was a target gene of miR-96. Knockdown of FOXO4 could alleviate hepatic I/R injury and decrease cell apoptosis. Taken together, the key observations of our study suggest that Sevo alleviates hepatic I/R injury by means of promoting the expression of miR-96 while inhibiting FOXO4 expression. This study highlights the molecular mechanism mediated by Sevo in hepatic I/R injury.
Collapse
Affiliation(s)
- Binghua He
- Jinan UniversityGuangzhouChina
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Fan Yang
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Yingxia Ning
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yalan Li
- Department of Anesthesiologythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
17
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
18
|
Ma H, Wang C, Liu X, Zhan M, Wei W, Niu J. Src homolog and collagen homolog1 isoforms in acute and chronic liver injuries. Life Sci 2021; 273:119302. [PMID: 33662427 DOI: 10.1016/j.lfs.2021.119302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Src homolog and collagen homolog (SHC) proteins are adaptor proteins bound to cell surface receptors that play an important role in signal transduction and related diseases. As an important member of the SHC protein family, SHC1 regulates cell proliferation and apoptosis, reactive oxygen species (ROS) production, and oxidative stress. Three isomeric proteins namely, p46shc, p52shc, and p66shc, are produced from the same SHC1 gene locus. All the three proteins are found in the liver, and are widely expressed in various hepatic cells. SHC1 has been proven to be associated with acute and chronic liver injuries of different etiologies, and plays important roles in liver fibrosis and hepatocellular carcinoma (HCC). Therefore, this review summarizes recent studies that discuss and explore the role of SHC1 in the occurrence and progression of liver diseases. We also provide a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Mengru Zhan
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
19
|
Xia H, Wang D, Guo X, Wu K, Huang F, Feng Y. Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway. Front Pharmacol 2021; 11:630222. [PMID: 33628189 PMCID: PMC7898164 DOI: 10.3389/fphar.2020.630222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a devastating condition that leads to paralysis, disability and even death in severe cases. Inflammation, apoptosis and oxidative stress in neurons are key pathogenic processes in SCI. Catalpol (CTP), an iridoid glycoside extracted from Rehmannia glutinosa, has many pharmacological activities, such as anti-inflammatory, anti-oxidative and anti-apoptotic properties. Purpose: Here, we investigated whether CTP could exert neuroprotective effects against SCI, and explored the underlying mechanism involved. Methods: SCI was induced by a weight-drop device and treated with CTP (10 mg and 60 mg/kg). Then the locomotor function of SCI mice was evaluated by the BBB scores, spinal cord edema was measured by the wet/dry weight method, oxidative stress markers and inflammatory factors were detected by commercial kits and neuronal death was measured by TUNEL staining. Moreover, the microRNA expression profile in spinal cords from mice following SCI was analyzed using miRNA microarray. In addition, reactive oxygen species (ROS) generation, inflammatory response and cell apoptosis were detected in murine microglia BV2 cells under oxygen-glucose deprivation (OGD) and CTPtreatment. Results: Our data showed that CTP treatment could improve the functional recovery, as well as suppress the apoptosis, alleviate inflammatory and oxidative response in SCI mice. In addition, CTP was found to be up-regulated miR-142 and the protective effects of CTP on apoptosis, inflammatory and oxidative response may relate to its regulation of HMGB1/TLR4/NF-κB pathway through miR-142. Conclusion: Our findings suggest that CTP may protect the spinal cord from SCI by suppression of apoptosis, oxidative stress and inflammatory response via miR-142/HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Hougang Xia
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Dandan Wang
- Department of Nursing, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Xiaohui Guo
- Department of Spinal Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Kaidi Wu
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Fuwei Huang
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Yanjiang Feng
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| |
Collapse
|
20
|
Chang X, Zhang W, Zhao Z, Ma C, Zhang T, Meng Q, Yan P, Zhang L, Zhao Y. Regulation of Mitochondrial Quality Control by Natural Drugs in the Treatment of Cardiovascular Diseases: Potential and Advantages. Front Cell Dev Biol 2020; 8:616139. [PMID: 33425924 PMCID: PMC7793684 DOI: 10.3389/fcell.2020.616139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double-membraned cellular organelles that provide the required energy and metabolic intermediates to cardiomyocytes. Mitochondrial respiratory chain defects, structure abnormalities, and DNA mutations can affect the normal function of cardiomyocytes, causing an imbalance in intracellular calcium ion homeostasis, production of reactive oxygen species, and apoptosis. Mitochondrial quality control (MQC) is an important process that maintains mitochondrial homeostasis in cardiomyocytes and involves multi-level regulatory mechanisms, such as mitophagy, mitochondrial fission and fusion, mitochondrial energy metabolism, mitochondrial antioxidant system, and mitochondrial respiratory chain. Furthermore, MQC plays a role in the pathological mechanisms of various cardiovascular diseases (CVDs). In recent years, the regulatory effects of natural plants, drugs, and active ingredients on MQC in the context of CVDs have received significant attention. Effective active ingredients in natural drugs can influence the production of energy-supplying substances in the mitochondria, interfere with the expression of genes associated with mitochondrial energy requirements, and regulate various mechanisms of MQC modulation. Thus, these ingredients have therapeutic effects against CVDs. This review provides useful information about novel treatment options for CVDs and development of novel drugs targeting MQC.
Collapse
Affiliation(s)
- Xing Chang
- China Academy of Chinese Medical Sciences, Beijing, China.,Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenjin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhenyu Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Mir HA, Ali R, Mushtaq U, Khanday FA. Structure-functional implications of longevity protein p66Shc in health and disease. Ageing Res Rev 2020; 63:101139. [PMID: 32795504 DOI: 10.1016/j.arr.2020.101139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
ShcA (Src homologous- collagen homologue), family of adapter proteins, consists of three isoforms which integrate and transduce external stimuli to different signaling networks. ShcA family consists of p46Shc, p52Shc and p66Shc isoforms, characterized by having multiple protein-lipid and protein-protein interaction domains implying their functional diversity. Among the three isoforms p66Shc is structurally different containing an additional CH2 domain which attributes to its dual functionality in cell growth, mediating both cell proliferation and apoptosis. Besides, p66Shc is also involved in different biological processes including reactive oxygen species (ROS) production, cell migration, ageing, cytoskeletal reorganization and cell adhesion. Moreover, the interplay between p66Shc and ROS is implicated in the pathology of various dreadful diseases. Accordingly, here we discuss the recent structural aspects of all ShcA adaptor proteins but are highlighting the case of p66Shc as model isoform. Furthermore, this review insights the role of p66Shc in progression of chronic age-related diseases like neuro diseases, metabolic disorders (non-alcoholic fatty liver, obesity, diabetes, cardiovascular diseases, vascular endothelial dysfunction) and cancer in relation to ROS. We finally conclude that p66Shc might act as a valuable biomarker for the prognosis of these diseases and could be used as a potential therapeutic target.
Collapse
|
22
|
Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S, Song G, Ren L. Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci 2020; 257:118090. [PMID: 32679144 DOI: 10.1016/j.lfs.2020.118090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to investigate oxymatrine via regulating miR-182 improved the hepatic lipid accumulation in non-alcoholic fatty liver disease (NAFLD) model. MATERIALS AND METHODS Wistar rats were fed high-fat and high-fructose diet (HFDHFr group) for 4 weeks and HepG2 cells were treated with palmitic acid (PA group), and then were given oxymatrine intervention. The expression profiles of miRNAs were accessed by RNA sequencing (RNA-Seq). Hematoxylin-eosin (HE) staining and Oil Red O staining were used to observe the inflammation and lipid accumulation in liver. The levels of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty-acid synthase (FAS) and carnitine palmitoyltransferase 1A (CPT-1A) were detected by RT-qPCR and Western blotting, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8). KEY FINDINGS miR-182 was down-regulated in the HFDHFr group and PA group. Oxymatrine reduced body weight, and improved glucose tolerance and insulin resistance in the HFDHFr + OMT group compared with HFDHFr group. In addition, oxymatrine reduced the ratio (liver weight/body weight), the content of triglycerides (TG), hepatic lipid accumulation and steatosis. The levels of SREBP-1c, ACC, and FAS were significantly decreased, while the CPT-1A level was obviously elevated after oxymatrine intervention (P < 0.05). In vivo, miR-182 knockdown increased the levels of SREBP-1c, ACC and FAS, while reduced the CPT-1A level. Additionally, oxymatrine attenuated the effects of miR-182 inhibitor on lipid accumulation. SIGNIFICANCE We presented a possible mechanism that oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in NAFLD model.
Collapse
Affiliation(s)
- He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Wenli Huang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|