1
|
Odenkirk MT, Zheng X, Kyle JE, Stratton KG, Nicora CD, Bloodsworth KJ, Mclean CA, Masters CL, Monroe ME, Doecke JD, Smith RD, Burnum-Johnson KE, Roberts BR, Baker ES. Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions. J Proteome Res 2024; 23:2970-2985. [PMID: 38236019 PMCID: PMC11255128 DOI: 10.1021/acs.jproteome.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Catriona A Mclean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - James D Doecke
- CSIRO Health and Biosecurity, Herston, Queensland 4029, Australia
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States of America
- Department of Neurology, Emory University, Atlanta, Georgia 30322, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States of America
| |
Collapse
|
2
|
Ghorbani M, Ferreira D, Maioli S. A metagenomic study of gut viral markers in amyloid-positive Alzheimer's disease patients. Alzheimers Res Ther 2023; 15:141. [PMID: 37608325 PMCID: PMC10464408 DOI: 10.1186/s13195-023-01285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Mounting evidence suggests the involvement of viruses in the development and treatment of Alzheimer's disease (AD). However, there remains a significant research gap in metagenomic studies investigating the gut virome of AD patients, leaving gut viral dysbiosis in AD unexplored. This study aimed to fill this gap by conducting a metagenomics analysis of the gut virome in both amyloid-positive AD patients (Aβ + ADs) and healthy controls (HCs), with the objective of identifying viral signatures linked with AD. METHOD Whole-genome sequence (WGS) data from 65 human participants, including 30 Aβ + ADs and 35 HCs, was obtained from the database NCBI SRA (Bio Project: PRJEB47976). The Metaphlan3 pipeline and linear discriminant analysis effect size (LEfSe) analysis were utilized for the bioinformatics process and the detection of viral signatures, respectively. In addition, the Benjamini-Hochberg method was applied with a significance cutoff of 0.05 to evaluate the false discovery rate for all biomarkers identified by LEfSe. The CombiROC model was employed to determine the discriminatory power of the viral signatures identified by LEfSe. RESULTS Compared to HCs, the gut virome profiles of Aβ + ADs showed lower alpha diversity, indicating a lower bacteriophage richness. The Siphoviridae family was decreased in Aβ + ADs. Significant decreases of Lactococcus phages were found in Aβ + ADs, including bIL285, Lactococcus phage bIL286, Lactococcus phage bIL309, and Lactococcus phage BK5 T, Lactococcus phage BM13, Lactococcus phage P335 sensu lato, Lactococcus phage phiLC3, Lactococcus phage r1t, Lactococcus phage Tuc2009, Lactococcus phage ul36, and Lactococcus virus bIL67. The predictive combined model of these viral signatures obtained an area under the curve of 0.958 when discriminating Aβ + ADs from HCs. CONCLUSION This is the first study to identify distinct viral signatures in the intestine that can be used to effectively distinguish individuals with AD from HCs.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
4
|
Weng ZB, Chen YR, Lv JT, Wang MX, Chen ZY, Zhou W, Shen XC, Zhan LB, Wang F. A Review of Bile Acid Metabolism and Signaling in Cognitive Dysfunction-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4289383. [PMID: 35308170 PMCID: PMC8933076 DOI: 10.1155/2022/4289383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Bile acids are commonly known as one of the vital metabolites derived from cholesterol. The role of bile acids in glycolipid metabolism and their mechanisms in liver and cholestatic diseases have been well studied. In addition, bile acids also serve as ligands of signal molecules such as FXR, TGR5, and S1PR2 to regulate some physiological processes in vivo. Recent studies have found that bile acids signaling may also play a critical role in the central nervous system. Evidence showed that some bile acids have exhibited neuroprotective effects in experimental animal models and clinical trials of many cognitive dysfunction-related diseases. Besides, alterations in bile acid metabolisms well as the expression of different bile acid receptors have been discovered as possible biomarkers for prognosis tools in multiple cognitive dysfunction-related diseases. This review summarizes biosynthesis and regulation of bile acids, receptor classification and characteristics, receptor agonists and signaling transduction, and recent findings in cognitive dysfunction-related diseases.
Collapse
Affiliation(s)
- Ze-Bin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Rong Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jin-Tao Lv
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min-Xin Wang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zheng-Yuan Chen
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Chun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Li-Bin Zhan
- The Innovation Engineering Technology Center of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
5
|
Evaluating and predicting egg quality indicators through principal component analysis and artificial neural networks. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|