1
|
Liu D, Li H, Ouyang J. Roles of DEPDC1 in various types of cancer (Review). Oncol Lett 2024; 28:518. [PMID: 39296974 PMCID: PMC11409430 DOI: 10.3892/ol.2024.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024] Open
Abstract
Dishevelled, EGL-10 and pleckstrin domain-containing 1 (DEPDC1) has been identified as a crucial factor in the development and progression of various types of cancer. This protein, which is largely undetectable in normal tissues but is highly expressed in numerous tumor types, serves a significant role in cell mitosis, proliferation, migration, invasion, angiogenesis, autophagy and apoptosis. Furthermore, DEPDC1 is implicated in several key signaling pathways, such as NF-κB, PI3K/Akt, Wnt/β-catenin and Hippo pathways, which are essential for cell proliferation and survival. The expression of DEPDC1 has been linked to poor prognosis and survival rates in multiple types of cancer, including hepatocellular carcinoma, lung adenocarcinoma, colorectal cancer and breast cancer. Notably, DEPDC1 has been suggested to have potential as a diagnostic and prognostic marker, as well as a therapeutic target. Its involvement in critical signaling pathways suggests that targeting DEPDC1 could inhibit tumor growth and metastasis, thereby improving patient outcomes. In addition, clinical trials have shown promising results for DEPDC1-derived peptide vaccines, indicating their safety and potential efficacy in cancer treatment. To the best of our knowledge, this is the first comprehensive review addressing the role of DEPDC1 in cancer. Through a critical analysis of existing studies, the present review aimed to consolidate existing knowledge and highlight gaps in understanding, paving the way for future research to elucidate the complex interactions of DEPDC1 in the context of cancer biology.
Collapse
Affiliation(s)
- Danqi Liu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100044, P.R. China
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Haima Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
2
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
3
|
Lv M, Li X, Yin Z, Yang H, Zhou B. Comprehensive analysis and validation reveal DEPDC1 as a potential diagnostic biomarker associated with tumor immunity in non-small-cell lung cancer. PLoS One 2024; 19:e0294227. [PMID: 38564630 PMCID: PMC10986975 DOI: 10.1371/journal.pone.0294227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/20/2023] [Indexed: 04/04/2024] Open
Abstract
Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regulatory function within NSCLC are largely unclear. This work utilized publicly available databases and in vitro experiments for exploring, DEPDC1 expression, clinical features, diagnostic significance and latent molecular mechanism within NSCLC. According to our results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared with non-carcinoma tissues, linked with gender, stage, T classification and N classification based on TCGA data and associated with smoking status and stage according to GEO datasets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI: 0.94-0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91-307.65; sensitivity = 0.89, 95%CI: 0.81-0.94; specificity = 0.92, 95%CI: 0.86-0.96; positive predictive value = 0.94, 95%CI: 0.89-0.98; negative predictive value = 0.78, 95%CI: 0.67-0.90; positive likelihood ratio = 11.77, 95%CI: 6.11-22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06-0.22). Subsequently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1 was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays, downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the proliferation of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data, which were primarily associated with T cells CD4 memory activated, macrophages M1, B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting. Compared with the group with high expression of DEPDC1, the group with low expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA confirmed that DEPDC1 was involved in gene expression and tumor-related signaling pathways. Finally, DEPDC1 and its associated immune-related genes were shown to be enriched in 'receptor ligand activity', 'external side of plasma membrane', 'regulation of innate immune response', and 'Epstein-Barr virus infection' pathways. The present study demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as the biomarker for diagnosis and immunology.
Collapse
Affiliation(s)
- Meiwen Lv
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Heping District, Shenyang, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health of China Medical University, Shenyang, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health of China Medical University, Shenyang, China
| | - He Yang
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Heping District, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Heping District, Shenyang, China
| |
Collapse
|
4
|
Zhu C, Ke S, Li Y, Zhang W, Che Y, Zhang R, Huang P, Xu T. Targeting DEP domain containing 1 in anaplastic thyroid carcinoma: Implications for stemness regulation and malignant phenotype suppression. Heliyon 2024; 10:e27150. [PMID: 38449652 PMCID: PMC10915564 DOI: 10.1016/j.heliyon.2024.e27150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Background Anaplastic thyroid carcinoma (ATC), a rare but highly aggressive endocrine malignancy, is characterized by a significant presence of cancer stem-like cells (CSCs). These CSCs, known for their self-renewal and differentiation capacities, contribute to various aggressive tumor properties, including recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Despite their critical role, the regulatory mechanisms of CSCs in ATC remain poorly elucidated, posing challenges in effectively targeting these cells for treatment. Methods To delve into this, we employed the single sample gene set enrichment analysis (ssGSEA) algorithm to evaluate the stemness of samples in combined datasets. Samples were then classified into high and low stemness subgroups based on their average stemness scores. Differential gene expression between these subgroups was analyzed. We further explored the association of candidate genes with patient prognosis. Additionally, we conducted gene set enrichment analysis (GSEA) and a series of cell biology experiments to validate the role of DEP domain-containing protein 1 (DEPDC1) in fostering CSC-like traits and regulating the malignant phenotypes of ATC. Results Our investigation demonstrated that DEPDC1 was significantly upregulated in CSCs and is abundantly expressed in ATC tissues. In vitro assays revealed that knockdown of DEPDC1 markedly inhibited tumor sphere formation and attenuated the proliferation, invasion, and migration of ATC cells. This silencing also resulted in reduced expression of stemness markers associated with CSCs. Furthermore, our GSEA findings linked high DEPDC1 expression to cell cycle progression and the maintenance of tumor cell stemness, with DEPDC1 knockdown disrupting these signaling pathways. Collectively, our results position DEPDC1 as a pivotal regulator of CSC-like characteristics in ATC, where aberrant DEPDC1 expression amplifies stemness properties and fuels the cancer's aggressive behavior. Consequently, DEPDC1 emerges as a promising therapeutic target for ATC management. In summary, this study underscores the pivotal role of DEPDC1 in modulating CSC-like features in ATC, offering new avenues for targeted therapy in this challenging malignancy.
Collapse
Affiliation(s)
- Chaozhuang Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Ying Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yulu Che
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruidan Zhang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Chen L, Lu J, Li X, Wang X, Qiao R, Guo W, Ren Q. LncRNA KTN1-AS1 facilitates esophageal squamous cell carcinoma progression via miR-885-5p/STRN3 axis. Genes Genomics 2024; 46:241-252. [PMID: 37747640 DOI: 10.1007/s13258-023-01451-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies and frequent cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) play regulatory roles and serve as biomarkers of multiple cancers, including ESCC. Our previous studies have confirmed that lncRNA Kinectin 1 antisense RNA 1 (KTN1-AS1) is highly expressed in ESCC and exerts oncogene function through RBBP4/HDAC1 complex. OBJECTIVE Our present study focused on exploring a novel molecular mechanism of KTN1-AS1 in ESCC. METHODS In this study, qRT-PCR assay, Western blot assay, Luciferase reporter assay, and RNA immunoprecipitation assay were conducted. RESULTS We found that KTN1-AS1 could bind to miR-885-5p in ESCC cells, and miR-885-5p was low expressed in ESCC. Overexpression of miR-885-5p inhibited esophageal cancer cells proliferation and invasion in vitro. Mechanistic analysis demonstrated that miR-885-5p specifically targeted striatin 3 (STRN3), and KTN1-AS1/miR-885-5p promoted the EMT process by Hippo pathway in STRN3/YAP1 dependent manner. CONCLUSION To sum up, KTN1-AS1 facilitates ESCC progression by acting as a ceRNA for miR-885-5p to regulate STRN3 expression and the Hippo pathway, and KTN1-AS1 maybe used as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Liying Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China
| | - Xiaoxu Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China
| | - Xinhao Wang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China
| | - Ruoyang Qiao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China.
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
6
|
Fu J, Yu L, Yan H, Tang S, Wang Z, Dai T, Chen H, Zhang S, Hu H, Liu T, Tang S, He R, Zhou H. LncRNAs in non-small cell lung cancer: novel diagnostic and prognostic biomarkers. Front Mol Biosci 2023; 10:1297198. [PMID: 38152110 PMCID: PMC10751344 DOI: 10.3389/fmolb.2023.1297198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related death worldwide, with a serious impact on human health and life. The identification of NSCLC at an early stage is a formidable task that frequently culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited protein-coding capacity, and its expression is out of balance in many cancers, especially NSCLC. A large number of studies have reported that lncRNA acts a vital role in regulating angiogenesis, invasion, metastasis, and the proliferation and apoptosis of tumor cells, affecting the occurrence and development of NSCLC. Abundant evidence demonstrates that lncRNAs may serve as potential biomarkers for NSCLC diagnosis and prognosis. In this review, we summarize the latest progress in characterizing the functional mechanism of lncRNAs involved in the development of NSCLC and further discuss the role of lncRNAs in NSCLC therapy and chemotherapy resistance. We also discuss the advantages, limitations, and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the management of NSCLC.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Dai
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Tang S, Xu L, Wu Z, Wen Q, Li H, Li N. A novel immunogenomic classification for prognosis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:10951-10964. [PMID: 37329462 DOI: 10.1007/s00432-023-04887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To facilitate immunotherapy and prognostic assessment of non-small cell lung cancer (NSCLC), we established a novel immunogenomic classification to provide valid identification criteria. METHODS The immune enrichment scores were calculated by single sample gene set enrichment analysis (ssGSEA) and clustered into Immunity_L and Immunity_H, and the reliability of this classification was demonstrated. Immune microenvironment score and immune cell infiltration analysis of NSCLC were also performed. Randomly divided into training group and test group, a prognosis-related immune profile was developed using least absolute shrinkage and selection operator (LASSO) and stepwise COX proportional hazards model to construct a prognostic mode. RESULTS The risk score for this immune profile was identified as an independent prognostic factor and can be used as a powerful prognostic tool to refine tumor immunotherapy. Our study identified two NSCLC classifications based on immunomic profiling, Immunity_H and Immunity_L. CONCLUSION In conclusion, Immunogenomic classification can distinguish the immune status of different types of NSCLC patients and contribute to the immunotherapy of NSCLC patients.
Collapse
Affiliation(s)
- Shu Tang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Construction Road, Zhengzhou, 450052, China.
| | - Liqing Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Construction Road, Zhengzhou, 450052, China
| | - Zhanshen Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Construction Road, Zhengzhou, 450052, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Construction Road, Zhengzhou, 450052, China
| | - Na Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Construction Road, Zhengzhou, 450052, China
| |
Collapse
|
8
|
Tang P, Sun D, Xu W, Li H, Chen L. Long non‑coding RNAs as potential therapeutic targets in non‑small cell lung cancer (Review). Int J Mol Med 2023; 52:68. [PMID: 37350412 PMCID: PMC10413047 DOI: 10.3892/ijmm.2023.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most common malignancies with a high morbidity and mortality rate. Long non‑coding RNAs (lncRNAs) have been reported to be closely associated with the occurrence and progression of NSCLC. In addition, lncRNAs have been documented to participate in the development of drug resistance and radiation sensitivity in patients with NSCLC. Due to their extensive functional characterization, high tissue specificity and sex specificity, lncRNAs have been proposed to be novel biomarkers and therapeutic targets for NSCLC. Therefore, in the current review, the functional classification of lncRNAs were presented, whilst the potential roles of lncRNAs in NSCLC were also summarized. Various physiological aspects, including proliferation, invasion and drug resistance, were all discussed. It is anticipated that the present review will provide a perspective on lncRNAs as potential diagnostic molecular biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Wei Xu
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| |
Collapse
|
9
|
Long Non-coding RNA KTN1-AS1 Targets miR-505 to Promote Glioblastoma Progression. Behav Neurol 2023; 2023:4190849. [PMID: 36762036 PMCID: PMC9904930 DOI: 10.1155/2023/4190849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant cancer, the prognosis of which is pretty poor. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs, which play important roles in carcinogenesis process of many cancers including GBM. In this study, we want to clarify the expression, biological function, and molecular mechanism of lncRNA KTN1 antisense RNA 1 (KTN1-AS1) in GBM tumor progression. We found that KTN1-AS1 expression was upregulated in GBM tissues and cell lines. KTN1-AS1 played oncogenic roles to facilitate proliferation, migration, and invasion of GBM cells. Then, we revealed that miR-505 was a target of KTN1-AS1, and its expression was decreased in GBM. KTN1-AS1 contributed to GBM progression by mediating miR-505. Finally, we demonstrated that KTN1-AS1 upregulated some target oncogenes of miR-505 including ZEB2, HMGB1, and RUNX2 in GBM cells. All in all, we concluded that the highly expressed KTN1-AS1 in GBM played oncogenic roles to facilitate GBM progression by targeting miR-505.
Collapse
|
10
|
Winkle M, Tayari MM, Kok K, Duns G, Grot N, Kazimierska M, Seitz A, de Jong D, Koerts J, Diepstra A, Dzikiewicz-Krawczyk A, Steidl C, Kluiver J, van den Berg A. The lncRNA KTN1-AS1 co-regulates a variety of Myc-target genes and enhances proliferation of Burkitt lymphoma cells. Hum Mol Genet 2022; 31:4193-4206. [PMID: 35866590 DOI: 10.1093/hmg/ddac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.
Collapse
Affiliation(s)
- Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Translational Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mina M Tayari
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Human Genetics, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Gerben Duns
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | | | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
11
|
Jia B, Liu J, Hu X, Xia L, Han Y. Pan-cancer analysis of DEPDC1 as a candidate prognostic biomarker and associated with immune infiltration. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1355. [PMID: 36660720 PMCID: PMC9843344 DOI: 10.21037/atm-22-5598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Background DEP domain containing 1 (DEPDC1) gene is upregulated in several malignancies and contributes to tumorigenesis. Although the role of DEPDC1 in tumor is becoming increasingly popular, the function of DEPDC1 in pan-cancer still needs to be systematically elucidated. Methods Data were downloaded from Genotype-Tissue Expression Data (GTEx), The Cancer Genome Atlas (TCGA) TIMER2.0, TISIDB, STRING, and CancerSEA databases and analyzed to determine the functionality of the DEPDC1. The results were visualized using tools provided by the databases and the R language. Results The results showed that DEPDC1 was significantly upregulated in 29 of the 33 human cancers analyzed. In addition, there were significant differences in DEPDC1 expression among cancer immune and molecular subtypes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEPDC1 was mainly involved in the cell cycle, and CancerSEA analysis showed that DEPDC1 promoted cell cycle, DNA repair, DNA damage, and proliferation in pan-cancer. Receiver operating characteristic (ROC) curve analysis showed high predictive accuracy for pan-cancer. DEPDC1 expression was positively correlated with activated CD4+ T helper 2 cells and common lymphoid progenitor cells, and negatively correlated with natural killer (NK) T cells, CD4+ central memory T cells, and CD4+ effector memory T cells. Furthermore, DEPDC1 was significantly positively correlated with T cell exhaustion marker genes, such as CD274, transforming growth factor beta receptor 1 (TGFBR1), kinase insert domain receptor (KDR), programmed cell death 1 ligand 2 (PDCD1LG2), granzyme B (GZMB), and granulysin (LAG2). Additionally, DEPDC1 was associated with overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) prognosis in multiple tumor types. The ROC analysis showed high predictive accuracy for pan-cancer. Conclusions Collectively, DEPDC1 is aberrantly expressed and plays an immune-oncogenic role in pan-cancer, and DEPDC1 may serve as a biomarker for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Boquan Jia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jun Liu
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital of Central South University, Changsha, China;,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital of Central South University, Changsha, China;,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China;,Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
KTN1-AS1, a SOX2-mediated lncRNA, activates epithelial-mesenchymal transition process in esophageal squamous cell carcinoma. Sci Rep 2022; 12:20186. [PMID: 36418920 PMCID: PMC9684558 DOI: 10.1038/s41598-022-24743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Kinectin 1 antisense RNA 1 (KTN1-AS1), a long non-coding RNA (lncRNA), has been proved to have tumor-promoting properties and its expression is enhanced in several human tumors. However, the role of KTN1-AS1 in the pathogenesis of esophageal squamous cell carcinoma (ESCC) remains unknown. This study aimed to investigate the expression status, functional roles, and molecular mechanisms of KTN1-AS1 in the development of ESCC. Considerable upregulation of KTN1-AS1 was confirmed in esophageal cancer cells and ESCC tissues and its expression was associated with TNM stage, pathological differentiation, and lymph node metastasis. SOX2 directly activated transcription of KTN1-AS1, and overexpression of KTN1-AS1 facilitated ESCC cells proliferation and invasion in vitro and in vivo. Furthermore, KTN1-AS1 could bind to retinoblastoma binding protein 4 (RBBP4) in the nucleus and enhanced its binding with histone deacetylase 1 (HDAC1), thereby activating the epithelial-mesenchymal transition (EMT) process through downregulating E-cadherin expression at the epigenetic level. In conclusion, KTN1-AS1, induced by SOX2, acts as a tumor-promoting gene and may serve as a potential therapeutic and prognostic biomarker for ESCC.
Collapse
|
13
|
Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J, Xu Z. Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:123-149. [PMID: 36353796 PMCID: PMC9859732 DOI: 10.1002/cac2.12386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Previous studies have revealed the critical role of transglutaminase 2 (TGM2) as a potential therapeutic target in cancers, but the oncogenic roles and underlying mechanisms of TGM2 in gastric cancer (GC) are not fully understood. In this study, we examined the role and potential mechanism of TGM2 in GC. METHODS Western blotting, immunohistochemistry, CCK8, colony formation and transwell assays were used to measure TGM2 expression in the GC cells and tissues and to examine the in vitro role of TGM2 in GC. Xenograft and in vivo metastasis experiments were performed to examine the in vivo role of TGM2 in GC. Gene set enrichment analysis, quantitative PCR and western blotting were conducted to screen for potential TGM2 targets involved in GC. Gain/loss-of-function and rescue experiments were conducted to detect the biological roles of STAT1 in GC cells in the context of TGM2. Co-immunoprecipitation, mass spectrometry, quantitative PCR and western blotting were conducted to identify STAT1-interacting proteins and elucidate their regulatory mechanisms. Mutations in TGM2 and two molecules (ZM39923 and A23187) were used to identify the enzymatic activity of TGM2 involved in the malignant progression of GC and elucidate the underlying mechanism. RESULTS In this study, we demonstrated elevated TGM2 expression in the GC tissues, which closely related to pathological grade, and predicted poor survival in patients with GC. TGM2 overexpression or knockdown promoted (and inhibited) cell proliferation, migration, and invasion, which were reversed by STAT1 knockdown or overexpression. Further studies showed that TGM2 promoted GC progression by inhibiting STAT1 ubiquitination/degradation. Then, tripartite motif-containing protein 21 (TRIM21) was identified as a ubiquitin E3 ligase of STAT1 in GC. TGM2 maintained STAT1 stability by facilitating the dissociation of TRIM21 and STAT1 with GTP-binding enzymatic activity. A23187 abolished the role of TGM2 in STAT1 and reversed the pro-tumor role of TGM2 in vitro and in vivo. CONCLUSIONS This study revealed a critical role and regulatory mechanism of TGM2 on STAT1 in GC and highlighted the potential of TGM2 as a therapeutic target, which elucidates the development of medicine or strategies by regulating the GTP-binding activity of TGM2 in GC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Qingya Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Jing Yang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Penghui Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Zhe Xuan
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Jianghao Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Zekuan Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China,Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingJiangsu211166P. R. China
| |
Collapse
|
14
|
Pan X, Xue L, Sun Y. Spermine synthase ( SMS) serves as a prognostic biomarker in head and neck squamous cell carcinoma: a bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1213. [PMID: 36544695 PMCID: PMC9761182 DOI: 10.21037/atm-22-5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSC) is an aggressive type of cancer that lacks early detection, and therefore, has a low 5-year survival rate. The spermine synthase (SMS) gene has been shown to be associated with Snyder-Robinson syndrome and poor prognosis of multiple cancers; however, its regulatory role in HNSC has never been investigated. Therefore, we explored the potential predictive value of SMS in HNSC. Methods We explored the association between SMS expression and clinicopathological parameters of HNSC patients by using data from The Cancer Genome Atlas datasets (TCGA). The prognostic value of SMS was evaluated using the Kaplan-Meier plotter, Gene Expression Profiling Interactive Analysis (GEPIA) 2 and univariate and multivariate Cox regression analyses. We further used gene set enrichment analysis (GESA) to investigate the potential roles of SMS in HNSC prognosis and Tumor Immunity Estimation Resource 2.0 (TIMER2.0) to analyze the correlation between immune cell infiltration and SMS expression. Finally, starBase was used to screen out prognosis-associated non-coding RNA genes to constructed the competing endogenous RNA (ceRNA) network. Co-expression and survival analyses were used to identify the ceRNA network's effect on HNSC prognosis. Results We found that SMS expression was increased in HNSC compared with normal tissues (P<0.05). In addition, SMS expression was associated with tumor grade (P=0.006), N stage (P=0.001), and prognosis. Survival analysis revealed that high expression of SMS showed worse overall survival (OS) (HR =1.4, P=0.01) and worse disease-free survival (DFS) (HR =1.5, P=0.014). Multivariate Cox analysis further supported the prognostic value of SMS in HNSC (HR =1.006636, P=0.0056). GESA showed that SMS was involved in metabolism- and immune-related pathways. The immune infiltration analyses results showed a decrease in the landscape of immune cell infiltration with high SMS expression and SMS deletion in HNSC. Finally, a ceRNA network (SMS/hsa-miR-23b-3p/KTN1-AS1 and VPS9D1-AS axis) was constructed based on the co-expression and survival analyses in HNSC. Conclusions Our findings first revealed that SMS functioned as a potential prognostic biomarker and provide insights into the molecular mechanisms of its function in HNSC. The use of SMS may be powerful for determining worse prognosis HNSC patients.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Neck Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Xue
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihan Sun
- Department of Neck Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, Nabavi N, Rabiee N, Hashemi M, Samarghandian S. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother 2022; 150:112963. [PMID: 35468579 DOI: 10.1016/j.biopha.2022.112963] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ghanbarirad
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada V6H3Z6
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Jian B, Yin P. STAT1 mediates the PI3K/AKT pathway through promoting microRNA-18a in nasal polyps. Immunopharmacol Immunotoxicol 2022; 44:194-205. [PMID: 35021946 DOI: 10.1080/08923973.2021.2025388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) is linked to the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP). The involvement of STAT1 has been reported in CRSwNP. However, its specific role in regulating EMT in CRSwNP is not clear. We sought to evaluate the role of STAT1 in EMT in CRSwNP using clinical samples and a murine model. METHODS Comprehensive analysis of differentially expressed genes was performed in nasal polyps from the CRSwNP patients, followed by pathway enrichment analysis. After bioinformatics prediction, the relationships between microRNA-18a (miR-18a) and PTEN or STAT1 were examined using dual-luciferase and RIP assays, respectively. The expression of STAT1, PTEN, and miR-18a in nasal tissues was detected using RT-qPCR, immunohistochemistry, and in situ hybridization. After the alteration of gene expression in mice with CRSwNP, western blot, RT-qPCR, and HE staining were conducted to detect EMT-related proteins, inflammatory factor secretion, inflammatory cell infiltration, and the PI3K/AKT pathway activity in nasal tissues. RESULTS STAT1 and miR-18a were highly expressed, and PTEN was poorly expressed in the nasal polyp. STAT1 promoted transcription of miR-18a, which targeted PTEN. Downregulation of STAT1 and miR-18a inhibited the EMT and inflammatory cell infiltration, while depletion of PTEN promoted the EMT and inflammatory cell infiltration in the nasal polyp. The PI3K/AKT pathway was activated in the nasal polyp and regulated by the STAT1/miR-18a/PTEN axis. CONCLUSIONS STAT1 acts as a transcription factor to promote transcription of miR-18a, and miR-18a targets PTEN to exacerbate the inflammatory response and EMT in CRSwNP.
Collapse
Affiliation(s)
- Baoshan Jian
- Department of Otolaryngology, Shengli Oilfield Central Hospital, Dongying, China
| | - Peng Yin
- Department of Otolaryngology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
17
|
DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:205-219. [PMID: 34761103 PMCID: PMC8551476 DOI: 10.1016/j.omto.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
DNA methylation is a class of epigenetic modification manner, which is responsible for the inactivation of various tumor suppressors. Recently, long non-coding RNAs (lncRNAs) were revealed to be implicated in a variety of malignancies, including non-small cell lung cancer (NSCLC). However, the contributions of lncRNAs to DNA-methylation-induced oncogenic effects in NSCLC remain largely unknown. In this study, we identified a DNA-methylation-repressed lncRNA DIO3 opposite strand upstream RNA (DIO3OS) in NSCLC. DIO3OS is downregulated in NSCLC, and its low expression is related to poor prognosis. Ectopic expression of DIO3OS repressed NSCLC cell growth and motility and promoted NSCLC cell apoptosis in vitro. DIO3OS also repressed NSCLC tumorigenesis and metastasis in vivo. DIO3OS knockdown exhibited opposite biological effects. DIO3OS competitively bound heterogeneous nuclear ribonucleoprotein K (hnRNPK), repressed the binding of hnRNPK to MYC DNA and MYC mRNA, reduced the promoting roles of hnRNPK on MYC transcription and translation, led to the repression of MYC transcription and translation, and therefore remarkably decreased the expression of MYC and CDC25A, a downstream target of MYC. Additionally, depletion of hnRNPK blocked the tumor-suppressive roles of DIO3OS in NSCLC. In conclusion, these findings identified DIO3OS as an important protective factor against NSCLC via modulating hnRNPK-MYC-CDC25A axis.
Collapse
|
18
|
Yang Y, Fan X, Nie Y, Liu D, Zhu D, Wu K, Zhang Y, Li W, Tian X, Wang H, Fan Y. CircTUBGCP3 facilitates the tumorigenesis of lung adenocarcinoma by sponging miR-885-3p. Cancer Cell Int 2021; 21:651. [PMID: 34872582 PMCID: PMC8647460 DOI: 10.1186/s12935-021-02356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/17/2021] [Indexed: 01/17/2023] Open
Abstract
Background Circular RNAs (circRNAs) act pivotal roles in the progression of multiple malignancies. However, the underlying mechanisms by which hsa_circ_0007031 (circTUBGCP3) contributes to lung adenocarcinoma (LAC) remain largely unknown. Methods The association of circTUBGCP3 expression with clinicopathological characteristics and prognosis in patients with LAC was determined by RT-qPCR and fluorescence in situ hybridization. The in vitro functional experiments as well as a subcutaneous tumorigenesis model were executed to estimate the role of circTUBGCP3 in LAC cells. The interaction between circTUBGCP3 and miR-885-3p was confirmed by RNA immunoprecipitation, luciferase gene report and RT-qPCR assays. The effects of circTUBGCP3 on miR-885-3p-mediated Wnt10b/β-catenin signaling were evaluated by Western blot. Results The upregulation of circTUBGCP3 or downregulation of miR-885-3p was associated with the pathological stage and poor survival in patients with LAC. Restored expression of circTUBGCP3 facilitated the growth and invasion of LAC cells, but knockdown of circTUBGCP3 harbored the opposite effects. In mechanism, circTUBGCP3 could act as a sponge of miR-885-3p, which suppressed the cell proliferation and colony formation and attenuated the tumor-promoting effects of circTUBGCP3. Wnt10b as a target of miR-885-3p could be upregulated be circTUBGCP3 and indicate poor survival in patient with LAC. Conclusions Our findings demonstrated that circTUBGCP3 promoted LAC progression by sponging miR-885-3p, and might represent a prognostic factor for LAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02356-2.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunfei Nie
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaqi Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, China.
| | - Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, China.
| |
Collapse
|
19
|
The Role of miR-23b in Cancer and Autoimmune Disease. JOURNAL OF ONCOLOGY 2021; 2021:6473038. [PMID: 34777498 PMCID: PMC8580694 DOI: 10.1155/2021/6473038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Short-stranded miRNAs are single-stranded RNA molecules involved in the regulation of gene expression. miRNAs are involved in a variety of cellular physiological processes, including cell proliferation, differentiation, and apoptosis. miR-23b have been identified to act both as oncogenes and as tumor suppressors. In addition, miR-23b is related to inflammation resistance to various autoimmune diseases and restrained inflammatory cell migration. The characterization of the specific alterations in the patterns of miR-23b expression in cancer and autoimmune disease has great potential for identifying biomarkers for early disease diagnosis, as well as for potential therapeutic intervention in various diseases. In this review, we summarize the ever-expanding role of miR-23b and its target genes in different models and offer insight into how this multifunctional miRNA modulates tumor cell proliferation and apoptosis or inflammatory cell activation, differentiation, and migration.
Collapse
|
20
|
Tian C, Abudoureyimu M, Lin X, Chu X, Wang R. Linc-ROR facilitates progression and angiogenesis of hepatocellular carcinoma by modulating DEPDC1 expression. Cell Death Dis 2021; 12:1047. [PMID: 34741030 PMCID: PMC8571363 DOI: 10.1038/s41419-021-04303-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023]
Abstract
Linc-ROR have been well-demonstrated to play important roles in cancer progression and angiogenesis. However, the underlying oncogenic mechanism of Linc-ROR in hepatocellular carcinoma is poorly understood. In this study, we demonstrate that Linc-ROR plays an oncogenic role in part through its positive regulation of DEPDC1 expression. Mechanistically, Linc-ROR acts as competing endogenous RNA to stabilize DEPDC1 mRNA and regulates DEPDC1 mRNA stability by binding HNRNPK. Thus, these findings suggest that function of Linc-ROR-mediated DEPDC1 could predispose hepatocellular carcinoma patients to progression and angiogenesis, and may serve as a potential target for anticancer therapies.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Female
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein K/genetics
- Heterogeneous-Nuclear Ribonucleoprotein K/metabolism
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Protein Binding
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Chuan Tian
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
Li M, Yang B, Li X, Ren H, Zhang L, Li L, Li W, Wang X, Zhou H, Zhang W. Identification of Prognostic Factors Related to Super Enhancer-Regulated ceRNA Network in Metastatic Lung Adenocarcinoma. Int J Gen Med 2021; 14:6261-6275. [PMID: 34629892 PMCID: PMC8493278 DOI: 10.2147/ijgm.s332317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction The regulatory mechanisms of super enhancers (SEs) and ceRNA networks in LUAD progression are not well understood. We aimed to discover the prognostic-related ceRNA network regulated by SEs in metastatic LUAD. Methods RNA-seq data were extracted from The Cancer Genome Atlas (TCGA) database. Differentially expressed (DE) RNAs were identified by edgeR. CeRNA network was predicted and visualized using starBase and Cytoscape. H3K27ac ChIP-seq data were derived from the Gene Expression Omnibus (GEO) database, and used for SE identification. Kaplan–Meier curve and multivariate Cox model were applied for prognostic analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) network were performed for functional analysis. SEs of AC074117.1 were verified by ChIP-qPCR in A549 and H1299 cells. MTT assay was performed to analyze cell proliferation. Luciferase activity assay was carried out to validate the target targeting relationships of ceRNA network. Results A total of 2355 DEmRNA, 483 DElncRNA and 155 DEmiRNA were identified between metastatic LUAD and adjacent normal tissues. CeRNA network consisting of 7 DElncRNAs, 18 DEmiRNAs and 15 DEmRNAs was constructed. Among the seven DElncRNAs in ceRNA network, only AC074117.1 was regulated by SEs. SE-regulated prognostic ceRNA sub-network consisting of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p was screened and verified. The overlapping co-expressed mRNAs of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p were mainly related to cell division and Fanconi anemia pathway. Genes in the ceRNA sub-network were correlated with DNA mismatch repair markers. Functional experiments proved that AC074117.1 was highly expressed in LUAD cells. AC074117.1 silencing notably inhibited proliferation of A549 and H1299 cells. Luciferase activity assay confirmed the direct relationship in AC074117.1-hsa-let-7c-5p-FKBP3/E2F2 network. Conclusion A novel prognostic ceRNA sub-network regulated by SEs was identified in metastatic LUAD. This study provided potential therapeutic targets and prognostic markers for further study of metastatic LUAD.
Collapse
Affiliation(s)
- Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Haixia Ren
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xuhui Wang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Honggang Zhou
- College of Pharmacy, Nankai University, State Key Laboratory of Medicinal Chemical Biology, Tianjin, People's Republic of China
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Xu G, Yang Z, Ding Y, Liu Y, Zhang L, Wang B, Tang M, Jing T, Jiao K, Xu X, Chen Z, Xiang L, Xu C, Fu Y, Zhao X, Jin W, Liu Y. The deubiquitinase USP16 functions as an oncogenic factor in K-RAS-driven lung tumorigenesis. Oncogene 2021; 40:5482-5494. [PMID: 34294846 DOI: 10.1038/s41388-021-01964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
K-RAS mutation and molecular alterations of its surrogates function essentially in lung tumorigenesis and malignant progression. However, it remains elusive how tumor-promoting and deleterious events downstream of K-RAS signaling are coordinated in lung tumorigenesis. Here, we show that USP16, a deubiquitinase involved in various biological processes, functions as a promoter for the development of K-RAS-driven lung tumor. Usp16 deletion significantly attenuates K-rasG12D-mutation-induced lung tumorigenesis in mice. USP16 upregulation upon RAS activation averts reactive oxygen species (ROS)-induced p38 activation that would otherwise detrimentally influence the survival and proliferation of tumor cells. In addition, USP16 interacts with and deubiquitinates JAK1, and thereby promoting lung tumor growth by augmenting JAK1 signaling. Therefore, our results reveal that USP16 functions critically in the K-RAS-driven lung tumorigenesis through modulating the strength of p38 and JAK1 signaling.
Collapse
Affiliation(s)
- Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizong Ding
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Jiao
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xiaoli Xu
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Zehong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lvzhu Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Liu B, Xiang W, Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G, Liu J. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int 2021; 21:459. [PMID: 34461912 PMCID: PMC8404292 DOI: 10.1186/s12935-021-02168-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Antisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
24
|
Liu XX, Bao QX, Li YM, Zhang YH. The promotion of cervical cancer progression by signal transducer and activator of transcription 1-induced up-regulation of lncRNA MEOX2-AS1 as a competing endogenous RNA through miR-143-3p/VDAC1 pathway. Bioengineered 2021; 12:3322-3335. [PMID: 34224325 PMCID: PMC8806930 DOI: 10.1080/21655979.2021.1947174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the new regulators and biomarkers for various tumors. However, in cervical cancer (CC), the potential roles of lncRNAs are not well characterized. This research aimed at exploring the roles of MEOX2 antisense RNA 1(MEOX2-AS1) in CC progression and the underlying mechanisms. The examination of MEOX2-AS1 levels in CC specimens and cell lines was conducted by RT-PCR. Loss-of-function experiments were performed for the assays of proliferation, migration, and invasion of CC cells after various treatments. Animal experiments were applied for the determination of the effects of MEOX2-AS1 in vivo. Bioinformatics analysis, together with dual-luciferase reporter assays, was applied to demonstrate the possible relationships among MEOX2-AS1, miR-143-3p and VDAC1. In the paper, we reported that MEOX2-AS1 levels were distinctly upregulated in CC cells and tissues, and higher MEOX2-AS1 expressions indicated a poor clinical outcome. Besides, STAT1 could activate transcriptions of MEOX2-AS1 by binding directly to its promoter region. The silence of MEOX2-AS1 suppressed the metastatic and proliferative ability of CC cells, as revealed by functional assays. Mechanistically, MEOX2-AS1 sponged miR-143-3p to regulate VDAC1 expressions. Furthermore, miR-143-3p inhibitor reversed the anti-proliferation and anti-metastasis effect of MEOX2-AS1 knockdown. Overall, the data indicated that the MEOX2-AS1/miR-143-3p/VDAC1 pathway participated in CC progression, making it a novel therapeutic target for CC cures.
Collapse
Affiliation(s)
- Xiao-Xing Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Qi-Xiu Bao
- Department of Public Health, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Yan-Mei Li
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Yan-Hua Zhang
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| |
Collapse
|
25
|
Zhu HB, Li B, Guo J, Miao YZ, Shen YT, Zhang YZ, Zhao P, Li CZ. LncRNA MEG8 promotes TNF-α expression by sponging miR-454-3p in bone-invasive pituitary adenomas. Aging (Albany NY) 2021; 13:14342-14354. [PMID: 34016788 PMCID: PMC8202870 DOI: 10.18632/aging.203048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/16/2021] [Indexed: 04/12/2023]
Abstract
There are few studies on the mechanism of pituitary adenoma (PA) destroying bone. The current study aimed to investigate the role of MEG8/miR-454-3p/TNF-α in bone-invasive pituitary adenomas (BIPAs). In this study, we report that lncRNA MEG8 and TNF-α are upregulated in BIPA tissues while miR-454-3p is downregulated, which is associated with poor progression-free survival (PFS). Functional assays revealed the role of up-regulated MEG8 and down-regulated miR-454-3p in promoting bone destruction. Mechanistically, MEG8 promotes TNF-α expression by sponging miR-454-3p, which ultimately leads to the occurrence of bone destruction. The mechanism is confirmed in vivo and in vitro. Therefore, our data illustrated a new regulatory mechanism of MEG8/miR-454-3p/TNF-α in BIPAs. It may provide a useful strategy for diagnosis and treatment for BIPA patients.
Collapse
Affiliation(s)
- Hai-Bo Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
| | - Bin Li
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Ya-Zhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Yu-Tao Shen
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Ya-Zhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Fengtai 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai 100070, Beijing, China
| | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
| | - Chu-Zhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Fengtai 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai 100070, Beijing, China
| |
Collapse
|
26
|
Shi J, Yang C, An J, Hao D, Liu C, Liu J, Sun J, Jiang J. KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:148. [PMID: 33931086 PMCID: PMC8086369 DOI: 10.1186/s13046-021-01943-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a major histological subtype of lung cancer with high mortality and morbidity. A substantial amount of evidence demonstrates long non-coding RNAs (lncRNA) as critical regulators in tumorigeneis and malignant progression of human cancers. The oncogenic role of BBOX1 anti-sense RNA 1 (BBOX1-AS1) has been reported in several tumors. As yet, the potential functions and mechanisms of BBOX1-AS1 in NSCLC are obscure. Methods The gene and protein expression was detected by qRT-PCR and western blot. Cell function was determined by CCK-8, colony forming, would healing and transwell assays. Bioinformatics tools, ChIP assays, dual luciferase reporters system and RNA pull-down experiments were used to examine the interaction between molecules. Subcutaneous tumor models in nude mice were established to investigate in vivo NSCLC cell behavior. Results BBOX1-AS1 was highly expressed in NSCLC tissues and cells. High BBOX1-AS1 expression was associated with worse clinical parameters and poor prognosis. BBOX1-AS1 up-regulation was induced by transcription factor KLF5. BBOX1-AS1 deficiency resulted in an inhibition of cell proliferation, migration, invasion and EMT in vitro. Also, knockdown of BBOX1-AS1 suppressed NSCLC xenograft tumor growth in mice in vivo. Mechanistically, BBOX1-AS1 acted act as a competetive “sponge” of miR-27a-5p to promote maternal embryonic leucine zipper kinase (MELK) expression and activate FAK signaling. miR-27a-5p was confirmed as a tumor suppressor in NSCLC. Moreover, BBOX1-AS1-induced increase of cell proliferation, migration, invasion and EMT was greatly reversed due to the overexpression of miR-27a-5p. In addition, the suppressive effect of NSCLC progression owing to BBOX1-AS1 depletion was abated by the up-regulation of MELK. Consistently, BBOX1-AS1-mediated carcinogenicity was attenuated in NSCLC after treatment with a specific MELK inhibitor OTSSP167. Conclusions KLF5-induced BBOX1-AS1 exerts tumor-promotive roles in NSCLC via sponging miR-27a-5p to activate MELK/FAK signaling, providing the possibility of employing BBOX1-AS1 as a therapeutic target for NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01943-5.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dexun Hao
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jumin Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junguang Jiang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
LncRNA DLEU2 is activated by STAT1 and induces gastric cancer development via targeting miR-23b-3p/NOTCH2 axis and Notch signaling pathway. Life Sci 2021; 277:119419. [PMID: 33785336 DOI: 10.1016/j.lfs.2021.119419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Gastric cancer (GC) has severely affected the health of patients and caused high mortality around the world. Long non-coding RNAs (lncRNAs) have been validated to play significant roles in biological process of multiple cancers. METHODS Quantitative real-time PCR (RT-qPCR) and western blot analysis were conducted to evaluate the expression levels and protein levels of related genes in GC cells. Functional assays were implemented to explore the effect of deleted in lymphocytic leukemia 2 (DLEU2). The upstream and downstream mechanisms of DLEU2 were verified by mechanism investigations. RESULTS The expression of long non-coding RNA (lncRNA) DLEU2 was observably high in GC cells and tissues. DLEU2 silence depressed the capacities of proliferation, migration and invasion but promoted apoptosis in GC cells. Moreover, DLEU2 was activated by signal transducer and activator of transcription 1 (STAT1) and sequestered microRNA-23b-3p (miR-23b-3p) to modulate the expression of notch receptor 2 (NOTCH2), thereby stimulating Notch signaling pathway. More importantly, DLEU2 contributed to GC progression via targeting miR-23b-3p/NOTCH2 axis. CONCLUSIONS In summary, our research identified the STAT1/DLEU2/miR-23b-3p/NOTCH2/Notch axis in GC development, indicating that DLEU2 might function as a novel biomarker in GC.
Collapse
|
28
|
Hu X, Xiang L, He D, Zhu R, Fang J, Wang Z, Cao K. The long noncoding RNA KTN1-AS1 promotes bladder cancer tumorigenesis via KTN1 cis-activation and the consequent initiation of Rho GTPase-mediated signaling. Clin Sci (Lond) 2021; 135:555-574. [PMID: 33480975 DOI: 10.1042/cs20200908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accumulating evidence support the hypothesis that long noncoding RNAs (lncRNAs) are involved in several physiological and pathological conditions, including cancer. Here, we investigated the potential role of lncRNAs in bladder cancer. METHODS We first looked at available datasets retrieved from the TCGA database and discovered that the lncRNA KTN 1 antisense RNA 1 (KTN1-AS1) was significantly up-regulated in several cancer types including bladder cancer, but was decreased in some other tumors. Therefore, we focused our attention on KTN1-AS1. Using both in vitro and in vivo systems that allowed the modulation of KTN1-AS1 and expression of other relevant proteins, we investigated in-depth the role of KTN1-AS1 in bladder cancer (and the mechanism behind). We further investigated the potential KTN1-AS1-interacting proteins using RNA immunoprecipitation, and explored the KTN1-AS1-related epigenetic landscape (with a particular emphasis on acetylation) using chromatin immunoprecipitation (ChIP) assays. RESULTS KTN1-AS1 silencing inhibited the proliferation, invasion, and migration of bladder cancer cells, while KTN1-AS1 overexpression had the obvious opposite effects. Mechanistically, KTN1-AS1 promoted the recruitment of EP300, a histone acetyltransferase that enriched acetylation of histone H3 at lysine 27 (H3K27Ac) in the KTN1 promoter region. This epigenetic modulation contributed to the up-regulation of KTN1, which affected bladder cancer growth and progression via the regulation of Rho GTPase (RAC1, RHOA, and CDC42)-mediated signaling. CONCLUSION Overall, our data support the idea that the lncRNA KTN1-AS1 promotes bladder cancer tumorigenesis via modulation of the KTN1/Rho GTPase axis and is a promising new therapeutic target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Xueying Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Rongrong Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
29
|
Mu Y, Tang Q, Feng H, Zhu L, Wang Y. lncRNA KTN1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑505‑3p. Oncol Rep 2020; 44:2645-2655. [PMID: 33125151 PMCID: PMC7640367 DOI: 10.3892/or.2020.7821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most prevalent and aggressive central nervous tumors with high mobility and mortality. The prognosis of patients with GBM is poor. It is therefore essential to explore the therapeutic strategies for the treatment of GBM. Previous studies have demonstrated that the long non-coding RNA (lncRNA) Kinectin 1-Antisense RNA 1 (KTN1-AS1) can participate in the development of several types of cancer. However, the underlying mechanism of KTN1-AS1 in GBM remains unknown. The present study aimed to determine the potential role of KTN1-AS1 in GBM. In this study, reverse transcription quantitative PCR analysis was conducted and the results demonstrated that KTN1-AS1 was upregulated in GBM tissues and cell lines compared with normal tissues and astrocytes (NHA). Furthermore, KTN1-AS1 knockdown decreased the viability and invasive ability of glioma cells in vitro and in vivo. In addition, high level of KTN1-AS1 was correlated with poor prognosis in TCGA GBM database. Furthermore, microRNA-505-3p (miR-505-3p) was a promising target of KTN1-AS1, and the suppressing effects of miR-505-3p on cell proliferation and invasive ability was reversed by downregulating KTN1-AS1. Taken together, the results from the present provided novel insights into the roles of KTN1-AS1 in GBM, and suggested that the KTN1-AS1/miR-505-3p axis may be considered as a novel therapeutic target for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Yulong Mu
- Department of Surgery, Hanan Branch of The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Qiang Tang
- Rehabilitation Medicine Center of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyan Feng
- Shanghai Public Health Clinical Center, Jinshan, Shanghai 200001, P.R. China
| | - Luwen Zhu
- Rehabilitation Medicine Center of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Wang
- Rehabilitation Medicine Center of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
30
|
Li G, Yang H, Cheng Y, Zhao X, Li X, Jiang R. Identification of a three-miRNA signature as a novel prognostic model for papillary renal cell carcinoma. Cancer Cell Int 2020; 20:317. [PMID: 32694939 PMCID: PMC7367267 DOI: 10.1186/s12935-020-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Background Papillary renal cell carcinoma (pRCC) accounting for near 20% of renal cell carcinoma is the second most common histological subtype. MiRNAs have been demonstrated to played significant roles on predicting prognosis of patients with tumors. An appropriate and comprehensive miRNAs analysis based on a great deal of pRCC samples from The Cancer Genome Atlas (TCGA) will provide perspective in this field. Methods We integrated the expression of mRNAs, miRNAs and the relevant clinical data of 321 pRCC patients recorded in the TCGA database. The survival-related differential expressed miRNAs (sDEmiRs) were estimated by COX regression analysis. The high-risk group and the low-risk group were separated by the median risk score of the risk score model (RSM) based on three screened sDEmiRs. The target genes, underlying molecular mechanisms of these sDEmiRs were explored by computational biology. The expression levels of the three sDEmiRs and their correlations with clinicopathological parameters were further validated by qPCR. Results Based on univariate COX analysis (P < 0.001), eighteen differential expressed miRNAs (DEmiRs) were remarkably related with the overall survival (OS) of pRCC patients. Three sDEmiRs with the most significant prognostic values (miR-34a-5p, miR-410-3p and miR-6720-3p) were employed to establish the RSM which was certified as an independent prognosis factor and closely correlated with OS. In the verification of clinical samples, the overexpression of miR-410-3p and miR-6720-3p were detected to be associated with the advanced T-stages, while miR-34a-5p showed the reversed results. Conclusion The study developed a RSM based on the identified sDEmiRs with significant prognosis prediction values for pRCC patients. The results pave the avenue for establishing and optimizing a reliable and referable risk assessing model and provide novel insight into the researches of biomarkers and clinical treatment strategies.
Collapse
Affiliation(s)
- Ge Li
- Department of Urology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000 China
| | - Haifan Yang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000 China
| | - Yong Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000 China
| | - Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000 China
| | - Xu Li
- Department of Urology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000 China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000 China
| |
Collapse
|