1
|
Huang J, Chakraborty A, Tadepalli LS, Paul A. Adoption of a Tetrahedral DNA Nanostructure as a Multifunctional Biomaterial for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:2204-2214. [PMID: 39144555 PMCID: PMC11320733 DOI: 10.1021/acsptsci.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
DNA nanostructures have been widely researched in recent years as emerging biomedical materials for drug delivery, biosensing, and cancer therapy, in addition to their hereditary function. Multiple precisely designed single-strand DNAs can be fabricated into complex, three-dimensional DNA nanostructures through a simple self-assembly process. Among all of the synthetic DNA nanostructures, tetrahedral DNA nanostructures (TDNs) stand out as the most promising biomedical nanomaterial. TDNs possess the merits of structural stability, cell membrane permeability, and natural biocompatibility due to their compact structures and DNA origin. In addition to their inherent advantages, TDNs were shown to have great potential in delivering therapeutic agents through multiple functional modifications. As a multifunctional material, TDNs have enabled innovative pharmaceutical applications, including antimicrobial therapy, anticancer treatment, immune modulation, and cartilage regeneration. Given the rapid development of TDNs in the biomedical field, it is critical to understand how to successfully produce and fine-tune the properties of TDNs for specific therapeutic needs and clinical translation. This article provides insights into the synthesis and functionalization of TDNs and summarizes the approaches for TDN-based therapeutics delivery as well as their broad applications in the field of pharmaceutics and nanomedicine, challenges, and future directions.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lakshmi Suchitra Tadepalli
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of
Biomedical Engineering, The University of
Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department
of Chemistry, The University of Western
Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
2
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Yang N, Song Y, Li Y, Dong B, Yang J, Guo Z. Characterization of lncRNA-associated ceRNA network to uncover novel potential biomarkers in coronary artery disease. Medicine (Baltimore) 2023; 102:e35913. [PMID: 38013355 PMCID: PMC10681391 DOI: 10.1097/md.0000000000035913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
The purpose of this study was to construct a competitive endogenous RNA (ceRNA) network related to long non-coding RNA (lncRNAs) via the bioinformatics analysis, reveal the pathogenesis of coronary heart disease (CAD) and develop new biomarkers for CAD. The gene expression datasets of peripheral blood of CAD were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were identified. Subsequently, a ceRNA network involving lncRNAs, miRNAs, and mRNAs was built. Moreover, DElncRNAs in the cytoplasm were screened and a DElncRNA-associated ceRNA network was established. In total, 1860 DEmRNAs, 393 DElncRNAs and 20 DEmiRNAs were filtrated in patients with CAD compared with normal controls. Functional analysis suggested that DEmRNAs significantly enriched in CAD-related pathways, such as PI3K-Akt signaling pathways and MAPK signaling pathway. The ceRNA network contained 12 DEmiRNAs, 30 DElncRNAs and 537 DEmRNAs. Afterwards, the cytoplasm ceRNA network was consisted of 537 DEmRNAs, 12 DEmiRNAs and 12 DElncRNAs. Such as, up-regulated LncRNA-HOX transcript antisense RNA (HOTAIR) was interacted with down-regulated has-miR-326 and has-miR-1. The successful construction of lncRNA-associated ceRNA network is helpful to better clarify the pathogenesis of CAD and provide potential peripheral blood biomarkers for CAD.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiology Research, Tianjin Chest Hospital, Tianjin, China
| | - Yang Li
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Bo Dong
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jingyu Yang
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovasular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
4
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
6
|
microRNAs Associated with Carotid Plaque Development and Vulnerability: The Clinician's Perspective. Int J Mol Sci 2022; 23:ijms232415645. [PMID: 36555285 PMCID: PMC9779323 DOI: 10.3390/ijms232415645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke (IS) related to atherosclerosis of large arteries is one of the leading causes of mortality and disability in developed countries. Atherosclerotic internal carotid artery stenosis (ICAS) contributes to 20% of all cerebral ischemia cases. Nowadays, atherosclerosis prevention and treatment measures aim at controlling the atherosclerosis risk factors, or at the interventional (surgical or endovascular) management of mature occlusive lesions. There is a definite lack of the established circulating biomarkers which, once modulated, could prevent development of atherosclerosis, and consequently prevent the carotid-artery-related IS. Recent studies emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal role in this approach. There are some research studies on the association between the expression of small non-coding microRNAs with a carotid plaque development and vulnerability. However, the data remain inconsistent. In addition, all major studies on carotid atherosclerotic plaque were conducted on cell culture or animal models; very few were conducted on humans, whereas the accumulating evidence demonstrates that it cannot be automatically extrapolated to processes in humans. Therefore, this paper aims to review the current knowledge on how miRNA participate in the process of carotid plaque formation and rupture, as well as stroke occurrence. We discuss potential target miRNA that could be used as a prognostic or therapeutic tool.
Collapse
|
7
|
In silico and in vitro analysis of microRNAs with therapeutic potential in atherosclerosis. Sci Rep 2022; 12:20334. [PMID: 36433987 PMCID: PMC9700707 DOI: 10.1038/s41598-022-24260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which aberrant lipid metabolism plays a key role. MicroRNAs (miRNAs), micro-coordinators of gene expression, have been recently proposed as novel clinical biomarkers and potential therapeutic tools for a broad spectrum of diseases. This study aimed to identify miRNAs with therapeutic potential in atherosclerosis. Bioinformatic databases, including experimentally validated and computational prediction tools as well as a novel combination method, were used to identify miRNAs that are able to simultaneously inhibit key genes related to the pathogenesis of atherosclerosis. Further validation of genes and miRNAs was conducted using the STRING online tool, KEGG pathway analysis and DIANA-miRPath. The inhibitory effects of the identified miRNAs in HepG2 and Huh7 cells were verified by real-time PCR. The MTT assay was utilized to evaluate cell cytotoxicity effects of miRNAs. Atherosclerotic drug-targeted genes were selected as key genes. Strong interactions between genes were confirmed using STRING. These genes were shown to be integral to critical pathological processes involved in atherosclerosis. A novel combined method of validated and predicted tools for the identification of effective miRNAs was defined as the combination score (C-Score). Bioinformatic analysis showed that hsa-miR-124-3p and hsa-miR-16-5p possessed the best C-Score (0.68 and 0.62, respectively). KEGG and DIANA-miRPath analysis showed that selected genes and identified miRNAs were involved in atherosclerosis-related pathways. Compared with the controls in both HepG2 and Huh7 cell lines, miR-124 significantly reduced the expression of CETP, PCSK9, MTTP, and APOB, and miR-16 significantly reduced the expression of APOCIII, CETP, HMGCR, PCSK9, MTTP, and APOB, respectively. The cytotoxicity assay showed that miR-124 reduced cell viability, especially after 72 h; however, miR-16 did not show any significant cytotoxicity in either cell line. Our findings indicate that hsa-miR-124 and miR-16 have potential for use as therapeutic candidates in the treatment of atherosclerosis.
Collapse
|
8
|
Arencibia A, Salazar LA. Microarray meta-analysis reveals IL6 and p38β/MAPK11 as potential targets of hsa-miR-124 in endothelial progenitor cells: Implications for stent re-endothelization in diabetic patients. Front Cardiovasc Med 2022; 9:964721. [PMID: 36176980 PMCID: PMC9513120 DOI: 10.3389/fcvm.2022.964721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating endothelial progenitor cells (EPCs) play an important role in the repair processes of damaged vessels, favoring re-endothelization of stented vessels to minimize restenosis. EPCs number and function is diminished in patients with type 2 diabetes, a known risk factor for restenosis. Considering the impact of EPCs in vascular injury repair, we conducted a meta-analysis of microarray to assess the transcriptomic profile and determine target genes during the differentiation process of EPCs into mature ECs. Five microarray datasets, including 13 EPC and 12 EC samples were analyzed, using the online tool ExpressAnalyst. Differentially expressed genes (DEGs) analysis was done by Limma method, with an | log2FC| > 1 and FDR < 0.05. Combined p-value by Fisher exact method was computed for the intersection of datasets. There were 3,267 DEGs, 1,539 up-regulated and 1,728 down-regulated in EPCs, with 407 common DEGs in at least four datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment for terms related to “AGE-RAGE signaling pathway in diabetic complications.” Intersection of common DEGs, KEGG pathways genes and genes in protein-protein interaction network (PPI) identified four key genes, two up-regulated (IL1B and STAT5A) and two down-regulated (IL6 and MAPK11). MicroRNA enrichment analysis of common DEGs depicted five hub microRNA targeting 175 DEGs, including STAT5A, IL6 and MAPK11, with hsa-miR-124 as common regulator. This group of genes and microRNAs could serve as biomarkers of EPCs differentiation during coronary stenting as well as potential therapeutic targets to improve stent re-endothelization, especially in diabetic patients.
Collapse
|
9
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
10
|
Ghafouri-Fard S, Poulet C, Malaise M, Abak A, Mahmud Hussen B, Taheriazam A, Taheri M, Hallajnejad M. The Emerging Role of Non-Coding RNAs in Osteoarthritis. Front Immunol 2021; 12:773171. [PMID: 34912342 PMCID: PMC8666442 DOI: 10.3389/fimmu.2021.773171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OS) is the most frequent degenerative condition in the joints, disabling many adults. Several abnormalities in the articular cartilage, subchondral bone, synovial tissue, and meniscus have been detected in the course of OA. Destruction of articular cartilage, the formation of osteophytes, subchondral sclerosis, and hyperplasia of synovial tissue are hallmarks of OA. More recently, several investigations have underscored the regulatory roles of non-coding RNAs (ncRNAs) in OA development. Different classes of non-coding RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been reported to affect the development of OA. The expression level of these transcripts has also been used as diagnostic tools in OA. In the present article, we aimed at reporting the role of these transcripts in this process. We need to give a specific angle on the pathology to provide meaningful thoughts on it.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Christophe Poulet
- Department of Rheumatology, University Hospital of Liège (CHULiege), Liège, Belgium
- Fibropôle Research Group, University Hospital of Liège (CHULiege), Liège, Belgium
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), Liège, Belgium
| | - Michel Malaise
- Department of Rheumatology, University Hospital of Liège (CHULiege), Liège, Belgium
- Fibropôle Research Group, University Hospital of Liège (CHULiege), Liège, Belgium
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), Liège, Belgium
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammad Hallajnejad,
| | - Mohammad Hallajnejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammad Hallajnejad,
| |
Collapse
|
11
|
Zhang ZZ, Wang G, Yin SH, Yu XH. Midkine: A multifaceted driver of atherosclerosis. Clin Chim Acta 2021; 521:251-257. [PMID: 34331952 DOI: 10.1016/j.cca.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis constitutes the pathological basis of life-threatening events, including heart attack and stroke. Midkine is a heparin-binding growth factor and forms a small protein family with pleiotrophin. Under inflammatory or hypoxic conditions, midkine expression is up-regulated. Upon binding to its receptors, midkine can activate multiple signal pathways to regulate cell survival and migration, epithelial-to-mesenchymal transition, and oncogenesis. Circulating midkine levels are significantly increased in patients with essential hypertension, obesity or severe peripheral artery disease. Importantly, midkine exerts a proatherogenic effect by altering multiple pathophysiological processes involving atherogenesis, including macrophage lipid accumulation, vascular inflammation, neointima formation, insulin resistance and macrophage apoptosis. Midkine represents a potential therapeutic target for atherosclerosis-associated diseases. This review described the structure characteristics, expression patterns and signal transduction pathways of midkine with an emphasis on its role in atherosclerosis.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang 421005, Hunan, China
| | - Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Shan-Hui Yin
- Department of Neonatology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China.
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China.
| |
Collapse
|
12
|
Fathi M, Ghafouri-Fard S, Abak A, Taheri M. Emerging roles of miRNAs in the development of pancreatic cancer. Biomed Pharmacother 2021; 141:111914. [PMID: 34328099 DOI: 10.1016/j.biopha.2021.111914] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer is a fatal cancer which is expected to exceed breast cancer as the third foremost source of cancer mortality by 2025. This cancer has been associated with several somatic genetic aberrations including mutations in the KRAS, CDKN2A/p16, TP53, and SMAD4. In addition, epigenetic alterations have been shown to affect development of this cancer. miRNAs are among the mostly appreciated epigenetic factors in this regard. Several oncomiRs such as miR-212, miR 506, miR-196b, miR-221-3p, miR-301a-3p, miR-23a and miR-29a have been found to promote proliferation of pancreatic cancer cells and block apoptotic pathways in these cells. On the other hand, miR-451a, miR-506, miR-142, miR-216b, miR-519d-3p, miR-1181, miR-340, miR-143-3p, miR-203a-3p, miR-455, miR-15a, miR-135a and miR-202 are among tumor suppressor miRNAs that modulate proliferation and cell cycle transition in these cells. In the current paper, we will discuss the role of oncomiRs and tumor suppressor miRNAs in the evolution of pancreatic cancer. Moreover, we will summarize the application of miRNAs as diagnostic and prognostic markers in pancreatic cancer. These studies have shown the ability of miRNAs to be served as non-invasive markers for pancreatic cancer.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111759. [PMID: 34091180 DOI: 10.1016/j.biopha.2021.111759] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most fatal and fourth most frequently diagnosed neoplasm in the world. Numerous non-coding RNAs have been shown to contribute in the development of CRC. MicroRNAs (miRNAs) are among the mostly assessed non-coding RNAs in CRC. These transcripts influence expression and activity of TGF-β, Wnt/β-catenin, MAPK, PI3K/AKT and other CRC-related pathways. In the context of CRC, miRNAs interact with long non-coding RNAs to influence CRC course. Stool and serum levels of miRNAs have been used to distinguish CRC patients from healthy controls, indicating diagnostic roles of these transcripts in CRC. Therapeutic application of miRNAs in CRC has been assessed in animal models, yet has not been verified in clinical settings. In the current review, we have provided a recent update on the role of miRNAs in CRC development as well as diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the Pathogenesis of Coronary Artery Disease. Front Cardiovasc Med 2021; 8:632392. [PMID: 33912599 PMCID: PMC8072222 DOI: 10.3389/fcvm.2021.632392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is the main reason of cardiovascular mortalities worldwide. This condition is resulted from atherosclerotic occlusion of coronary arteries. MicroRNAs (miRNAs) are implicated in the regulation of proliferation and apoptosis of endothelial cells, induction of immune responses and different stages of plaque formation. Up-regulation of miR-92a-3p, miR-206, miR-216a, miR-574-5p, miR-23a, miR-499, miR-451, miR-21, miR-146a, and a number of other miRNAs has been reported in CAD patients. In contrast, miR-20, miR-107, miR-330, miR-383-3p, miR-939, miR-4306, miR-181a-5p, miR-218, miR-376a-3p, and miR-3614 are among down-regulated miRNAs in CAD. Differential expression of miRNAs in CAD patients has been exploited to design diagnostic or prognostic panels for evaluation of CAD patients. We appraise the recent knowledge about the role of miRNAs in the development of diverse clinical subtypes of CAD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Cao H, Quan S, Zhang L, Chen Y, Jiao G. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma. Oncol Lett 2021; 21:391. [PMID: 33777214 PMCID: PMC7988701 DOI: 10.3892/ol.2021.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Hongxin Cao
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Quan
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Samadian M, Gholipour M, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer's Disease. Front Aging Neurosci 2021; 13:641080. [PMID: 33790780 PMCID: PMC8005705 DOI: 10.3389/fnagi.2021.641080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is an irrevocable neurodegenerative condition characterized by the presence of senile plaques comprising amassed β-amyloid peptides (Aβ) and neurofibrillary tangles mainly comprising extremely phosphorylated Tau proteins. Recent studies have emphasized the role of microRNAs (miRNAs) in the development of AD. A number of miRNAs, namely, miR-200a-3p, miR-195, miR-338-5p, miR-34a-5p, miR-125b-5p, miR-132, miR-384, miR-339-5p, miR-135b, miR-425-5p, and miR-339-5p, have been shown to participate in the development of AD through interacting with BACE1. Other miRNAs might affect the inflammatory responses in the course of AD. Aberrant expression of several miRNAs in the plasma samples of AD subjects has been shown to have the aptitude for differentiation of AD subjects from healthy subjects. Finally, a number of AD-modifying agents affect miRNA profile in cell cultures or animal models. We have performed a comprehensive search and summarized the obtained data about the function of miRNAs in AD in the current review article.
Collapse
Affiliation(s)
- Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Iop L. Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Front Cardiovasc Med 2021; 7:591583. [PMID: 33748193 PMCID: PMC7969521 DOI: 10.3389/fcvm.2020.591583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences, and Public Health, University of Padua Medical School, Padua, Italy
| |
Collapse
|
18
|
Therapeutic Value of miRNAs in Coronary Artery Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8853748. [PMID: 33953838 PMCID: PMC8057887 DOI: 10.1155/2021/8853748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerotic ischemic coronary artery disease (CAD) is a significant community health challenge and the principal cause of morbidity and mortality in both developed and developing countries for all ethnic groups. The progressive chronic coronary atherosclerosis is the main underlying cause of CAD. Although enormous progress occurred in the last three decades in the management of cardiovascular diseases, the prevalence of CAD continues to increase worldwide, indicating the need for discovery of deeper molecular insights of CAD mechanisms, biomarkers, and innovative therapeutic targets. Recently, several research groups established that microRNAs essentially regulate various cardiovascular development and functions, and a deregulated cardiac enriched microRNA profile plays a vital role in the pathogenesis of CAD and its biological aging. Numerous studies established that over- or downregulation of a single miRNA gene by ago-miRNA or anti-miRNA is enough to modify the CAD disease process, significantly prevent age-dependent cardiac cell death, and markedly improve cardiac function. In the light of more recent experimental and clinical evidences, we briefly reviewed and discussed the involvement of miRNAs in CAD and their possible diagnostic/therapeutic values. Moreover, we also focused on the role of miRNAs in the initiation and progression of the atherosclerosis plaque as the strongest risk factor for CAD.
Collapse
|