1
|
Ding L, Shangguan H, Wang X, Liu J, Shi Y, Xu X, Xie Y. Extraction, purification, structural characterization, biological activity, mechanism of action and application of polysaccharides from Ganoderma lucidum: A review. Int J Biol Macromol 2024; 288:138575. [PMID: 39662574 DOI: 10.1016/j.ijbiomac.2024.138575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ganoderma lucidum is a traditional tonic medicine in China, known as the "fairy grass" and "spiritual grass". It contains various chemical components, such as polysaccharides, triterpenoids, alkaloids, nucleosides, sterols, and acid compounds, which have the effects of tonifying qi and calming the mind, stopping cough and asthma, and are used to treat restlessness, lung deficiency cough and asthma, fatigue and shortness of breath, and lack of appetite. Ganoderma lucidum polysaccharides (GLPs) are one of the main bioactive ingredients and are widely used in traditional Chinese medicine and traditional medicine fields. They have shown good medicinal value in enhancing immunity, inhibiting tumor cell growth, delaying aging, lowering blood sugar, lowering blood lipids, protecting the heart, anti-radiation, anti-fatigue, and other aspects. This article reviews the research progress on the extraction and purification, structural characteristics, pharmacological activity, and mechanisms of GLPs, as well as their applications in industries such as medicine, food, and daily chemical products. The aim is to provide theoretical basis for the treatment of traditional Chinese medicine compound preparations and lay the foundation for the potential value development of Ganoderma lucidum products.
Collapse
Affiliation(s)
- Ling Ding
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Huizi Shangguan
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China.
| |
Collapse
|
2
|
Zhou T, Zhang C, Wang X, Lin J, Yu J, Liang Y, Guo H, Yang M, Shen X, Li J, Shi R, Wang Y, Yang J, Shu Z. Research on traditional Chinese medicine as an effective drug for promoting wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118358. [PMID: 38763370 DOI: 10.1016/j.jep.2024.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chongyang Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Huilin Guo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Mengru Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xuejuan Shen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jianhua Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| |
Collapse
|
3
|
Xie WY, Shen HL, Yan ZM, Zheng RJ, Jiang JJ, Zhong JJ, Zhou WW. Paenibacillus exopolysaccharide alleviates Malassezia-induced skin damage: Enhancing skin barrier function, regulating immune responses, and modulating microbiota. Int J Biol Macromol 2024; 278:135404. [PMID: 39256124 DOI: 10.1016/j.ijbiomac.2024.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.
Collapse
Affiliation(s)
- Wan-Yue Xie
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hui-Ling Shen
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zi-Ming Yan
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ru-Jing Zheng
- Zhejiang Homay Technology Co., Ltd., Hangzhou 311200, Zhejiang, China
| | - Jin-Jie Jiang
- Zhejiang Homay Technology Co., Ltd., Hangzhou 311200, Zhejiang, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Wen Zhou
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Liu J, Zhang B, Wang L, Li S, Long Q, Xiao X. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. CHINESE HERBAL MEDICINES 2024; 16:375-391. [PMID: 39072196 PMCID: PMC11283234 DOI: 10.1016/j.chmed.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 07/30/2024] Open
Abstract
Ganoderma lucidum is a Chinese medicinal fungus with a long history of use in healthcare and disease treatment. G. lucidum spores (GLS) are tiny germ cells released from the mushroom cap during the mature stage of growth. They contain all the genetic active substances of G. lucidum. G. lucidum spore oil (GLSO) is a lipid component extracted from broken-walled Ganoderma spores using supercritical CO2 extraction technology. GLSO contains fatty acids, Ganoderma triterpenes, sterols and other bioactive compounds. Previous studies have demonstrated that GLSO has a wide range of pharmacological properties, including anti-tumor, anti-aging, neuroprotection, immunomodulation, hepatoprotection and modulation of metabolic diseases. This review summarizes the research progress of GLSO over the past two decades in terms of its bioactive components, extraction and processing techniques, pharmacological effects and safety evaluation. This provides a solid foundation for further research and application of GLSO.
Collapse
Affiliation(s)
- Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Leqi Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510525, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510525, China
| |
Collapse
|
5
|
Anil Kumar NV, Quispe C, Herrera-Bravo J, Herrera Belén L, Loren P, Salazar LA, Silva V, Erdogan Orhan I, Senol Deniz FS, Nemli E, Capanoglu E, Olatunde A, Cristina Cirone Silva N, Zivkovic J, Shorog EM, Calina D, Sharifi-Rad J. Potential of Mushrooms Bioactive for the Treatment of Skin Diseases and Disorders. J Food Biochem 2023; 2023:1-26. [DOI: 10.1155/2023/5915769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Mushrooms have long been revered not only as a staple food source but also for their potential medicinal properties. Their role as a natural repository of bioactive compounds positions them uniquely in the pharmaceutical domain, with particular relevance to cosmeceuticals and nutricosmetics. The global ethnobotanical and ethnopharmacological chronicles highlight the traditional application of mushrooms against many diseases, with many even finding their way into cosmetic formulations. This review aims to consolidate the existing knowledge regarding the efficaciousness of mushroom-derived bioactives in the realm of skin disorders and diseases. In addition, it sheds light on the instances where certain mushroom species have been implicated in causing dermatological reactions, underscoring the dual nature of these fungal entities. A comprehensive assessment was undertaken involving ethnobotanical databases and relevant scientific literature to identify mushrooms used traditionally for treating skin conditions. In addition, contemporary research elucidating the biological activities of these mushrooms, specifically their antioxidant, anti-inflammatory, antimicrobial, and wound-healing capabilities, was scrutinized. Special attention was accorded to instances of contact dermatitis induced by mushrooms, notably the shiitake fungus. Preliminary findings reinforce the therapeutic potential of certain mushrooms in managing skin ailments, attributed primarily to their antioxidant, anti-inflammatory, and antimicrobial properties. Conversely, some species, prominently shiitake, emerged as potent dermatitis triggers. Mushrooms undeniably harbor an array of compounds that can be instrumental in treating various skin conditions, thereby underscoring their potential in dermatological applications. However, an understanding of their dual nature, acting both as a remedy and a trigger for certain skin reactions, is essential for their judicious application in skin care. Further research is mandated to unravel the comprehensive pharmacological spectrum of these fungal treasures.
Collapse
Affiliation(s)
- Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Victor Silva
- Departamento de Proceso Diagnóstico y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Mont 056, Temuco, Chile
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - F. Sezer Senol Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | | | - Jelena Zivkovic
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Eman M. Shorog
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | | |
Collapse
|
6
|
Thuy NHL, Tu VL, Thu LNA, Giang TT, Huyen DTK, Loc DH, Tam DNH, Phat NT, Huynh HH, Truyen TTTT, Nguyen QH, Do U, Nguyen D, Dat TV, Minh LHN. Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus 2023; 15:e44574. [PMID: 37790044 PMCID: PMC10545004 DOI: 10.7759/cureus.44574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.
Collapse
Affiliation(s)
- Nguyen Huu Lac Thuy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Nguyen Anh Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Tran Thanh Giang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA
| | - Dao Tang Khanh Huyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duong Hoang Loc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Hong-Han Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN
| | | | - Quang-Hien Nguyen
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Uyen Do
- Science Department, Lone Star College, Houston, USA
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
7
|
Blundell R, Camilleri E, Baral B, Karpiński TM, Neza E, Atrooz OM. The Phytochemistry of Ganoderma Species and their Medicinal Potentials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:859-882. [PMID: 36999543 DOI: 10.1142/s0192415x23500404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Ganoderma genus is known for its diverse use as a functional food and therapeutic agent. This fungus has over 428 species, with Ganoderma lucidum being the most studied. The Ganoderma species produce several secondary metabolites and bioactive compounds like polysaccharides, phenols, and triterpenes, which are largely responsible for their therapeutic properties. Throughout this review, several extracts obtained from Ganoderma species have been studied to delve into their therapeutic characteristics and mechanisms. Such properties like immunomodulation, antiaging, antimicrobial, and anticancer activities have been demonstrated by several Ganoderma species and are supported by a large body of evidence. Although its phytochemicals play a vital role in its therapeutic properties, identifying the therapeutic potentials of fungal-secreted metabolites for human health-promoting benefits is a challenging task. Identification of novel compounds with distinct chemical scaffolds and their mechanism of action could help suppress the spread of rising pathogens. Thus, this review provides an updated and comprehensive overview of the bioactive components in different Ganoderma species and the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Imsida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Imsida, Malta
| | - Bikash Baral
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Edlira Neza
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, P. O. Box (7), Mutah, Jordan
| |
Collapse
|
8
|
Liu C, Zhou S, Lai H, Shi L, Bai W, Li X. Protective effect of spore oil-functionalized nano-selenium system on cisplatin-induced nephrotoxicity by regulating oxidative stress-mediated pathways and activating immune response. J Nanobiotechnology 2023; 21:47. [PMID: 36759859 PMCID: PMC9912657 DOI: 10.1186/s12951-022-01754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
In clinical practice, cisplatin is the most commonly used chemotherapy drug to treat a range of malignancies. Severe ROS-regulated nephrotoxicity, however, restricts its applicability. Currently, the main mechanisms leading to cisplatin-induced nephrotoxicity in clinical settings involve hydration or diuresis. However, not all patients can be treated with massive hydration or diuretics. Therefore, it is crucial to develop a treatment modality that can effectively reduce nephrotoxicity through a foodborne route. Selenium has been reported to have strong antioxidant as well as anticancer effects when administered as spore oil. Herein, we established cellular and animal models of cisplatin-induced nephrotoxicity and synthesized spore oil-functionalized nano-selenium (GLSO@SeNPs). We found that GLSO@SeNPs inhibit the mitochondrial apoptotic pathway by maintaining oxidative homeostasis and regulating related signaling pathways (the MAPK, caspase, and AKT signaling pathways). In vivo, GLSO@SeNPs could effectively improve cisplatin-induced renal impairment, effectively maintaining oxidative homeostasis in renal tissues and thus inhibiting the process of renal injury. In addition, GLSO@SeNPs were converted into selenocysteine (SeCys2), which may exert protective effects. Furthermore, GLSO@SeNPs could effectively modulate the ratio of immune cells in kidneys and spleen, reducing the proportions of CD3+CD4+ T cells, CD3+CD8+ T cells, and M1 phenotype macrophages and increasing the proportion of anti-inflammatory regulatory T cells. In summary, in this study, we synthesized food-derived spore oil-functionalized nanomaterials, and we explored the mechanisms by which GLSO@SeNPs inhibit cisplatin-induced nephrotoxicity. Our study provides a basis and rationale for the inhibition of cisplatin-induced nephrotoxicity by food-derived nutrients.
Collapse
Affiliation(s)
- Chaofan Liu
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Sajin Zhou
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Haoqiang Lai
- grid.412601.00000 0004 1760 3828The First Affiliated Hospital of Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Department of Chemistry, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Lei Shi
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Weibin Bai
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, People's Republic of China. .,Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
9
|
Inhibitory effects of Ganoderma lucidum spore oil on rheumatoid arthritis in a collagen-induced arthritis mouse model. Biomed Pharmacother 2023; 157:114067. [PMID: 36481405 DOI: 10.1016/j.biopha.2022.114067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Holistic healthcare practitioners have now started to focus on specific traditional medicinal mushrooms to treat rheumatoid arthritis (RA). Ganoderma lucidum (GL) is one of the oldest mushrooms that have been used in ancient Chinese medicine to treat inflammatory ailments, including autoimmune diseases such as RA. Spores from this mushroom have specific effects on immunomodulation, aging, and cancer. However, the effect of G. lucidum spores (GLS) on arthritis remains unclear. Therefore, we investigated the effects of GLS oil in a collagen-induced rheumatoid arthritis (CIA) model. Metabolomics analysis revealed that GLS oil contains ten acids, of which oleic acid (52.12%) and linoleic acid (16.77%) predominated. The GLS oil-treated CIA mice had a significantly lower clinical score (p = 0.0384) for RA than the control CIA mice. Moreover, GLS oil reduced CIA-induced cartilage degeneration and synovial membrane inflammation in the knee. The GLS oil group showed significantly reduced knee eosinophilia (p = 0.0056). Immunostaining of neutrophils revealed that neutrophils infiltrated the CIA group; however, infiltrated neutrophils were significantly reduced in the GLS oil group in both the knees (p = 0.0006) and ankles (p = 0.0023). GLS oil treatment substantially suppressed LPS- or TNF-α-induced IL-6 mRNA expression in primary cultured chondrocytes. IL-6 immunohistochemistry results showed that the protein levels of IL-6 were attenuated in the GLS oil group compared to the CIA group. These findings suggest that GLS oil may be useful for the development of RA drugs. Further clinical research is required to identify significant improvements.
Collapse
|
10
|
Zhao Z, Lv D, Zhang B, Yong L, Zhang R, Wang X. Efficacy of Human-Recombinant Epidermal Growth Factor Combined with Povidone-Iodine for Pressure Ulcers and Its Influence on Inflammatory Cytokines. Mediators Inflamm 2022; 2022:3878320. [PMID: 36060926 PMCID: PMC9436609 DOI: 10.1155/2022/3878320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose To determine the clinical efficacy of recombinant human epidermal growth factor (rh-EGF) combined with povidone-iodine (PVI) on patients with pressure ulcers (PUs). Methods One hundred and five PU patients treated between January 2018 and January 2021 were enrolled and retrospectively analyzed. Of them, 50 patients who received conventional treatment were assigned to the control group (Con group), while 55 patients treated with rh-EGF combined with PVI were assigned to the observation group (Obs group). The two groups were compared in clinical efficacy, PU alleviation (total area reduction rate, total depth reduction rate, and total volume reduction rate), healing time, pain degree (Visual Analog Scale [VAS] score), inflammatory indexes (interleukin-8 [IL-8], tumor necrosis factor-α [TNF-α], and hypersensitive C reactive protein [hs-CRP]), and hydroxyproline content in the wound. Results The Obs group yielded a higher total effective rate than the Con group (P < 0.05). The Obs group also experienced statistically shorter healing time and milder pain, with better PU alleviation and lower levels of inflammation indexes compared with the Con group (all P < 0.05). In addition, a higher hydroxyproline content in the wound was found in the Obs group. Conclusions All in all, rh-EGF combined with PVI has a definite curative effect on patients with PUs. It can promote PU alleviation and hydroxyproline secretion in the wound and inhibit pain and inflammatory reactions, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Zunjiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241004 Anhui, China
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, 237005 Anhui, China
| | - Dalun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241004 Anhui, China
| | - Baode Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, 237005 Anhui, China
| | - Liu Yong
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, 237005 Anhui, China
| | - Rongtao Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, 237005 Anhui, China
| | - Xiukun Wang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, 237005 Anhui, China
| |
Collapse
|
11
|
Meng X, Yang Y, Wu Y, Zhang Y, Zhang H, Zhou W, Guo M, Li L. Inflammatory factor expression in HaCaT cells and melanin synthesis in melanocytes: Effects of Ganoderma lucidum fermentation broth containing Chinese medicine. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xianyao Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yunli Yang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yuehang Wu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Weiqiang Zhou
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Miaomiao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
12
|
Peng X, Ding C, Zhao Y, Hao M, Liu W, Yang M, Xiao F, Zheng Y. Poloxamer 407 and Hyaluronic Acid Thermosensitive Hydrogel-Encapsulated Ginsenoside Rg3 to Promote Skin Wound Healing. Front Bioeng Biotechnol 2022; 10:831007. [PMID: 35866029 PMCID: PMC9294355 DOI: 10.3389/fbioe.2022.831007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ginsenoside Rg3 has shown beneficial effects in various skin diseases. The current interest in designing and developing hydrogels for biomedical applications continues to grow, inspiring the further development of drug-loaded hydrogels for tissue repair and localized drug delivery. The aim of the present study was to develop an effective and safe hydrogel (Rg3-Gel), using ginsenoside Rg3, and we evaluated the wound-healing potential and therapeutic mechanism of Rg3-Gel. The results indicated that the optimized Rg3-Gel underwent discontinuous phase transition at low and high temperatures. Rg3-Gel also exhibited good network structures, swelling water retention capacity, sustainable release performance, and excellent biocompatibility. Subsequently, the good antibacterial and antioxidant properties of Rg3-Gel were confirmed by in vitro tests. In full-thickness skin defect wounded models, Rg3-Gel significantly accelerated the wound contraction, promoted epithelial and tissue regeneration, and promoted collagen deposition and angiogenesis. In addition, Rg3-Gel increased the expression of autophagy proteins by inhibiting the MAPK and NF-KB pathways in vivo. It simultaneously regulated host immunity by increasing the abundance of beneficial bacteria and the diversity of the wound surface flora. From these preliminary evaluations, it is possible to conclude that Rg3-Gel has excellent application potential in wound-healing drug delivery systems.
Collapse
Affiliation(s)
- Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mingqian Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- *Correspondence: Wencong Liu, ; Min Yang,
| | - Min Yang
- Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Wencong Liu, ; Min Yang,
| | - Fengyan Xiao
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
13
|
Jiao C, Yun H, Liang H, Lian X, Li S, Chen J, Qadir J, Yang BB, Xie Y. An active ingredient isolated from Ganoderma lucidum promotes burn wound healing via TRPV1/SMAD signaling. Aging (Albany NY) 2022; 14:5376-5389. [PMID: 35696640 PMCID: PMC9320545 DOI: 10.18632/aging.204119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
The mushroom Ganoderma lucidum is a traditional Chinese medicine and G. lucidum spore oil (GLSO) is the lipid fraction isolated from Ganoderma spores. We examined the effect of GLSO on burn wound healing in mice. Following wounding, GLSO was applied on the wounds twice daily. Repair analysis was performed by Sirius-Red-staining at different time points. Cell proliferation and migration assays were performed to verify the effect of GLSO on growth. Network pharmacology analysis to identify possible targets was also carried out, followed by Western blotting, nuclear translocation, cell proliferation, and immunofluorescence assays for in-depth investigation of the mechanism. Our study showed that GLSO significantly promoted cell proliferation, and network pharmacology analysis suggested that GLSO might act through transient receptor potential vanilloid receptor 1 (TRPV1)/SMAD signaling. Furthermore, GLSO elevated SMAD2/3 expression in skin burn and promoted its nuclear translocation, and TRPV1 expression was also increased upon exposure to GLSO. Cell proliferation and immunofluorescence assays with TRPV1 inhibitor showed that GLSO accelerated skin burn wound healing through TRPV1 and SMADs signaling, which provides a foundation for clinical application of GLSO in the healing of deep skin burns.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| | - Hao Yun
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Xiaodong Lian
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Shunxian Li
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Jiaming Chen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Javeria Qadir
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| |
Collapse
|
14
|
Zhang J, Ahmad AA, Jia Y, Dingkao R, Du M, Liang Z, Zheng J, Bature I, Yan P, Salekdeh GH, Ding X. Comparison of Dynamics of Udder Skin Microbiota From Grazing Yak and Cattle During the Perinatal Period on the Qinghai–Tibetan Plateau. Front Vet Sci 2022; 9:864057. [PMID: 35692295 PMCID: PMC9187117 DOI: 10.3389/fvets.2022.864057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The perinatal period has an important impact on the health of ruminants, and the imbalance of udder skin microbiota might be an important inducement of bovine mastitis. However, it is not clear how the perinatal period affects the microbial structure and stability of the udder skin of yak and cattle. Here, we used 16S rRNA gene high-throughput sequencing to analyze the udder skin microbiota of yak and cattle during the perinatal period. We found that the diversity and richness of microbiota of bovine udder skin during 1–2 weeks postpartum were significantly lower than those in the 1–2 weeks prenatal and 1-month postpartum period (Wilcoxon, p < 0.05). Besides, we found sharing of 2,533 OTUs in the udder skin microbiota of yak and cattle during the perinatal period, among which the core microbiota at the genera level was mainly composed of Staphylococcus, Moraxella, and Acinetobacter. However, the genus Acinetobacter was significantly abundant in the udder skin of cattle during 1–2 weeks postpartum. The NMDS and LEfSe results showed that the perinatal period had more effects on the composition and stability of microbial community in the udder skin of cattle compared to yak, particularly during 1–2 weeks postpartum. In addition, the average content of total whey proteins and immunoglobulin G of whey protein were significantly higher in the yak colostrum when compared to those found in the cattle (p < 0.05). In conclusion, the structure of udder skin microbiota of yak during the perinatal period is more stable than that of cattle in the same habitat, and 1–2 weeks postpartum may be a potential window period to prevent cattle mastitis.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yan Jia
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ibrahim Bature
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Xuezhi Ding
| |
Collapse
|
15
|
Cai M, Tan Z, Wu X, Liang X, Liu Y, Xie Y, Li X, Xiao C, Gao X, Chen S, Hu H, Wu Q. Comparative transcriptome analysis of genes and metabolic pathways involved in sporulation in Ganoderma lingzhi. G3 (BETHESDA, MD.) 2022; 12:jkab448. [PMID: 35079793 PMCID: PMC8895980 DOI: 10.1093/g3journal/jkab448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Over the past decades, Ganoderma lingzhi spores have received considerable attention as a great potential pharmaceutical resource. However, the genetic regulation of sporulation is not well understood. In this study, a comparative transcriptome analysis of the low-sporing HZ203 and high-sporing YW-1 was performed to characterize the mechanism underlying sporulation. A total of 917 differentially expressed genes were identified in HZ203 and 1,450 differentially expressed genes in YW-1. Differentially expressed genes involved in sporulation were identified, which included HOP1, Mek1, MSH4, MSH5, and Spo5 in meiosis. Positive regulatory pathways of sporulation were proposed as 2 transcriptional factors had high connectivity with MSH4 and Spo5. Furthermore, we found that the pathways associated with energy production were enriched in the high-sporing genotype, such as the glyoxylate and dicarboxylate metabolism, starch and sucrose metabolism. Finally, we performed a weighted gene coexpression network analysis and found that the hub genes of the module which exhibit strong positive relationship with the high-sporing phase purportedly participate in signal transduction, carbohydrate transport and metabolism. The dissection of differentially expressed genes during sporulation extends our knowledge about the genetic and molecular networks mediating spore morphogenesis and sheds light on the importance of energy source during sporulation.
Collapse
Affiliation(s)
- Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxian Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
16
|
Zhou X, Guan Z, Jin X, Zhao J, Chen G, Ding J, Ren Y, Zhai X, Zhou Q, Guan Z. Reversal of alopecia areata, osteoporosis follow treatment with activation of Tgr5 in mice. Biosci Rep 2021; 41:BSR20210609. [PMID: 34196345 PMCID: PMC8292761 DOI: 10.1042/bsr20210609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Alopecia areata is an autoimmune hair loss disease with infiltration of pro-inflammatory cells into hair follicles. The role of Tgr5 in dermatitis has attracted considerable attention. The present study aimed to investigate the effect of Tgr5 in the development of Alopecia areata. METHODS The study utilized a comparison control group design with four groups of wild-type group, wild-type+INT777 group, Tgr5-/- group, and Tgr5-/-+INT777 group. The mice were treated with INT777 (30 mg/kg/day) or the carrier solution (DMSO) intraperitoneally for 7 weeks, and the back skin was collected and analyzed by histology and immunohistochemistry staining. The lumbar vertebrae 4 has also been analyzed by DXA and Micro-CT. RESULTS Tgr5-/- mice displayed the decreasingly significant in hair area and length, skin thickness, and the ratio of anagen and telogen, collagen, and mast cell number and loss the bone mass than WT group. After treating with INT777, the appearance of alopecia areata and bone microstructure has improved. Immunohistochemistry and qPCR analysis showed that activation of Tgr5 can down-regulate the express of JAK1, STAT3, IL-6, TNF-α, and VEGF. CONCLUSION These findings indicate that activation of Tgr5 mediated amelioration of alopecia areata and osteoporosis by down-regulated JAK1-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Qinghai Provincial People’s Hospital, Xining, Qinghai, P.R. China
| | - Zhiqiang Guan
- Department of Dermatology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People’s Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - Jianbin Zhao
- Department of Dermatology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - Guisheng Chen
- Department of Dermatology, Traditional Chinese Medicine Hospital of Xuzhou Jiangsu 221002, P.R. China
| | - Jicun Ding
- Department of Dermatology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - Yile Ren
- Department of Rheumatology and Immunology, The First People’s Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoxiang Zhai
- Department of Dermatology, The Seventh People’s Hospital of Shanghai, Shanghai 200137, P.R. China
| | - Qiyun Zhou
- Qinghai Provincial People’s Hospital, Xining, Qinghai, P.R. China
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, P.R. China
- Department of Orthopedics, Peking University Third Hospital, Beijing, P.R. China
| |
Collapse
|
17
|
Gryzenhout M, Ghosh S, Tchotet Tchoumi JM, Vermeulen M, Kinge TR. Ganoderma: Diversity, Ecological Significances, and Potential Applications in Industry and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|