1
|
Gao G, Liu SM, Hao FB, Wang QN, Wang XP, Wang MJ, Bao XY, Han C, Duan L. Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review. Transl Stroke Res 2024; 15:1005-1014. [PMID: 37592190 DOI: 10.1007/s12975-023-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.
Collapse
Affiliation(s)
- Gan Gao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Min-Jie Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiang-Yang Bao
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
2
|
Rajendran R, Gangadaran P, Oh JM, Hong CM, Ahn BC. Engineering Three-Dimensional Spheroid Culture for Enrichment of Proangiogenic miRNAs in Umbilical Cord Mesenchymal Stem Cells and Promotion of Angiogenesis. ACS OMEGA 2024; 9:40358-40367. [PMID: 39372025 PMCID: PMC11447852 DOI: 10.1021/acsomega.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
In the field of regenerative medicine, umbilical cord-derived mesenchymal stem cells (UC-MSCs) have a plausible potential. However, traditional two-dimensional (2D) culture systems remain limited in replicating the complex in vivo microenvironment. Thus, three-dimensional (3D) cultures offer a more physiologically relevant model. This study explored the impact of 3D culture conditions on the UC-MSC secretome and its ability to promote angiogenesis, both in vitro and in vivo. In this study, using two distinct methods, we successfully cultured UC-MSCs: in a monolayer (2D-UC-MSCs) and as spheroids formed in U-shaped 96-well plates (3D-UC-MSCs). The presence and expression of proangiogenic miRNAs in the conditioned media (CM) of these cultures were investigated, and differential expression patterns were explored. Particularly, the CM of 3D-UC-MSCs revealed significantly higher levels of miR-21-5p, miR-126-5p, and miR-130a-3p compared to 2D-UC-MSCs. Moreover, the CM from 3D-UC-MSCs revealed a higher effect on endothelial cell proliferation, migration, and tube formation than did the CM from 2D-UC-MSCs, indicating their proangiogenic potential. In an in vivo Matrigel plug mouse model, 3D-UC-MSCs (cells) stimulated greater vascular formation compared to 2D-UC-MSCs (cells). 3D culture of UC-MSCs' secretome improves the promotion of angiogenesis.
Collapse
Affiliation(s)
- Ramya
Lakshmi Rajendran
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21
FOUR KNU Convergence Educational Program of Biomedical Sciences for
Creative Future Talents, Department of Biomedical Science, School
of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ji Min Oh
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chae Moon Hong
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department
of Nuclear Medicine, Kyungpook National
University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21
FOUR KNU Convergence Educational Program of Biomedical Sciences for
Creative Future Talents, Department of Biomedical Science, School
of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department
of Nuclear Medicine, Kyungpook National
University Hospital, Daegu 41944, Korea
| |
Collapse
|
3
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Mol Neurobiol 2023; 60:2062-2069. [PMID: 36596965 DOI: 10.1007/s12035-022-03197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8-10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood-brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Cao L, Dong Y, Sun K, Li D, Wang H, Li H, Yang B. Experimental Animal Models for Moyamoya Disease: A Species-Oriented Scoping Review. Front Surg 2022; 9:929871. [PMID: 35846951 PMCID: PMC9283787 DOI: 10.3389/fsurg.2022.929871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. The etiology and pathogenesis of MMD are still obscure. The biggest obstacles in the basic research of MMD are difficulty in obtaining specimens and the lack of an animal model. It is necessary to use appropriate and rationally designed animal models for the correct evaluation. Several animal models and methods have been developed to produce an effective MMD model, such as zebrafish, mice and rats, rabbits, primates, felines, canines, and peripheral blood cells, each with advantages and disadvantages. There are three mechanisms for developing animal models, including genetic, immunological/inflammatory, and ischemic animal models. This review aims to analyze the characteristics of currently available models, providing an overview of the animal models framework and the convenience of selecting model types for MMD research. It will be a great benefit to identify strategies for future model generations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Yang
- Correspondence: Bo Yang Hongwei Li
| |
Collapse
|
7
|
Chen JQ, Gao SQ, Luo L, Jiang ZY, Liang CF, He HY, Guo Y. Nonoxid-HMGB1 Attenuates Cognitive Impairment After Traumatic Brain Injury in Rats. Front Med (Lausanne) 2022; 9:827585. [PMID: 35479959 PMCID: PMC9035677 DOI: 10.3389/fmed.2022.827585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global burden of health. As an accepted inflammatory mediator, high mobility group box 1 (HMGB1) is found to be effective in facilitating neurogenesis and axonal regeneration. SH3RF2 (also known as POSHER), an E3 ligase SH3 domain-containing ring finger 2, belongs to the SH3RF family of proteins. Here, we aimed to investigate the role of redox states of HMGB1 on neurite outgrowth and regeneration both in vitro and in vivo. In this study, distinct recombinant HMGB1 redox isoforms were used. Sequencing for RNA-seq and data analysis were performed to find the potential downstream target of nonoxid-HMGB1 (3S-HMGB1). Protein changes and distribution of SH3RF2 were evaluated by western blot assays and immunofluorescence. Lentivirus and adeno-associated virus were used to regulate the expression of genes. Nonoxid-HMGB1-enriched exosomes were constructed and used to treat TBI rats. Neurological function was evaluated by OF test and NOR test. Results demonstrated that nonoxid-HMGB1 and fr-HMGB1, but not ds-HMGB1, promoted neurite outgrowth and axon elongation. RNA-seq and western blot assay indicated a significant increase of SH3RF2 in neurons after treated with nonoxid-HMGB1 or fr-HMGB1. Notably, the beneficial effects of nonoxid-HMGB1 were attenuated by downregulation of SH3RF2. Furthermore, nonoxid-HMGB1 ameliorated cognitive impairment in rats post-TBI via SH3RF2. Altogether, our experimental results suggest that one of the promoting neurite outgrowth and regeneration mechanisms of nonoxid-HMGB1 is mediated through the upregulated expression of SH3RF2. Nonoxid-HMGB1 is an attractive therapeutic candidate for the treatment of TBI.
Collapse
|
8
|
Angiogenesis in diabetic mouse model with critical limb ischemia; cell and gene therapy. Microvasc Res 2022; 141:104339. [DOI: 10.1016/j.mvr.2022.104339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 01/13/2023]
|
9
|
Rallo MS, Akel O, Gurram A, Sun H. Experimental animal models for moyamoya disease and treatment: a pathogenesis-oriented scoping review. Neurosurg Focus 2021; 51:E5. [PMID: 34469865 DOI: 10.3171/2021.6.focus21284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Moyamoya disease (MMD) is an intracranial steno-occlusive pathology characterized by progressive narrowing of proximal large vessels, including the terminal internal carotid arteries (ICAs), middle cerebral arteries, or anterior cerebral arteries. Named for the "puff of smoke" appearance of the anomalous vascularization visualized on cerebral angiography, MMD lacks a well-defined etiology, although significant insights have been made, including the identification of a susceptibility gene, RNF213, in humans with the disease. A limitation to advancing the understanding and treatment of MMD has been the lack of experimental animal models that authentically reflect the clinical pathogenesis. In an effort to analyze characteristics of currently available models and identify strategies for future model generation, the authors performed a scoping review of experimental animal models that have been used to study MMD. METHODS A systematic search of PubMed, Web of Science, and Scopus was performed to identify articles describing animal models used to study MMD. Additional articles were identified via citation searching. Study selection and data extraction were performed by two independent reviewers based on defined inclusion and exclusion criteria. RESULTS A total of 44 articles were included for full-text review. The methods used to generate these animal models were broadly classified as surgical (n = 25, 56.8%), immunological (n = 7, 15.9%), genetic (n = 6, 13.6%), or a combination (n = 6, 13.6%). Surgical models typically involved permanent ligation of one or both of the common carotid arteries or ICAs to produce chronic cerebral hypoperfusion. Genetic models utilized known MMD or cerebrovascular disease-related genes, such as RNF213 or ACTA2, to induce heritable cerebral vasculopathy. Finally, immunological models attempted to induce vasculitis-type pathology by recapitulating the inflammatory milieu thought to underlie MMD. CONCLUSIONS Models generated for MMD have involved three general approaches: surgical, immunological, and genetic. Although each reflects a key aspect of MMD pathogenesis, the failure of any individual model to recapitulate the development, progression, and consequences of the disease underscores the importance of future work in developing a multietiology model.
Collapse
|
10
|
Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W. Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in moyamoya disease. CNS Neurosci Ther 2021; 27:908-918. [PMID: 33942536 PMCID: PMC8265944 DOI: 10.1111/cns.13646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION AND AIMS At present, the treatment for moyamoya disease (MMD) primarily consists of combined direct and indirect bypass surgery. Nevertheless, more than half of indirect bypass surgeries fail to develop good collaterals from the dura and temporal muscle. This study aimed to investigate whether microRNAs (miRNAs) in cerebrospinal fluid (CSF) could serve as biomarkers for the prediction of postoperative collateral formation. METHODS Moyamoya disease patients with indirect bypass surgery were divided into angiogenesis and non-angiogenesis groups, CSF was obtained, and miRNA sequencing was performed using the CSF. Candidate miRNAs were filtered and subsequently verified through qRT-PCR. The diagnostic utility of these differential miRNAs was investigated by using receiver operating characteristic (ROC) curve analysis. Finally, the potential biological processes and signaling pathways associated with candidate miRNAs were analyzed using R software. RESULTS The expression levels of four miRNAs (miR-92a-3p, miR-486-3p, miR-25-3p, and miR-155-5p) were significantly increased in the angiogenesis group. By combining these four miRNAs (area under the curve [AUC] =0.970), we established an accurate predictive model of collateral circulation after indirect bypass surgery in MMD patients. GO and KEGG analyses demonstrated a high correlation with biological processes and signaling pathways related to angiogenesis. CONCLUSION The 4-miRNA signature is a good model to predict angiogenesis after indirect bypass surgery and help the surgeon to select a appreciate bypass strategy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhang A, Brown N, Cheaney B, Campos JK, Chase Ransom R, Hsu FP. Updates in the management of moyamoya disease. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|