1
|
He M, Wu X, Li L, Yi G, Wang Y, He H, Ye Y, Zhou R, Xu Z, Yang Z. Effects of EGFR-TKIs combined with intracranial radiotherapy in EGFR-mutant non-small cell lung cancer patients with brain metastases: a retrospective multi-institutional analysis. Radiat Oncol 2025; 20:6. [PMID: 39789554 PMCID: PMC11721249 DOI: 10.1186/s13014-024-02578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) are prone to developing brain metastases (BMs), particularly those with epidermal growth factor receptor (EGFR) mutations. In clinical practice, treatment-naïve EGFR-mutant NSCLC patients with asymptomatic BMs tend to choose EGFR-tyrosine kinase inhibitors (TKIs) as first-line therapy and defer intracranial radiotherapy (RT). However, the effectiveness of upfront intracranial RT remains unclear. METHODS This was a retrospective study including 217 patients from two institutions between January 2018 and December 2022. Clinical data of NSCLC patients with BMs who received EGFR-TKIs were collected. The patients were assigned to one of the three groups according to the therapeutic modality used: the upfront TKI + stereotactic radiosurgery (SRS) / fractionated stereotactic radiotherapy (fSRS) group (upfront TKI + SRS/fSRS ), the upfront TKI + whole-brain radiotherapy (WBRT) group (upfront TKI + WBRT) and the upfront TKI group. RESULTS As of March 8, 2023, the median follow-up duration was 37.3 months (95% CI, 32.5-42.1). The median overall survival (OS) for the upfront TKI + SRS/fSRS, upfront TKI + WBRT, and upfront TKI groups were 37.8, 20.7, and 24.1 months, respectively (p = 0.015). In subgroup analysis, the upfront TKI + SRS/fSRS group demonstrated longer OS compared to the upfront TKI + WBRT and upfront TKI groups in patients treated with first or second-generation EGFR-TKIs (p = 0.021) and patients with L858R mutation (p = 0.017), whereas no survival benefit was observed in three-generation EGFR-TKIs or 19del subgroup. In the multivariable analysis, metachronous BMs, EGFR L858R mutation and nonclassic EGFR mutation were identified as independent risk factors for OS, while a DS-GPA score of 2.0-4.0 was the only independent protective factor. CONCLUSIONS This study demonstrated that upfront addition of SRS/fSRS to EGFR-TKIs was associated with longer OS compared to upfront WBRT or upfront TKI alone in EGFR-mutant NSCLC patients with BMs. This improvement was more significant in patients with L858R mutation and those treated with first or second-generation EGFR-TKIs. Further research with a larger sample size is warranted.
Collapse
Affiliation(s)
- Mingfeng He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xue Wu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Li Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangming Yi
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Yitian Wang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hengqiu He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ying Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqin Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhenzhou Yang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
2
|
Liu A, Wang X, Wang L, Zhuang H, Xiong L, Gan X, Wang Q, Tao G. EGFR-TKIs or EGFR-TKIs combination treatments for untreated advanced EGFR-mutated NSCLC: a network meta-analysis. BMC Cancer 2024; 24:1390. [PMID: 39533233 PMCID: PMC11555867 DOI: 10.1186/s12885-024-13168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) and EGFR-TKI combination treatments have become the standard first-line treatments for EGFR-mutated non-small cell lung cancer (NSCLC) patients. However, the best option has yet to be determined. This study compares the efficacy and safety of various first-line EGFR-TKI monotherapies and combination treatments for advanced EGFR-mutated NSCLC. METHODS We searched PubMed, Embase, the Cochrane Central Register of Controlled Clinical Trials databases, and several international conferences to identify randomized controlled trials reporting on first-line EGFR-TKI treatments for patients with advanced EGFR-mutated NSCLC. The study quality was assessed using the revised tool for risk of bias in randomized trials. The efficacy and safety outcomes of the included treatments were compared by network meta-analysis based on a frequentist approach. RESULTS We identified 26 trials (8,359 patients) investigating 14 treatment groups, including first, second, and third-generation EGFR-TKIs and their combination treatments. Osimertinib plus chemotherapy and lazertinib plus amivantamab showed the highest efficacy in improving progression-free survival. New third-generation EGFR-TKIs demonstrated comparable efficacy to osimertinib alone but did not surpass it. Subgroup analyses revealed slight variation in treatment efficacy based on mutation types and patient demographics. Combination treatments were associated with a higher incidence of adverse events. CONCLUSION These results reveal that osimertinib plus chemotherapy and lazertinib plus amivantamab are superior first-line options for patients with advanced EGFR-mutated NSCLC. However, these combinations are associated with higher adverse event rates.
Collapse
Affiliation(s)
- Ao Liu
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China.
| | - Xiaoming Wang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Lian Wang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Han Zhuang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Liubo Xiong
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Xiao Gan
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Qian Wang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Guanyu Tao
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| |
Collapse
|
3
|
Zhu J, Yu Y, Mei J, Chen S, Li J, Jiang S. Efficacy and safety of camrelizumab combined with albumin-bound paclitaxel as third- or later-line regimen in patients with advanced non-small cell lung cancer. Front Immunol 2023; 14:1278573. [PMID: 38124737 PMCID: PMC10731289 DOI: 10.3389/fimmu.2023.1278573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Background The clinical efficacy and safety of camrelizumab as a third- or later-line regimen in patients with advanced non-small cell lung cancer (NSCLC) have not been determined in large clinical trials. Objective This study aimed to evaluate the clinical efficacy and safety of camrelizumab in combination with albumin-bound paclitaxel as a third- or later-line treatment for patients with advanced NSCLC. Methods A total of 257 patients with advanced NSCLC who were histopathologically confirmed and failed in clinical second-line therapy regimens at Jiangxi Province Cancer hospital from January 2018 to December 2021 were retrospectively selected. Patients with advanced NSCLC were divided into the single treatment group (STG) of camrelizumab, and the combined treatment group (CTG) of camrelizumab in combination with albumin-bound paclitaxel according to the treatment regimen. The primary outcomes of interest were clinical efficacy[objective response rate (ORR) and disease control rate (DCR)], progression-free survival (PFS), and overall survival (OS). Survival data were analyzed using the Kaplan-Meier method, and the log-rank test was performed. Additionally, Cox proportional hazard regression was used to analyze the correlation of prognosis and baseline characteristics between subgroups, to identify the potential independent risk factors for PFS and OS. Furthermore, the occurrence of side effects was assessed according to the Common Terminology Criteria for Adverse Events (CTCAE 4.03). Results Of the 257 patients with advanced NSCLC included in the research, 135 patients received camrelizumab, and 122 patients received camrelizumab plus albumin-bound paclitaxel. The ORR of CTG and STG was 59.84% and 50.38%, and the DCR was 77.05% and 65.93%, respectively. The median PFS in CTG was higher than that in the STG (5.27 vs. 3.57 months, P = 0.0074), and the median OS was longer (7.09 vs. 6.47 months, P < 0.01). The lines of treatment, metastases, and PD-L1 expression levels were independent risk factors for the mPFS and mOS of patients with advanced NSCLC. The occurrence of adverse events was similar between camrelizumab and camrelizumab plus albumin-bound paclitaxel groups. Conclusion Camrelizumab combined with albumin-bound paclitaxel as the third- or later-line regimen greatly prolonged PFS and OS of advanced NSCLC patients. A prospective clinical trial is warranted.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Thoracic Surgery, Jiangxi Province Cancer Hospital, Nanchang, Jiangxi, China
| | - Yanyan Yu
- Department of Operation Room, Jiangxi Province Cancer hospital, Nanchang, Jiangxi, China
| | - Jiaqi Mei
- College of Innovation and Entrepreneurship, The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shiyao Chen
- Department of Clinical Medicine, Jiangxi Institute of Applied Science and Technology, Nanchang, Jiangxi, China
| | - Jiufei Li
- Department of Thoracic Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Sicong Jiang
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Zhou Z, Wang M, Zhao R, Shao Y, Xing L, Qiu Q, Yin Y. A multi-task deep learning model for EGFR genotyping prediction and GTV segmentation of brain metastasis. J Transl Med 2023; 21:788. [PMID: 37936137 PMCID: PMC10629110 DOI: 10.1186/s12967-023-04681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The precise prediction of epidermal growth factor receptor (EGFR) mutation status and gross tumor volume (GTV) segmentation are crucial goals in computer-aided lung adenocarcinoma brain metastasis diagnosis. However, these two tasks present continuous difficulties due to the nonuniform intensity distributions, ambiguous boundaries, and variable shapes of brain metastasis (BM) in MR images.The existing approaches for tackling these challenges mainly rely on single-task algorithms, which overlook the interdependence between these two tasks. METHODS To comprehensively address these challenges, we propose a multi-task deep learning model that simultaneously enables GTV segmentation and EGFR subtype classification. Specifically, a multi-scale self-attention encoder that consists of a convolutional self-attention module is designed to extract the shared spatial and global information for a GTV segmentation decoder and an EGFR genotype classifier. Then, a hybrid CNN-Transformer classifier consisting of a convolutional block and a Transformer block is designed to combine the global and local information. Furthermore, the task correlation and heterogeneity issues are solved with a multi-task loss function, aiming to balance the above two tasks by incorporating segmentation and classification loss functions with learnable weights. RESULTS The experimental results demonstrate that our proposed model achieves excellent performance, surpassing that of single-task learning approaches. Our proposed model achieves a mean Dice score of 0.89 for GTV segmentation and an EGFR genotyping accuracy of 0.88 on an internal testing set, and attains an accuracy of 0.81 in the EGFR genotype prediction task and an average Dice score of 0.85 in the GTV segmentation task on the external testing set. This shows that our proposed method has outstanding performance and generalization. CONCLUSION With the introduction of an efficient feature extraction module, a hybrid CNN-Transformer classifier, and a multi-task loss function, the proposed multi-task deep learning network significantly enhances the performance achieved in both GTV segmentation and EGFR genotyping tasks. Thus, the model can serve as a noninvasive tool for facilitating clinical treatment.
Collapse
Affiliation(s)
- Zichun Zhou
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Rubin Zhao
- Department of Radiation Oncology and Technology, Linyi People's Hospital, 27 Jiefang Road, Linyi, 276003, Shandong, China
| | - Yan Shao
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, 241 Huaihai West Road, Shanghai, 200030, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Qingtao Qiu
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| | - Yong Yin
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
5
|
Qin L, Yu X, Xu C, Liu Y. Prognostic impact of metastatic patterns and treatment modalities on overall survival in lung squamous cell carcinoma: A population-based study. Medicine (Baltimore) 2023; 102:e34251. [PMID: 37478210 PMCID: PMC10662909 DOI: 10.1097/md.0000000000034251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
This study aimed to investigate the impact of distinct metastasis patterns on the overall survival (OS) of individuals diagnosed with organ metastatic lung squamous cell carcinoma (LUSC). OS was calculated using the Kaplan-Meier method, and univariate and multivariate Cox regression analyses were conducted to further assess prognostic factors. A total of 36,025 cases meeting the specified criteria were extracted from the Surveillance, Epidemiology, and End Results database. Among these patients, 30.60% (11,023/36,025) were initially diagnosed at stage IV, and 22.03% (7936/36,025) of these individuals exhibited metastasis in at least 1 organ, including the liver, bone, lung, and brain. Among the 4 types of single metastasis, patients with bone metastasis had the lowest mean OS, at 9.438 months (95% CI: 8.684-10.192). Furthermore, among patients with dual-organ metastases, those with both brain and liver metastases had the shortest mean OS, at 5.523 months (95% CI: 3.762-7.285). Multivariate Cox regression analysis revealed that metastatic site is an independent prognostic factor for OS in patients with single and dual-organ metastases. Chemotherapy was beneficial for patients with single and multiple-organ metastases; although surgery was advantageous for those with single and dual-organ metastases, it did not affect the long-term prognosis of patients with triple organ metastases. Radiotherapy only conferred benefits to patients with single-organ metastasis. LUSC patients exhibit a high incidence of metastasis at the time of initial diagnosis, with significant differences in long-term survival among patients with different patterns of metastasis. Among single-organ metastasis cases, lung metastasis is the most frequent and is associated with the longest mean OS. Regarding treatment options, patients with single-organ metastasis can benefit from chemotherapy, surgery, and radiotherapy, and those with metastasis in 2 organs can benefit from chemotherapy and surgery. Patients with metastasis in more than 2 organs, however, can only benefit from chemotherapy. Understanding the variations in metastasis patterns assists in guiding pretreatment assessments and in determining appropriate therapeutic interventions for LUSC.
Collapse
Affiliation(s)
- Lang Qin
- Department of Radiotherapy, Taixing Clinical College of Bengbu Medical College, Bengbu, China
| | - Xiangtian Yu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuang Xu
- Department of Orthopedics, Taixing Clinical College of Bengbu Medical College, Bengbu, China
| | - Yangchen Liu
- Department of Radiotherapy, Taixing Clinical College of Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Tatineni V, O'Shea PJ, Ozair A, Khosla AA, Saxena S, Rauf Y, Jia X, Murphy ES, Chao ST, Suh JH, Peereboom DM, Ahluwalia MS. First- versus Third-Generation EGFR Tyrosine Kinase Inhibitors in EGFR-Mutated Non-Small Cell Lung Cancer Patients with Brain Metastases. Cancers (Basel) 2023; 15:cancers15082382. [PMID: 37190312 DOI: 10.3390/cancers15082382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: Up to 50% of non-small cell lung cancer (NSCLC) harbor EGFR alterations, the most common etiology behind brain metastases (BMs). First-generation EGFR-directed tyrosine kinase inhibitors (EGFR-TKI) are limited by blood-brain barrier penetration and T790M tumor mutations, wherein third-generation EGFR-TKIs, like Osimertinib, have shown greater activity. However, their efficacy has not been well-studied in later therapy lines in NSCLC patients with BMs (NSCLC-BM). We sought to compare outcomes of NSCLC-BM treated with either first- or third-generation EGFR-TKIs in first-line and 2nd-to-5th-line settings. Methods: A retrospective review of NSCLC-BM patients diagnosed during 2010-2019 at Cleveland Clinic, Ohio, US, a quaternary-care center, was performed and reported following 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic, histopathological, molecular characteristics, and clinical outcomes were collected. Primary outcomes were median overall survival (mOS) and progression-free survival (mPFS). Multivariable Cox proportional hazards modeling and propensity score matching were utilized to adjust for confounders. Results: 239 NSCLC-BM patients with EGFR alterations were identified, of which 107 received EGFR-TKIs after diagnosis of BMs. 77.6% (83/107) received it as first-line treatment, and 30.8% (33/107) received it in later (2nd-5th) lines of therapy, with nine patients receiving it in both settings. 64 of 107 patients received first-generation (erlotinib/gefitinib) TKIs, with 53 receiving them in the first line setting and 13 receiving it in the 2nd-5th lines of therapy. 50 patients received Osimertinib as third-generation EGFR-TKI, 30 in first-line, and 20 in the 2nd-5th lines of therapy. Univariable analysis in first-line therapy demonstrated mOS of first- and third-generation EGFR-TKIs as 18.2 and 19.4 months, respectively (p = 0.57), while unadjusted mPFS of first- and third-generation EGFR-TKIs was 9.3 and 13.8 months, respectively (p = 0.14). In 2nd-5th line therapy, for first- and third-generation EGFR-TKIs, mOS was 17.3 and 11.9 months, (p = 0.19), while mPFS was 10.4 and 6.08 months, respectively (p = 0.41). After adjusting for age, performance status, presence of extracranial metastases, whole-brain radiotherapy, and presence of leptomeningeal metastases, hazard ratio (HR) for OS was 1.25 (95% CI 0.63-2.49, p = 0.52) for first-line therapy. Adjusted HR for mOS in 2nd-to-5th line therapy was 1.60 (95% CI 0.55-4.69, p = 0.39). Conclusions: No difference in survival was detected between first- and third-generation EGFR-TKIs in either first or 2nd-to-5th lines of therapy. Larger prospective studies are warranted reporting intracranial lesion size, EGFR alteration and expression levels in primary tumor and brain metastases, and response rates.
Collapse
Affiliation(s)
- Vineeth Tatineni
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Patrick J O'Shea
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Atulya A Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Shreya Saxena
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Yasmeen Rauf
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Division of Neuro-Oncology, University of North Carolina, Chapel Hill, NC 27514, USA
- Department of Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Xuefei Jia
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erin S Murphy
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Samuel T Chao
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John H Suh
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - David M Peereboom
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Manmeet S Ahluwalia
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
牛 雯, 荣 翔, 赵 倩, 刘 雪, 徐 廉, 李 姗, 李 娴. [Wine-processed Chuanxiong Rhizoma enhances efficacy of aumolertinib against EGFRmutant non-small cell lung cancer xenografts in nude mouse brain]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:375-382. [PMID: 37087581 PMCID: PMC10122737 DOI: 10.12122/j.issn.1673-4254.2023.03.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 04/24/2023]
Abstract
OBJECTIVE To investigate the effect of wine-processed Chuanxiong Rhizoma (WCR) for enhancing the efficacy of aumolertinib against xenografts of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) in the brain of nude mice. METHODS In a co-culture system of hCMEC/D3 and PC9 NSCLC cells, the effect of aqueous extract of WCR (2 mg/mL) combined with aumolertinib (10 and 20 μmol/L) on apoptosis of PC9 cells was investigated using flow cytometry. The effects of WCR extract (0.5, 1, and 2 mg/mL) on transmembrane transport of 8 μmol/L aumolertinib was examined in ABCB1-MDCK monolayer cells. Western blotting was used to detect the expressions of the tight junction proteins related with blood- brain barrier integrity. A nude mouse model bearing NSCLC xenograft in the brain was established to observe the inhibitory effect of WCR (1 mg/g) combined with aumolertinib (10 mg/kg) on tumor growth. RESULTS Compared with aumolertinib (20 μmol/L) alone, WCR extract (2 mg/mL) combined with aumolertinib significantly increased the apoptosis rate of PC9 cells by 21% (P < 0.01). The combined treatment with WCR (0.5, 1, 2 mg/mL) obviously increased apical-basolateral transport of aumolertinib in ABCB1-MDCK monolayer cells (P < 0.05) and significantly lowered the expression levels of zonula occludens-1, claudin-5 and P-glycoprotein (P < 0.05). In the tumor-bearing mice, compared with aumolertinib alone, the combined treatment with WCR and aumolertinib produced stronger inhibitory effect on tumor growth, improved weight loss, and prolonged the survival time of the nude mice (P < 0.05). Pathological examination showed that the combined treatment obviously increased the apoptosis rate of the tumor cells and alleviated neural injuries in the brain. Immunohistochemistry revealed that WCR treatment significantly reduced the expressions of ZO-1 and claudin-5 in the brain of the mice. CONCLUSION WCR combined with aumolertinib shows stronger inhibitory effects against tumor xenografts of EGFR-mutant NSCLC possibly due to the effect of WCR in facilitating the transmembrane transport of aumolertinib by downregulating ZO-1, claudin-5 and P-glycoprotein expression.
Collapse
Affiliation(s)
- 雯雯 牛
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 翔宇 荣
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 倩 赵
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 雪柔 刘
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 廉松 徐
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 姗姗 李
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 娴 李
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- 中药饮片制造新技术安徽省重点实验室,安徽 亳州 236800Anhui Provincial Key Laboratory of New Technology of Chinese Herbal Pieces Manufacturing, Bozhou 236800, China
- 安徽协和成药业饮片有限公司博士后工作站,安徽 亳州 236800Postdoctoral Workstation of Anhui Xiehecheng Pharmaceutical Yinpian Co Ltd, Bozhou 236800, China
| |
Collapse
|
8
|
Zhang C, Zhou W, Zhang D, Ma S, Wang X, Jia W, Guan X, Qian K. Treatments for brain metastases from EGFR/ALK-negative/unselected NSCLC: A network meta-analysis. Open Med (Wars) 2023; 18:20220574. [PMID: 36820064 PMCID: PMC9938645 DOI: 10.1515/med-2022-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 02/16/2023] Open
Abstract
More clinical evidence is needed regarding the relative priority of treatments for brain metastases (BMs) from EGFR/ALK-negative/unselected non-small cell lung cancer (NSCLC). PubMed, EMBASE, Web of Science, Cochrane Library, and ClinicalTrials.gov databases were searched. Overall survival (OS), central nervous system progression-free survival (CNS-PFS), and objective response rate (ORR) were selected for Bayesian network meta-analyses. We included 25 eligible randomized control trials (RCTs) involving 3,054 patients, investigating nine kinds of treatments for newly diagnosed BMs and seven kinds of treatments for previously treated BMs. For newly diagnosed BMs, adding chemotherapy, EGFR-TKIs, and other innovative systemic agents (temozolomide, nitroglycerin, endostar, enzastaurin, and veliparib) to radiotherapy did not significantly prolong OS than radiotherapy alone; whereas radiotherapy + nitroglycerin showed significantly better CNS-PFS and ORR. Surgery could significantly prolong OS (hazard ratios [HR]: 0.52, 95% credible intervals: 0.41-0.67) and CNS-PFS (HR: 0.32, 95% confidence interval: 0.18-0.59) compared with radiotherapy alone. For previously treated BMs, pembrolizumab + chemotherapy, nivolumab + ipilimumab, and cemiplimab significantly prolonged OS than chemotherapy alone. Pembrolizumab + chemotherapy also showed better CNS-PFS and ORR than chemotherapy. In summary, immune checkpoint inhibitor (ICI)-based therapies, especially ICI-combined therapies, showed promising efficacies for previously treated BMs from EGFR/ALK-negative/unselected NSCLC. The value of surgery should also be emphasized. The result should be further confirmed by RCTs.
Collapse
Affiliation(s)
- Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing100071, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing100071, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, Beijing100071, China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, Beijing100071, China
| |
Collapse
|
9
|
[Efficacy of Osimertinib Combined with Bevacizumab in Advanced Non-small Cell
Lung Cancer Patients with Acquired EGFR T790M Mutation]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:843-851. [PMID: 36617470 PMCID: PMC9845088 DOI: 10.3779/j.issn.1009-3419.2022.101.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) capable of overcoming non-small cell lung cancer (NSCLC) with EGFR T790M mutation. Although the addition of bevacizumab to 1st generation EGFR-TKIs confers a significant improvement in progression-free survival (PFS) in treatment-naive EGFR mutant NSCLC patients, osimertinib plus bevacizumab combination failed to show prolongation in the phase 2 study WJOG8715L. Data of such combination in Chinese patients are still lacking. This study aimed to explore the efficacy of the addition of bevacizumab to osimertinib as second-line therapy in real-world data, and to evaluate the role of anti-angiogenesis plus osimertinib combination therapeutic strategies in pretreated Chinese NSCLC patients with acquired EGFR T790M mutation. METHODS A total of 42 advanced NSCLC patients with acquired EGFR T790M mutation after prior EGFR-TKIs treatment were collected between January 2020 to August 2021, with 16 cases treated with osimertinib plus bevacizumab and 26 cases treated with osimertinib. The treatment effect of patients were analyzed. RESULTS The objective response rate (ORR) in combination group and osimertinib group were 43.8% and 50.0% respectively (P=0.694). No statistically significant difference in median PFS (14.0 mon vs 13.0 mon, P=0.797) and overall survival (OS) (29.0 mon vs 26.0 mon, P=0.544) between the combination group and osimertinib group were observed. Prior history of bevacizumab was identified as an independent predictor of PFS (P=0.045) and OS (P=0.023). CONCLUSIONS Our study demonstrated that adding bevacizumab to osimertinib could not show advantages in PFS and OS in pretreated NSCLC patients harboring EGFR T790M-mutation.
Collapse
|
10
|
Wan Y, Xu F, Wang J. Long-term survival of a non-small cell lung cancer patient with EGFR-mutated brain metastases: a case report. Transl Cancer Res 2022; 11:4448-4454. [PMID: 36644180 PMCID: PMC9834592 DOI: 10.21037/tcr-22-1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 12/28/2022]
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide. Up to 85% of lung cancer is non-small cell lung cancer (NSCLC) and most patients present with advanced disease at first diagnosis. Targeted therapy plays an important role in the treatment of advanced NSCLC. Epidermal growth factor receptor (EGFR) mutation is a predictive marker of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). Patients with EGFR-mutated NSCLC are prone to developing central nervous system (CNS) metastasis and poor prognosis (4-6 months). Brain metastases (BMs) remain a tricky problem in NSCLC patients and impose a distinct challenge for clinicians. Case Description This article details a patient with EGFR-mutated BMs accepting a series of treatments but without chemotherapy, resulting in significantly prolonged survival with overall survival (OS) over 8 years and improved clinical symptoms. The patient in our case received four lines of treatments and the progression-free survival (PFS) in each line were longer than the previously reported without exception. It is worth noting that the combination of osimertinib and bevacizumab used in the fourth-line therapy has a PFS of 31 months and has not progressed so far. Conclusions Our case demonstrates that it is possible to achieve long-term survival in advanced EGFR-mutated NSCLC with multiple BMs and systemic progression through a reasonable therapeutic schedule.
Collapse
Affiliation(s)
- Yuming Wan
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Xu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zhao W, Zhou W, Rong L, Sun M, Lin X, Wang L, Wang S, Wang Y, Hui Z. Epidermal growth factor receptor mutations and brain metastases in non-small cell lung cancer. Front Oncol 2022; 12:912505. [PMID: 36457515 PMCID: PMC9707620 DOI: 10.3389/fonc.2022.912505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/20/2022] [Indexed: 10/07/2023] Open
Abstract
Studies have revealed that non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations has a high incidence of brain metastases (BMs). However, the association between EGFR mutations and BMs remains unknown. This review summarizes detailed information about the incidence of BMs, clinical and imaging characteristics of BMs, brain surveillance strategies, influence of treatments on BMs, prognosis after BMs, and differences in EGFR mutations between paired primary tumors and BMs in EGFR-mutated NSCLC. The prognostic results demonstrate that patients with mutated EGFR have a higher incidence of BMs, EGFR tyrosine kinase inhibitors (EGFR-TKIs) (afatinib and osimertinib) delay the development of BMs, and patients with mutated EGFR with synchronous or early BMs have better overall survival after BMs than those with wild-type EGFR. The EGFR mutation status of BM sites is not always in accordance with the primary tumors, which indicates that there is heterogeneity in EGFR gene status between paired primary tumors and BMs. However, the EGFR gene status of the primary site can largely represent that of BM sites. Among patients developing synchronous BMs, patients with mutated EGFR are less likely to have central nervous system (CNS) symptoms than patients with wild-type EGFR. However, the possibility of neuro-symptoms is high in patients with metachronous BMs. Patients with mutated EGFR tend to have multiple BMs as compared to patients with wild-type EGFR. Regarding very early-stage NSCLC patients without neuro-symptoms, regular neuroimaging follow-up is not recommended. Among advanced NSCLC patients with EGFR mutation, liberal brain imaging follow-up in the first several years showed more advantages in terms of cost.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing medical university/Bishan Hospital of Chongqing, Chongqing, China
| | - Mao Sun
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Xing Lin
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Lulu Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Shiqiang Wang
- Department of Neurosurgery, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Ge Y, Xu B, Wang H, Gao J, Zhang X, Lu T, Gao R, Li J. Efficacy and Safety of EGFR Tyrosine Kinase Inhibitors Combined with Cranial Radiotherapy for Brain Metastases from Non-Small-Cell Lung Cancer: A Protocol for a Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6531748. [PMID: 35872868 PMCID: PMC9301690 DOI: 10.1155/2022/6531748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Introduction. Brain metastases (BMs) are common in non-small-cell lung cancer (NSCLC), which leads to a poor prognosis. As the two most effective strategies available, the use of combination of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and radiotherapy (RT) is still controversial. This protocol proposes a methodology for carrying out a systematic review and meta-analysis that is aimed at (1) focusing on the efficacy and safety role of EGFR-TKIs combined with RT for BMs from NSCLC and (2) displaying the difference in efficacy of EGFR-TKIs owing to the sites and number of BMs, different types of RT, EGFR mutation status, and the subtypes of EGFR mutations by subgroup analysis. Methods and Analysis. Electronic databases including PubMed, Embase, CENTRAL, Web of Science, CBM, CNKI, Wanfang database, and VIP database will be searched from their inception until May 2022. Only randomized controlled trials evaluating the clinical efficacy and safety of EGFR-TKIs combined with RT on BMs of NSCLC will be included. Two reviewers will select the articles, assess the risk of bias, and extract data independently and in duplicate. The RoB 2 tool will be used to assess the quality of included studies. The meta-analysis of data synthesis will be performed with Stata 16. Publication bias will be assessed with the funnel plot method and the Egger test. Quality of the evidence will be evaluated by the GRADE system. Discussion. The approval of an ethical committee is not required. All the included trials will comply with the current ethical standards and the Declaration of Helsinki. Given the ongoing controversies regarding the optimal sequencing of the available and expanding treatment options for EGFR-TKIs in NSCLC with BMs, a synthesis of available, high-quality clinical research evidence is essential to advance our understanding in the treatment of this complex and common disease. This systematic review will evaluate available evidence, will try to provide optimized advice in the applications of EGFR-TKIs, and will be published in a high-quality journal. This study is registered with PROSPERO registration number CRD42021291509.
Collapse
Affiliation(s)
- Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Heping Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Junmao Gao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Taicheng Lu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Gupta S, Vundavilli H, Osorio RSA, Itoh MN, Mohsen A, Datta A, Mizuguchi K, Tripathi LP. Integrative Network Modeling Highlights the Crucial Roles of Rho-GDI Signaling Pathway in the Progression of Non-Small Cell Lung Cancer. IEEE J Biomed Health Inform 2022; 26:4785-4793. [PMID: 35820010 DOI: 10.1109/jbhi.2022.3190038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and a leading cause of cancer-related deaths worldwide. Using an integrative approach, we analyzed a publicly available merged NSCLC transcriptome dataset using machine learning, protein-protein interaction (PPI) networks and bayesian modeling to pinpoint key cellular factors and pathways likely to be involved with the onset and progression of NSCLC. First, we generated multiple prediction models using various machine learning classifiers to classify NSCLC and healthy cohorts. Our models achieved prediction accuracies ranging from 0.83 to 1.0, with XGBoost emerging as the best performer. Next, using functional enrichment analysis (and gene co-expression network analysis with WGCNA) of the machine learning feature-selected genes, we determined that genes involved in Rho GTPase signaling that modulate actin stability and cytoskeleton were likely to be crucial in NSCLC. We further assembled a PPI network for the feature-selected genes that was partitioned using Markov clustering to detect protein complexes functionally relevant to NSCLC. Finally, we modeled the perturbations in RhoGDI signaling using a bayesian network; our simulations suggest that aberrations in ARHGEF19 and/or RAC2 gene activities contributed to impaired MAPK signaling and disrupted actin and cytoskeleton organization and were arguably key contributors to the onset of tumorigenesis in NSCLC. We hypothesize that targeted measures to restore aberrant ARHGEF19 and/or RAC2 functions could conceivably rescue the cancerous phenotype in NSCLC. Our findings offer promising avenues for early predictive biomarker discovery, targeted therapeutic intervention and improved clinical outcomes in NSCLC.
Collapse
|
14
|
Yi Y, Cai J, Xu P, Xiong L, Lu Z, Zeng Z, Liu A. Potential benefit of osismertinib plus bevacizumab in leptomeningeal metastasis with EGFR mutant non-small-cell lung cancer. J Transl Med 2022; 20:122. [PMID: 35287683 PMCID: PMC8919569 DOI: 10.1186/s12967-022-03331-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Background EGFR-mutant non-small cell lung cancer (NSCLC) is prone to leptomeningeal metastasis (LM) after Tyrosine kinase inhibitors (TKIs) treatment. Our previous study suggested that osimertinib plus bevacizumab was safe and effective in LM from EGFR-mutant NSCLC. This study aimed to compare the efficacy of osimertinib plus bevacizumab with osimertinib in EGFR-mutant NSCLC patients with LM. Methods We retrospectively reviewed the data from 27 LM patients with EGFR-mutant NSCLC who received osimertinib with or without bevacizumab at the Second Affiliated Hospital of Nanchang University. Next, we investigated the antitumor efficacy of osimertinib plus bevacizumab in an LM xenograft model using the H1975 (EGFR exon20 T790M and exon21 L858R) cell line. We examined the ability of osimertinib plus bevacizumab compared with osimertinib to penetrate the blood–brain barrier (BBB) and explored the potential mechanism. Results Our retrospective study observed the improved survival of LM patients in osimertinib plus bevacizumab group. The median overall survival (OS) of the patients who received osimertinib and bevacizumab (n = 16) compared with osimertinib group (n = 11) was 18.0 months versus 13.7 months (log-rank test, p = 0.046, HR = 2.867, 95% CI 1.007–8.162). The median intracranial Progression-free Survival (iPFS) was 10.6 months versus 5.5 months (log-rank test, p = 0.037, HR = 3.401, 95% CI 1.079–10.720). In the LM xenograft model with H1975 cells, the combined treatment significantly increased the effective intracranial concentration of osimertinib, modulated the level of E-cadherin and downregulated the levels of EGFR and downstream signaling pathways including p-AKT and reduced tumor microvessel density (TMD), indicated that combined osimertinib with bevacizumab may exhibit a synergistic effect in EGFR-mutant LM model possibly by modulating the level of E-cadherin. Conclusions Our findings indicate the potential benefit of osimertinib plus bevacizumab in LM with EGFR-mutant NSCLC, and more larger sample size research are still needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03331-9.
Collapse
|
15
|
Zhou B, Gong Q, Li B, Qie HL, Li W, Jiang HT, Li HF. Clinical outcomes and safety of osimertinib plus anlotinib for patients with previously treated EGFR T790M-positive NSCLC: A retrospective study. J Clin Pharm Ther 2022; 47:643-651. [PMID: 35023208 DOI: 10.1111/jcpt.13591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Although osimertinib achieved convincing efficacy for patients with EGFR T790M-positive non-small-cell lung cancer (NSCLC) as second-line treatment in the AURA3 clinical trials, patients developed drug resistance ultimately. Therefore, the present study was to investigate the clinical outcome and safety of osimertinib plus anlotinib for patients with previously treated EGFR T790M-positive NSCLC. METHODS Designed as a retrospective study, this study consecutively included a total of 33 patients with advanced NSCLC who possessed a EGFR T790M-positive mutation and progressed after the first-line therapy. Eligible patients were treated with osimertinib plus anlotinib. Baseline characteristics of the patients were collected during hospitalization. Efficacy of the combination regimen was assessed with the change of target lesion using imaging evidence according to RECIST 1.1 criteria, and all the patients were followed up regularly. Adverse reactions were collected and documented during the treatment. Univariate analysis according to baseline characteristic subgroups was performed using log-rank test, and multivariate analysis was carried out by Cox regression analysis. RESULTS AND DISCUSSION The best overall response of the patients during osimertinib and anlotinib combination indicated that complete response was found in one patient, partial response was observed in 26 patients, stable disease was noted in 5 patients and progressive disease was reported in one patient. Therefore, objective response rate (ORR) of the combination regimen was 81.8% (95%CI: 64.5%-93.0%), and disease control rate (DCR) was 97.0% (95%CI: 84.2%-99.9%). Furthermore, the median progression-free survival (PFS) of the 33 patients with NSCLC was 15.5 months (95%CI: 6.19-24.81). In addition, the median overall survival (OS) of the 33 patients with NSCLC was 23.8 months (95% CI: 17.67-29.93). Safety profile suggested that the most common adverse reactions of the patients with NSCLC who received anlotinib plus osimertinib were hypertension (63.6%), fatigue (57.6%), diarrhoea (48.5%%), dermal toxicity (39.4%) and proteinuria (33.3%). Interestingly, multivariate Cox regression analysis for PFS demonstrated that ECOG performance status was an independent factor to predict the PFS of the combination regimen. WHAT IS NEW AND CONCLUSION Osimertinib plus anlotinib regimen preliminarily exhibited encouraging clinical outcomes and acceptable safety profile for patients with previously treated EGFR T790M-positive NSCLC numerically. This conclusion should be validated in prospective clinical trials.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Qiang Gong
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ben Li
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Hai-Ling Qie
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Wei Li
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Hong-Tao Jiang
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - He-Fei Li
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
16
|
Effect of brain radiotherapy strategies on prognosis of patients with EGFR-mutant lung adenocarcinoma with brain metastasis. J Transl Med 2021; 19:486. [PMID: 34847914 PMCID: PMC8638426 DOI: 10.1186/s12967-021-03161-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Epidermal growth factor receptor (EGFR)-mutant lung cancers have a high risk of developing brain metastases (BM). Whole brain radiotherapy (WBRT), local radiotherapy, and WBRT + Boost are frequently used for treatment of BM. This retrospective study aimed to evaluate the difference in efficacy of these radiotherapy modes in patients with EGFR-mutant lung adenocarcinoma with BMs. Further, we determined the optimal radiotherapy regimen for patients based on Lung-molGPA. Methods and materials We retrospectively enrolled 232 patients with EGFR-mutant lung adenocarcinoma with BMs. Patients were divided into three groups based on the different modes of brain radiotherapy: WBRT group, local radiotherapy group, and WBRT + Boost group. Graded prognostic assessment for lung cancer using molecular markers (Lung molGPA), overall survival (OS), and intracranial progression-free survival (iPFS) were calculated. Kaplan–Meier was used to compare iPFS and OS in different groups. Results The median OS for the WBRT (n = 84), local radiotherapy (n = 65), and WBRT + Boost (n = 83) cohorts was 32.8, 59.1, and 41.7 months, respectively (P = 0.0002). After stratification according to the Lung-molGPA score, the median OS for the WBRT (n = 56), local radiotherapy (n = 19), and WBRT + Boost (n = 28) cohorts was 32.5, 30.9, and 30.8 months, respectively, in subgroup with score 1–2 (P = 0.5097). In subgroup with score 2.5–4, the median OS for the WBRT (n = 26), local radiotherapy (n = 45), and WBRT + Boost (n = 54) cohorts was 32, 68.4, and 51 months, respectively (P = 0.0041). Conclusion The present study showed that in patients with EGFR-mutant lung adenocarcinoma with BM, local radiotherapy and WBRT + Boost perform similarly well both in the subgroups with low and high scores of Lung-molGPA. Considering the side effect caused by whole brain radiotherapy, we recommended local radiotherapy as optimal brain radiation mode for those subtype lung cancer patients.
Collapse
|
17
|
Gu Y, Xu Y, Zhuang H, Jiang W, Zhang H, Li X, Liu Y, Ma L, Zhao D, Cheng Y, Yu Y, Liu P, Qin J, Chen X, Gao J, Wang M, Liang L, Cao B. Value and significance of brain radiation therapy during first-line EGFR-TKI treatment in lung adenocarcinoma with EGFR sensitive mutation and synchronous brain metastasis: Appropriate timing and technique. Thorac Cancer 2021; 12:3157-3168. [PMID: 34651449 PMCID: PMC8636222 DOI: 10.1111/1759-7714.14169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023] Open
Abstract
Background For lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) sensitive mutation and synchronous brain metastasis (syn‐BM), when and how to apply radiotherapy (RT) during first‐line tyrosine kinase inhibitor (TKI) treatment remains debatable. Methods From a real‐world multicenter database, EGFR‐mutant patients with syn‐BM diagnosed between 2010–2020 and treated with first‐line TKIs were enrolled and divided into upfront TKI + RT and upfront TKI groups. Median intracranial progression‐free survival (mIC‐PFS), median overall survival (mOS), and their risk factors were estimated. Results There were 60 and 186 patients in the upfront TKI + RT group and upfront TKI group, respectively. Their mIC‐PFS were 28.9 months (m) and 17.5 m (p = 0.023), and mOS were 42.7 m and 40.1 m (p = 0.51). Upfront brain RT improved mIC‐PFS in patients ≤60‐year‐old (p = 0.035), with symptomatic BM (p = 0.002), and treated with first‐generation TKIs (p = 0.012). There was no significant difference in mOS in any subgroup. Upfront brain stereotactic radiosurgery (SRS) showed a trend of better mIC‐PFS and mOS. mIC‐PFS was independently correlated with symptomatic BM (HR = 1.54, p = 0.030), EGFR L858R mutation (HR = 1.57, p = 0.019), and upfront brain RT (HR = 0.47, p = 0.001). mOS was independently correlated with being female (HR = 0.54, p = 0.007), ECOG 3–4 (HR = 10.47, p < 0.001), BM number>3 (HR = 2.19, p = 0.002), and third‐generation TKI (HR = 0.54, p = 0.044) or antiangiogenic drugs (HR = 0.11, p = 0.005) as first/second‐line therapy. Conclusions Upfront brain RT based on first‐line EGFR‐TKI might improve IC‐PFS but not OS in EGFR‐mutant lung adenocarcinoma patients, indicating potential survival benefit from brain SRS and early application of drugs with higher intracranial activity.
Collapse
Affiliation(s)
- Yangchun Gu
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Weijuan Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xiaofeng Li
- Internal Medicine of Thoracic Oncology, Baotou Tumor Hospital, Baotou, China
| | - Yonggang Liu
- Internal Medicine of Thoracic Oncology, Baotou Tumor Hospital, Baotou, China
| | - Li Ma
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yan Yu
- Department of respiratory medicine, Harbin Medical Cancer Hospital, Harbin, China
| | - Ping Liu
- Department of Respiratory and Critical Care Medicine, the First Hospital of Changsha, Changsha, China
| | - Jianwen Qin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Xueqin Chen
- Department of Thoracic Oncology, Hangzhou cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhen Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Liang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Xie S, Wu Z, Qi Y, Wu B, Zhu X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed Pharmacother 2021; 138:111450. [PMID: 33690088 DOI: 10.1016/j.biopha.2021.111450] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the common malignant tumors that threaten human life with serious incidence and high mortality. According to the histopathological characteristics, lung cancer is mainly divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 80-85% of lung cancers. In fact, lung cancer metastasis is a major cause of treatment failure in clinical patients. The underlying reason is that the mechanisms of lung cancer metastasis are still not fully understood. The metastasis of lung cancer cells is controlled by many factors, including the interaction of various components in the lung cancer microenvironment, epithelial-mesenchymal transition (EMT) transformation, and metastasis of cancer cells through blood vessels and lymphatics. The molecular relationships are even more intricate. Further study on the mechanisms of lung cancer metastasis and in search of effective therapeutic targets can bring more reference directions for clinical drug research and development. This paper focuses on the factors affecting lung cancer metastasis and connects with related molecular mechanisms of the lung cancer metastasis and mechanisms of lung cancer to specific organs, which mainly reviews the latest research progress of NSCLC metastasis. Besides, in this paper, experimental models of lung cancer and metastasis, mechanisms in SCLC transfer and the challenges about clinical management of lung cancer are also discussed. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.
Collapse
Affiliation(s)
- Shimin Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People's Hospital, Shenzhen, China
| | - Yi Qi
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
19
|
Zhou Y, Yu F, Zhao Y, Zeng Y, Yang X, Chu L, Chu X, Li Y, Zou L, Guo T, Zhu Z, Ni J. A narrative review of evolving roles of radiotherapy in advanced non-small cell lung cancer: from palliative care to active player. Transl Lung Cancer Res 2021; 9:2479-2493. [PMID: 33489808 PMCID: PMC7815368 DOI: 10.21037/tlcr-20-1145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiotherapy, along with other loco-regional interventions, is conventionally utilized as a palliative approach to alleviate symptoms and mitigate oncological emergencies in advanced non-small cell lung cancer (NSCLC). Thanks to the ongoing improvement of medical treatments in the last decade, such as targeted therapy and immunotherapy, the survival of patients with advanced NSCLC has been considerably prolonged, making it feasible and clinically beneficial for radiotherapy to play a more active role in highly selected subpopulations. In this review, we will focus on the evolving roles of radiotherapy in advanced NSCLC. First of all, among patients who are initially unable to tolerate aggressive treatment due to severe symptoms caused by metastases and/or tumor emergencies, timely radiotherapy could significantly improve their performance status (PS) and general condition, thus giving them a chance for intensive treatment and prolonged survival. The efficacy, potential candidates, and optimal dose-fractionation regimens of radiotherapy in this clinical scenario will be discussed. Additionally, radiotherapy can play a curative role as a concurrent therapy, consolidation therapy, and salvage therapy for patients with oligo-metastatic, oligo-residual, and oligo-progressive disease, respectively. Accumulating evidence from recent clinical trials, basic research, and translational investigations regarding the potentially curative roles of radiotherapy in NSCLC patients with oligo-metastatic disease will be summarized. Moreover, with the advent of various small molecular tyrosine kinase inhibitors (TKIs), the treatment efficacy and overall survival of oncogene-addicted NSCLC with brain metastases have been significantly improved, and the clinical value and optimal timing of cranial radiotherapy have become topics of much debate. Finally, synergistic antitumor interactions between radiotherapy and immunotherapy have been repeatedly demonstrated. Thus, the immune sensitizing role of radiotherapy in advanced NSCLC is also highlighted in this review.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya Zeng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ye Z, Huang Y, Ke J, Zhu X, Leng S, Luo H. Breakthrough in targeted therapy for non-small cell lung cancer. Biomed Pharmacother 2020; 133:111079. [PMID: 33378976 DOI: 10.1016/j.biopha.2020.111079] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains by far the single most common malignancy of lung cancer which causes more and more mortality in recent years. NSCLC accounts for more than 80 % of lung cancers, and the vast majority of patients were found to be in advanced inoperable stages. Chemotherapy used to be the main treatment for NSCLC, but due to its obvious side effects. Chemotherapy gradually withdrew from the stage of history. In recent years, cellular and molecular biotechnology has developed rapidly, and researchers have begun to target key genes and regulatory molecules for treatment. Targeted drugs have also emerged. The purpose of this review is to introduce important research achievements in recent years and the treatment progress of new drugs.
Collapse
Affiliation(s)
- Zhencong Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Jianhao Ke
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Shuilong Leng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| |
Collapse
|
21
|
Liu Y, Ye G, Huang L, Zhang C, Sheng Y, Wu B, Han L, Wu C, Dong B, Qi Y. Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma. Aging (Albany NY) 2020; 12:21559-21581. [PMID: 33170151 PMCID: PMC7695431 DOI: 10.18632/aging.103945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
In this study, we performed single-cell transcriptome data analysis of fifty primary and metastatic lung adenocarcinoma (LUAD) samples from the GSE123902 and GSE131907 datasets to determine the landscape of inter-patient and intra-tumoral heterogeneity. The gene expression profiles and copy number variations (CNV) showed significant heterogeneity in the primary and metastatic LUAD samples. We observed upregulation of pathways related to translational initiation, endoplasmic reticulum stress, exosomes, and unfolded protein response in the brain metastasis samples as compared to the primary tumor samples. Pathways related to exosomes, cell adhesion and metabolism were upregulated and the epithelial-to-mesenchymal-transition (EMT) pathway was downregulated in brain metastasis samples from chemotherapy-treated LUAD patients as compared to those from the untreated LUAD patients. Tumor cell subgroups in the brain metastasis samples showed differential expression of genes related to type II alveolar cells, chemoresistance, glycolysis and oxidative phosphorylation (metabolic reprogramming), and EMT. Thus, single-cell transcriptome analysis demonstrated intra-patient and intra-tumor heterogeneity in the regulation of pathways related to tumor progression, chemoresistance and metabolism in the primary and metastatic LUAD tissues. Moreover, our study demonstrates that single cell transcriptome analysis is a potentially useful tool for accurate diagnosis and personalized targeted treatment of LUAD patients.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guanchao Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinliang Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Han
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|